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Abstract

Background: Searching for similar compounds in a database is the most important process for in-silico drug screen-
ing. Since a query compound is an important starting point for the new drug, a query holder, who is afraid of the
query being monitored by the database server, usually downloads all the records in the database and uses them in
a closed network. However, a serious dilemma arises when the database holder also wants to output no information
except for the search results, and such a dilemma prevents the use of many important data resources.
Results: In order to overcome this dilemma, we developed a novel cryptographic protocol that enables database
searching while keeping both the query holder’s privacy and database holder’s privacy. Generally, the application of
cryptographic techniques to practical problems is difficult because versatile techniques are computationally expensive
while computationally inexpensive techniques can perform only trivial computation tasks. In this study, our protocol
is successfully built only from an additive-homomorphic cryptosystem, which allows only addition performed on en-
crypted values but is computationally efficient compared with versatile techniques such as general purpose multi-party
computation. In an experiment searching ChEMBL, which consists of more than 1,200,000 compounds, the proposed
method was 36,900 times faster in CPU time and 12,000 times as efficient in communication size compared with
general purpose multi-party computation.
Conclusion: We proposed a novel privacy-preserving protocol for searching chemical compound databases. The
proposed method, easily scaling for large-scale databases, may help to accelerate drug discovery research by making
full use of unused but valuable data that includes sensitive information.

Keywords: Chemical Compound, Similarity Search, Privacy Preserving Data Mining, Tversky Index, Additive
Homomorphic Cryptosystem

Introduction

In recent years, the increasing cost of drug development and decreasing number of new chemical entities have become
growing concerns [1]. One of the most popular approaches for overcoming these problems is searching for similar
compounds in databases [2]. In order to improve the efficiency of this task, it is important to utilize as many data
resources as possible. However, the following dilemma prevents the use of many existing data resources. Unpublished
experimental results have been accumulated at many research sites, and such data has scientific value [3]. Since data
holders are usually afraid of sensitive information leaking from the data resources, they do not want to release the
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full data, but they might allow authorized users to search the data as long as the users obtain only search results
from which they cannot infer sensitive information. Likewise, private databases of industrial research might be made
available if the sensitive information were sufficiently protected. On the other hand, query compounds are also sensitive
information for the users, and thus the users usually avoid sending queries and want to download all of the data in
order to conduct search tasks on their local computers. In short, we cannot utilize important data resources because
both the data holder and the data user insist on their privacy. Therefore, an emerging issue is to develop novel
technology that enables privacy-preserving similarity searches. We show several use cases in the next section.

Let us start by clarifying privacy problems in database searches. In a database search, two types of privacy are of
concern: “user privacy” (also known as input privacy) and “database privacy” (also known as output privacy). The
first is equal to protecting the user’s query from being leaked to others including the database holder. The second
is equal to protecting the database contents from being leaked to others including the database user, except for the
search results held by the user. Here we firstly consider the case of using no privacy-preserving techniques; namely,
the user sends a plain query to the server and the server sends the search result. In this case, the user’s query is fully
obtained by the server. On the database side, the server’s data is not directly leaked to the user. However, there is a
potential risk that the user may infer the database contents from the search results. To protect user privacy, a scheme
called single-database private information retrieval (PIR) has been proposed [4]. The simplest method for achieving
PIR is that the user downloads all the contents of the database and searches on his/her local computer. Since this
naive approach needs a huge communication size, several cryptographic techniques have been developed, in which the
query is safely encrypted/randomized in the user’s computer and the database conducts the search without seeing
the query. Although PIR is useful for searching public databases, it does not suit the purpose of searching private
databases because of the lack of database privacy. Likewise, similarity evaluation protocols keep user privacy [5–7]
but they do not sufficiently protect database privacy because the server directly outputs similarity scores that become
important hints for inferring database contents.

(a-2)(a-1)

(a-4)(a-3)
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(b-4)(b-3)

(b) Estimation from binary similarity
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Figure 1: Schematic view showing a large difference in tolerance against the regression attack between
two cases: (a) The server’s reply is the distance between the attacker’s query and the server’s data,
(b) The server’s reply is the binary sign that shows whether or not the distance between the attacker’s
query and the server’s data is larger than the given threshold. The red point represents the server’s data and
x represents the attacker’s query. Prior to the query, the search spaces (white areas) in (a-1) and (b-1) are equal. After
the first query has been sent, the search space in (a-2) is limited to the circle whose radius is the distance between
the attacker’s query and the server’s data. On the other hand in (b-2), only the small area of the dashed circle whose
radius is the given threshold (gray area) is excluded from the search space. By sending the second query, the attacker
knows that one of the two intersections of the two circles in (a-3) is equal to the server’s data, while the search space
is large in (b-3). Finally, the server’s data is detected by sending the third query in (a-4), however in (b-4), the search
space is still large, even though the third query is within the given threshold.

Generally speaking, it is very difficult to keep both user privacy and database privacy, because the database side
must prevent various attacks without seeing the user’s query. Among them, the following two attacks are major
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concerns.

• Regression attack
Given one data point, the similarity between a target and the data point becomes a strong hint for detecting the
target. The accuracy of the detection increases as the number of given data points becomes larger. In fact, a
protocol that is not suitably designed may lead to even a small number of queries enabling the database user to
detect the target. For example, when the server returns the exact distance between a query and a database entry,
the range of the entry is rapidly narrowed as the number of queries increases, and the entry is finally detected
uniquely by only almost the same number of queries as the dimension of the entry (see Fig. 1 for a detailed
explanation). For example, in the case of using the MACCS keys, which are 166 bit structural key descriptors
and often used for representing chemical compounds, a database entry is detected by sending only 166 queries.
Therefore, it is necessary for the server to return the minimum information that is sufficient for the purpose of
the search. In the Thresholding largely improves database privacy section, we will compare success probability
of the regression attack for the case when the server returns minimum information (which our protocol aims for)
and the other case when the server returns more information (which the previous method aims for).

• Illegal query attack
Searching with an illegal query often causes unexpected server behaviour. In such a case, the server might return
unexpected results that include important server information. To prevent this, the server should ensure the
correctness of the user’s query.

A schematic view of the privacy-preserving database search problems discussed here is shown in Fig. 2.
In the field of cryptography, there have been studies of versatile techniques such as general purpose multi-party

computation (GP-MPC) [8] and fully homomorphic encryption (FHE) [9], which enable the design of systems that
maintain both user privacy and database privacy. However, these techniques require huge computational costs as well
as intensive communications between the parties (see the recent performance evaluation of FHE [10]), so they are
scarcely used in practical applications. In order to avoid using such techniques, a similarity search protocol using a
trusted third party [11] and a privacy preserving SQL database using a trusted proxy server [12] have been proposed,
but those methods assure privacy only when the third party does not collude with the user or the server, which is
not convenient for many real problems. As far as we know, no practical method has been proposed despite the great
importance of privacy-preserving similarity searching. To overcome this lack, we propose a novel privacy-preserving
similarity search method that can strongly protect database privacy as well as user privacy while keeping a significantly
low computational cost and small communication size.

The rest of this paper is organized as follows. In the next section, we summarize our achievements in this study.
This is followed by the Cryptographic background section and the Method section, where we define the problem and
introduce details of the proposed protocol. In the Security analyses section, both the user privacy and database privacy
of the proposed protocol are discussed in detail. In the Performance evaluation section, the central processing unit
(CPU) time and communication size of the proposed protocol are evaluated for two datasets extracted from ChEMBL.
Finally, we present our conclusions for this study in the Conclusion section.

Our Achievements

Here we focus on similarity search with the Tversky index of fingerprints, which is the most popular approach for
chemical compound searches [13] and is used for various search problems in bioinformatics. To provide a concrete
application, we address the problem of counting the number of similar compounds in a database, which solves various
problems appearing in chemical compound searches. The following model describes the proposed method.

Model 1. The user is a private chemical compound holder, and the server is a private database holder. The user

learns nothing but the number of similar compounds in the server’s database, and the server learns nothing about the

user’s query compound.

Here we introduce only a small fraction of the many scientific or industrial problems solved by Model 1.

1. Secure pre-purchase inspection service for chemical compound.
When a client considers the purchase of a commercial database such as a focused library [14], he/she wants to
check whether the database includes a sufficient number of similar compounds, without sending his/her private
query, but the server does not allow downloading of the database.
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Figure 2: Schematic view of protection of (a) user privacy and (b) database privacy while keeping
user privacy. For user privacy, the user’s query and the search result which includes the query information must be
invisible to the database side during the search task. For database privacy, the server minimizes output information for
preventing regression attacks (b-1), and also detects and rejects illegal queries that might cause unexpected information
leakage (b-2). These server’s tasks must be carried out with the encrypted queries in order to keep user privacy.

2. Secure patent compound filtering.
When a client finds a new compound, he/she usually wants to know whether it infringes on competitors’ patents
by searching the database of patent-protected compounds maintained by third parties. The same problem occurs
when the client wants to check whether or not the compound is undesirable.

3. Secure negative results check.
It is a common perception that current scientific publication is strongly biased against negative results [3], al-
though a recent study showed statistically that negative results brought meaningful benefit [15]. Since researchers
are reluctant to provide negative results, which often include sensitive information, a privacy-preserving system
for sharing those results would greatly contribute to reducing redundant efforts for similar research topics. For
example, it would be useful to have a system that allows a user to check whether the query is similar to failed
compounds that have previously been examined in other laboratories.

In this study, we propose a novel protocol called the secure similar compounds counter (SSCC) which achieves
Model 1. The first main achievement of this study is that SSCC is remarkably tolerant against regression attacks
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compared with existing protocols which directly output the similarity score. Moreover, we propose an efficient method
for protecting the database from illegal query attacks. These points are discussed in the Security analyses section.

The second main achievement is that SSCC is significantly efficient both in computational cost and communication
size. We carefully designed the protocol such that it uses only an additive-homomorphic cryptosystem, which is
computationally efficient, and does not rely on any time-consuming cryptographic methods such as GP-MPC or FHE.
Hence the performance of the protocol is sufficiently high for a large-scale database such as ChEMBL [16], as is shown
in the Performance evaluation section.

Cryptographic background

Additively homomorphic encryption scheme

In this paper, we use an additive-homomorphic cryptosystem to design our protocol. The key feature of the additive-
homomorphic cryptosystem is that it enables to perform additive operations on encrypted values. Therefore, intuitively,
any standard computation algorithm can be converted into the privacy-preserving computation algorithm, if operations
used in the standard algorithm can be replaced by additions.

More formally, we use a public-key encryption scheme (KeyGen;Enc;Dec), which is semantically secure; that is, an
encryption result (ciphertext) leaks no information about the original message (plaintext) [17]. Here, KeyGen is a key
generation algorithm for selecting a pair (pk, sk) of a public key pk and a secret key sk; Enc(m) denotes a ciphertext
obtained by encrypting message m under the given pk; and Dec(c) denotes the decryption result of ciphertext c under
the given sk. We also require the following additive-homomorphic properties:

• Given two ciphertexts Enc(m1) and Enc(m2) of messages m1 and m2, Enc(m1 +m2) can be computed without
knowing m1, m2 and the secret key (denoted by Enc(m1)⊕ Enc(m2)).

• Given a ciphertext Enc(m) of a message m and an integer e, Enc(e ·m) can be computed without knowing m
and the secret key (denoted by e⊗ Enc(m)).

For example, we can use either the Paillier cryptosystem [18] or the “lifted” version of the ElGamal cryptosystem [19]
as such an encryption scheme; now the second operation ⊗ can be achieved by repeating the first operation ⊕. We
notice that the range of plaintexts for those cryptosystems can be naturally set as an integer interval [−N1, N2] for
some sufficiently large N1, N2 > 0; therefore, the plaintexts are divided into positive ones, negative ones, and zero.

Non-interactive zero-knowledge proof

Below, we discuss the following situation: A user (a prover) wants to make a server (a verifier) convinced that a
ciphertext c generated by the user corresponds to a message m in {0, 1}, but does not want to reveal any information
about which of 0 and 1 is m. This can be achieved by using a cryptographic tool called non-interactive zero-knowledge

(NIZK ) proof. In the present case, it enables the user to generate a “proof” associated with c, so that:

• If m is indeed in {0, 1}, then the server can verify this fact by testing the proof (without knowing m itself).

• If m 6∈ {0, 1}, then the user cannot generate a proof that passes the server’s test.

• The server cannot obtain any information about m from the proof, except for the fact that m ∈ {0, 1}.

(See [20] for a general formulation.) Besides the existing general-purpose NIZK proofs, Sakai et al. [21] proposed an
efficient scheme specific to the “lifted” ElGamal cryptosystem, which we use below. (See Section 1 of Additional File
1 in which we give the brief description of the NIZK proofs [21].)

Method

The goal of this study is to design a protocol between a user and a server that enables the user to obtain the number
of compounds in the server’s database that are similar to the user’s target compound. Here, a fingerprint of compound
is modeled as ~p ∈ {0, 1}ℓ (i.e., a bit string of length ℓ). An equivalent way to refer to ~p is the set of all indices i where
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pi = 1. We denote such a set by p. The similarity of two compounds p, q is then measured by Tversky index which
is parameterized by α, β > 0 and is defined as:

TIα,β(p, q) =
|p ∩ q|

|p ∩ q|+ α|p \ q|+ β|q \ p|
.

Tversky index is useful since it includes several important similarity measurements such as Jaccard Index (JI, which is
exactly TI1,1 and also known as Tanimoto Index) and Dice index (which is exactly TI1/2,1/2) [22]. First, we introduce
the basic idea and two efficient techniques for improving database privacy. Then, we describe our full proposed
protocol.

Basic idea

We firstly consider the simplest case that the user has (the fingerprint of) a target compound q as a query and the
server’s database consists of only a single fingerprint p. The case of a larger database is discussed later. The goal here
is to detect whether or not the Tversky index of p and q is larger than a given threshold 1 ≥ θ > 0. The main idea of
our approach is to calculate the score

θ−1(|p ∩ q|)− (|p ∩ q|+ α|p \ q|+ β|q \ p|) (1)

from encrypted fingerprints p and q by an additive-homomorphic cryptosystem. The score is non-negative if and only
if the Tversky index of p and q is at least θ. Now since |p \ q| = |p| − |p ∩ q| and a similar relation holds for |q \ p|,
the score (1) is positively proportional to

λ1|p ∩ q| − λ2|p| − λ3|q| ,

where λ1 = c(θ−1 − 1 + α + β), λ2 = cα, λ3 = cβ and any positive value c. We assume that the parameters and
the threshold for the Tversky index are rational numbers denoted by α = µa/γ, β = µb/γ and θ = θn/θd, where
µa, µb, γ, θn and θd are non-negative integers. By using c = γθng

−1 under this assumption, λ1, λ2 and λ3 become
non-negative integers where g is the greatest common divisor of γ(θd − θn) + θn(µa + µb), θnµa and θnµb.

Motivated by this observation, we define the following modified score, called the threshold Tversky index:

Definition 1. Given parameters α and β and a threshold θ for the Tversky index which are rational numbers denoted

by α = µa/γ, β = µb/γ and θ = θn/θd where µa, µb, γ, θn and θd are non-negative integers, then the threshold
Tversky index TIα,β,θ = TIα,β,θ(p, q) for fingerprints p and q is defined by

TIα,β,θ := λ1|p ∩ q| − λ2|p| − λ3|q| ,

and non-negative integer parameters λ1, λ2 and λ3 are defined by

λ1 = γθng
−1(θ−1 − 1 + α+ β) ,

λ2 = γθng
−1α ,

λ3 = γθng
−1β ,

where g is the greatest common divisor of γ(θd − θn) + θn(µa + µb), θnµa and θnµb.

By the above argument, we have TIα,β(p, q) ≥ θ if and only if TIα,β,θ(p, q) ≥ 0. Therefore, the user can know
whether or not his/her target compound q is similar (i.e., TIα,β(p, q) ≥ θ) to the fingerprint p in the database, by
obtaining only the value TIα,β,θ(p, q).

In the protocol, the bits of the user’s target fingerprint q and the value |p| held by the server are both encrypted
using the user’s public key. Since TIα,β,θ(p, q) can be computed by the addition of these values and multiplication by
integers, the protocol can calculate (without the secret key) a ciphertext of TIα,β,θ(p, q), which is then decrypted by
the user. For simplicity, we will abuse the notation and write TI(p, q), TI(p, q) without subscripts α, β, θ when the
context is clear.

We emphasize that our protocol does not use time-consuming cryptographic methods such as GP-MPC and FHE,
and data transfer occurs only twice during an execution of the protocol. Hence, our protocol is efficient enough to
scale to large databases.
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Database security enhancement techniques against regression attack

As discussed in Introduction section, the server needs to minimize returned information in order to minimize the
success ratio of the regression attack. That is, the ideal situation for the server is that the user learns only the
similarity/non-similarity property of fingerprints p and q, without knowing any other information about the secret
fingerprint p. This means that only the sign of TI(p, q) should be known by the user. However, in our basic protocol,
the value of TI(p, q) is fully obtained by the user; Database privacy is not protected from regression attacks. (See
the Security analyses section for details.) In order to send only the sign of TI(p, q), we firstly considered using a
bit-wise decomposition protocol [23] for extracting and sending only the sign bit of TI(p, q). Although this approach is
ideal in terms of security, the protocol requires more than 30 rounds of communications, which is much more efficient
than using GP-MPC or FHE, but rather time-consuming for large-scale databases. Therefore, here we propose the
novel technique of using dummy replies, which requires only one round of communication while sufficiently minimizing
information leakage of p. In the proposed technique, besides its original reply t = Enc(TI(p, q)), the server also chooses
random integers φ1, . . . , φn from a suitable interval and encrypts those values under the user’s public key pk. Then the
server sends the user a collection of ciphertexts t,Enc(φ1), . . . ,Enc(φn) that are shuffled to conceal the true ciphertext
t, as well as the number sd of dummy values φk with φk ≥ 0. The user decrypts the received n+1 ciphertexts, counts
the number sc of non-negative values among the decryption results, and compares sc to sd. Now we have TI(p, q) ≥ 0
if and only if sc − sd = 1; therefore, the user can still learn the sign of TI(p, q), while the actual value of TI(p, q) is
concealed by the dummies. We have confirmed that the information leakage of p approaches zero as the number of
dummies becomes large; see the Security analyses for pudding dummies section for more detailed discussion. (We have
also developed another security enhancement technique using sign-preserving randomization of TI(p, q); see Section 2
of Additional File 1 for details.)

Database security enhancement technique against illegal query attack

Illegal query attacks can be prevented if the server can detect whether or not the user’s query is valid. To keep
user privacy, the server must conduct this task without obtaining more information than the validity/invalidity of
the query. In fact, this functionality can be implemented by using the NIZK proof by Sakai et al. [21] mentioned
in the Non-interactive zero-knowledge proof section. The improved protocol requires the user to send the server a
proof associated with the encrypted fingerprint bits qi, from which the server can check whether q is indeed a valid
fingerprint (without obtaining any other information about q); the server aborts the protocol if q is invalid. Here we
use the “lifted” ElGamal cryptosystem as our basic encryption scheme to apply Sakai’s scheme. (We note that if we
require the user to send Enc(−|q|) used by server’s computation, then another NIZK proof is necessary to guarantee
the validity of the additional ciphertext, which decreases the communication efficiency of our protocol. Hence our
protocol requires the server to calculate Enc(−|q|) by itself.) The formal definition of the valid query is given in the
Database privacy in malicious model section.

Secure similar compounds counter

For the general case that the database consists of more than one fingerprint p, we propose the protocol shown in
Algorithm 1 to count the number of fingerprints p similar to the target fingerprint q. In the protocol, the server
simply calculates the encryption of the threshold Tversky indices for all database entries and, as discussed above,
replies with a shuffled collection of these true ciphertexts and dummy ciphertexts, as well as the number sd of non-
negative dummy values. Then the value sc−sd finally obtained by the user is equal to the number of similar fingerprints
p in the database.

Parameter settings of the protocol

Decrypting an encrytion of too large value needs huge computation cost if the lifted-ElGamal cryptosystem is used.
Therefore, in order to keep the consistency and efficiency of the protocol, the range of TI(p, q) should not be too large.
i.e., the integer parameters λ1, λ2 and λ3 in the threshold Tversky index should not be too large. In fact, this will not
cause a problem in practice; For example, the parameters become λ1 = 9, λ2 = λ3 = 4 for computing TI1,1,0.8 which
is a typical setting of a chemical compound search. In this case, a minimum value and a maximum value of TI(p, q) is
-664 and 166 for 166 MACCS keys, which is a sufficiently small range. (See Section 3 of Additional File 1 for details.)
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Algorithm 1 The secure similar compounds counter (SSCC)

• Public input: Length of fingerprints ℓ and parameters for the Tversky index θ = θn/θd, α = µa/γ, β = µb/γ

• Private input of a user: Target fingerprint q

• Private input of a server: Set of fingerprints P = {p(1), . . . ,p(M)}

1. (Key setup of cryptosystem) The user generates a key pair (pk, sk) by the key generation algorithm KeyGen for
the additive-homomorphic cryptosystem and sends public key pk to the server (the user and the server share
public key pk and only the user knows secret key sk).

2. (Initialization) The user encrypts his/her fingerprint q as a vector of ciphertexts: ~Enc(qk) :=
(Enc(q1), . . . ,Enc(qℓ)). He/she also generates v as a vector of proofs. Each proof vi is associated with Enc(qi).

3. (Query of entry) The user sends the vector of ciphertexts ~Enc(qk) and the vector of proofs v to the server as a
query.

4. (Query validity verification) The server verifies the validity of ~Enc(qk) by testing the vector of proof v. If v does
not pass the server’s test, the user cannot move on to the next step.

5. (Calculation of threshold Tversky index)

(a) The server calculates the greatest common divisor of γ(θd − θn) + θn(µa + µb), θnµa and θnµb as g, and
calculates λ1 = γθng

−1(θ−1 − 1 + α+ β), λ2 = γθng
−1α , and λ3 = γθng

−1β .

(b) The server calculates Enc(−|q|) = Enc(−
∑ℓ

i=1 qi) from
~Enc(qk): Enc(−|q|) = −1⊗

⊕ℓ
i=1 Enc(qi).

(c) for j = 1 to M do

i. The server calculates −|p(j)| = −
∑ℓ

i=1 p
(j)
i and encrypts it to obtain a ciphertext Enc(−|p(j)|).

ii. The server calculates a ciphertext tj of threshold Tversky index TI(p(j), q).

c← Enc(0)
for k = 1 to ℓ do

if pk
(j) = 1

c← c⊕ Enc(qk) ⊲ Computing Enc(|p(j) ∩ q|)

end if
end for
tj ← λ1 ⊗ c⊕ λ2 ⊗ Enc(−|p(j)|)⊕ λ3 ⊗ Enc(−|q|)

end for

6. (Padding of dummies)

(a) The server generates a set of dummy values {φ1, . . . , φn} and counts the number sd of non-negative dummies
φi ≥ 0.

(b) The server encrypts φi to obtain a ciphertext Enc(φi) for i = 1, . . . , n.

(c) The server shuffles the contents of the set T = {t1, . . . , tM ,Enc(φ1), . . . ,Enc(φn)}.

7. (Return of matching results) The server sends T and sd to the user.

8. (Decryption and counting) The user decrypts the contents of T and counts the number sc of non-negative values.

9. (Evaluation) The user obtains sc − sd as the number of similar fingerprints in the database.
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Security analyses

In this section, we evaluate security of SSCC by several approaches.
In the area of cryptology, the following two standard security models for two-party computation have been consid-

ered:

• Semi-honest model : Both parties follow the protocol, but an adversarial one attempts to infer additional infor-
mation about the other party’s secret input from the legally obtained information.

• Malicious model : An adversarial party cheats even in the protocol (e.g., by inputting maliciously chosen invalid
values) in order to illegally obtaining additional information about the secret.

We analyze user privacy and database privacy in both the semi-honest and malicious models. For the database
privacy, we firstly compare attack success ratios for the case of using our method which aims to output a binary sign
and the other case of using the previous methods which aim to output a similarity score, and show that outputting a
binary sign improves database privacy. We also evaluate security strength of our method against a regression attack by
comparing attack success ratios for the case of using dummies and the ideal case that uses a versatile technique (such
as GP-MPC and FHE) to output a binary sign, and show that the security strength for the case of using dummies is
almost the same as the ideal case under realistic settings.

User privacy

The semantic security of the encryption scheme used in the protocol (see the Additively homomorphic encryption
scheme section) implies immediately that the server cannot infer any information about the user’s target fingerprint
q during the protocol. This holds in both the semi-honest and malicious models.

Thresholding largely improves database privacy

We mentioned in the introduction section that minimizing information returned from the server reduces success ratio
of regression attack. Therefore, SSCC aims for “ideal” case in which the user learns only the sign of TI(p, q) during
the protocol. The previous methods that compute Jaccard Index aim for the “plain” case, in which the user fully
learns the value TI(p, q). Here we evaluate the efficiency of the thresholding by comparing success probabilities of
regression attack for those two cases. We consider the general case in which the user is allowed to send more than
one query and those queries are searched by Jaccard Index. We also suppose that the database consists of a single
fingerprint p in order to clarify the effect of thresholding.

The goal of an attacker is to reveal p by analysing the results returned from the server. It is generally effective for
the attacker to exploit the difference between the two outputs obtained by sending two different queries. In fact, when
the server returns TI, TI(p, q) - TI(p,0) becomes positive if and only if pi = 1, where q = (0, . . . , qi = 1, . . . , 0) and
0 = (0, . . . , 0). This means that the attacker can reveal any bit in p by sending the single query after sending the first
query 0. Therefore, p can be fully revealed by sending only ℓ+1 queries. On the other hand, there is no deterministic
attack for revealing p from only the sign of TI, because two different inputs do not always lead to different outputs.
Since we know of a linear algorithm that fully reveals p in response to at most 2ℓ queries after making a “hit” query
q such that TI(p, q) > 0, here we evaluate database privacy by the probability of making at least one hit query when
the user is allowed to send x queries. (See Section 4 of Additional File 1 for details.) This probability is denoted as

∑

p

Pr
(

X = p

)

·
(

1− (1− fp)
x
)

, (2)

where fp , defined as follows, is the probability that the user makes one hit query with a single trial when p is given.

fp :=
∑

q

Pr
(

Y = q

)

· Pr
(

TI(p, Y ) > 0
∣

∣

∣
Y = q

)

.

For ease of calculation, we computed the upper bound of equation (2) for x = 1, 10, 102, . . . , 106 and θ = 0.7, 0.8, 0.9, 1.0.
(See Section 5 of Additional File 1 for details.) Since publicly available 166 MACCS keys are the most popular
fingerprint for chemical compound searches, we set ℓ to 166. From the results shown in Fig. 3, we can see that the
probability of making a hit query is sufficiently small for practical use even though the user is allowed to send a

9

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 28, 2015. ; https://doi.org/10.1101/013995doi: bioRxiv preprint 

https://doi.org/10.1101/013995
http://creativecommons.org/licenses/by-nc-nd/4.0/


million of queries. Considering that the user learns p by using no more than ℓ+ 1 queries when he/she learns TI, we
can conclude that database privacy is dramatically improved by thresholding. In other words, the proposed protocol,
which aims to output only the sign of the similarity score, has stronger security than other previous methods, which
directly output similarity scores.
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Figure 3: Upper bounds of the probabilities that the user has at least one hit query out of making
1, 10, . . . , 106 queries. Note that the hit query becomes the critical hint for revealing database information. Each line
shows the results with one of the four different thresholds.

Security analyses for padding dummies

We showed that the output privacy in the “ideal” case is significantly improved from the “plain” case. Here we
experimentally evaluate how the actual situation of our proposed protocol is close to the “ideal” case.

Before going into detail analyses, let us discuss how to generate dummies. It is ideal for the server privacy to
generate a dummy according to the same distribution where TI(p, q) is generated from. However, this is not realistic
because TI(p, q) is determined by both p and q which is user’s private information. Therefore, in our analyses, we
assume that a dummy is generated from uniform distribution over possible values of TI(p, q). For example, if possible
values of TI(p, q) is {1, 2, 3, 4, 5}, dummies are randomly selected from any one of them. The purpose of padding
dummies is to mitigate the risk of leaking TI(p, q). In order to clarify the effect of the use of dummy values, we
concentrate on the basic case; the database contains a single p, and there exist k possible values of TI(p, q). i-th value
of the k possible values arises as the true TI(p, q) according to the probability wi. Namely, true TI(p, q) is generated
from the multinomial distribution with k different probabilities w = w1, . . . , wk, while dummies are generated from the
multinomial distribution with equal probability 1/k. To conduct stringent analyses, we assume that the user knows
w, and he/she also knows that dummies are uniformly distributed over k possible TI(p, q).

The security provided by our protocol can be formalized in the following manner. First we recall that, in our
protocol, the server computes encryption of TI(p, q) and encryption of dummy values φ1, . . . , φn, and then sends the
user the n + 1 encrypted values as well as the number of positive dummy values in φ1, . . . , φn. For the purpose of
formalizing the security, we introduce a “fictional” server that performs the following: It first receives the encrypted
values TI(p, q), φ1, . . . , φn from the real server. Secondly, it gets the sign of TI(p, q). (We note that a real server
cannot do it since it requires unrealistic computational power that breaks the security of the encryption scheme, so

this is just fictional for the sake of mathematical definition.) Thirdly, it generates another dummy value TI
′
randomly,

and independently of the values of TI(p, q), φ1, . . . , φn (except for the sign of TI(p, q)), in the following manner:

• If TI(p, q) is positive, then TI
′
is chosen randomly from positive values.

• If TI(p, q) is negative, then TI
′
is chosen randomly from negative values.
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Finally, the fictional server sends the user an encryption of TI
′
(instead of TI(p, q)) as well as the encrypted φ1, . . . , φn

and the number of positive values in φ1, . . . , φn. We note that, when the user receives a reply from the fictional server,

the user can know the sign of TI(p, q) which is the same as that of TI
′
, but cannot know any other information on

TI(p, q) since TI
′
is independent of TI(p, q). In the setting, the following property can be proven:

Theorem 1. Suppose that the user cannot distinguish, within computational time TIME, the sets of decrypted values

of ciphertexts involved in outputs of the real server and of the fictional server. Then any information computable

within computational time TIME from the decryption results for output of the real server is equivalent to information

computable within computational time TIME′ from the sign of TI(p, q) only, where TIME′ is a value which is close to

TIME.

Proof. Let A be an algorithm, with running time TIME, which outputs some information on the decrypted values
for an output of the real server. We construct an algorithm A′ which computes, from the sign of TI(p, q) only, an
information equivalent to the information computed by A. The construction is as follows; from the sign of TI(p, q),
A′ generates dummy values by mimicking the behavior of the fictional server, and then A′ inputs these dummy values
to a copy of A, say A∗, and gets the output of A∗. Now if the output of A′ is not equivalent to the output of A, then
the definition of A′ implies that the probability distributions of the outputs of A with inputs given by the decrypted
values for outputs of the real server and of the fictional server are significantly different (since A∗ used in A′ is a copy
of A); it enables the user to distinguish the two possibilities of his/her received values by observing the output of A,
but this contradicts the assumption of the theorem. Therefore, the output of A′ is equivalent to the output of A as
claimed. Moreover, the computational overhead of A′ compared to A is just the process of generating dummy values
by mimicking the behavior of the fictional server; it is not large (i.e., TIME′ is close to TIME as claimed) since the
server-side computation of our proposed protocol is efficient. Hence, the theorem holds.

Roughly rephrasing, if the assumption of the theorem is true for a larger TIME, then the actual situation of our
proposed protocol becomes closer to the “ideal” case provided we focus on any information available from efficient
computation. As a first step to evaluate how the assumption is plausible (i.e., how the value TIME in the assumption
can be large), we performed computer experiments to show that some natural attempts to distinguish the actual and
the fictional cases do not succeed, as explained below.

In this experiment, we evaluate the security of our protocol by comparing the probabilities that the user correctly
guesses the value TI(p, q) in two cases: The case in which the user makes a guess based only on a prior knowledge w,
and the other case in which the user makes a guess based on the observation of the search result under the condition
that he/she knows w.

For the first case, the user’s best strategy for guessing TI(p, q) is to choose the i0-th possible value, where

i0 = arg max
1≤i≤k

wi . (3)

In this case, the success probability of the guess is wi0 .
Let us consider the best strategy for the second case. As described above, we consider an practical case that n

dummy values φ1, . . . , φn chosen from the k possible values uniformly at random, and the user makes a guess from the
received n+ 1 shuffled values φ1, . . . , φn,TI(p, q). Now suppose that the user received the i-th possible value ai times

for each 1 ≤ i ≤ k (hence
∑k

i=1 ai = n+1). Since the choices of φ1, . . . , φn are independent of TI(p, q), the probability
that the user received i-th possible value ai times for each 1 ≤ i ≤ k and that TI(p, q) is i0-th possible value is

(

n

a1, . . . , ai0 − 1, . . . , ak

)(

1

k

)n

· wi0 = ai0 · wi0

n!

a1! · · · ak!kn
.

Therefore, the conditional probability that TI(p, q) is the i0-th possible value, conditioned on the set of the user’s
received values, is

(

n
a1,...,ai0

−1,...,ak

) (

1
k

)n
· wi0

∑k
i=1

(

n
a1,...,ai−1,...,ak

) (

1
k

)n
· wi

=
ai0 · wi0

∑k
i=1 ai · wi

.

This implies that the user’s best strategy is to guess that TI(p, q) is the i0-th possible value, where

i0 = arg max
1≤i≤k

ai · wi . (4)
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We estimated success probabilities of user’s guess for the both cases by simulation experiments. Here we assumed
typical case when TI1,1,0.8 and 166 MACCS keys are used. In this case, k = 831 and we performed the experiments for
n = 831×100, 831×101, . . . , 831×104 on three different distributions of TI(p, q) which were obtained by the following
schemes:

1. We randomly selected one fingerprint q from ChEMBL and calculated TI(q,p) for all the entries in ChEMBL
and used the observed distribution as w. In our experiment, 177159-th fingerprint was selected as q (referred as
w

ChEMBL−177159).

2. The same scheme as 1) was used when q was 265935-th fingerprint (referred as wChEMBL−265935).

3. We randomly selected a value from 1, . . . , k for m times and count frequency of i as hi and set wi = hi/m
(referred as wrandom). We used k × 5 as m.

All the distributions used here are shown in Section 6 of Additional File 1.
We performed 100, 000 trials for each experiment. Each trial consisted of choosing φ1, . . . , φn uniformly at random;

choosing TI(p, q) according to w; deciding the user’s guess i0 by formula (3) and formula (4) respectively (we adopted
a uniformly random choice if there were more than one such i0); and checking whether or not TI(p, q) was the i0-th
possible value for both rules (i.e., the user’s guess succeeded). The results of the experiment are given in Table 1; they
show that the user’s attack success probability became significantly close to the ideal case when a sufficiently large
number of dummies were used; therefore, our technique of using dummies indeed improves the output privacy.

Table 1: The experimental success ratios of the user’s guess based on the server’s return and the prior distribution of
true value (n = 813, . . . , 813 × 104), and success probability based only on a guess from the prior distribution (ideal
value). TI1,1,0.8 (k = 831) is assumed and results are calculated for five different numbers of dummies (n = 831, 831×
101, 831×102, 831×103, 831×104) are used for three different distributions: wChEMBL−177159 and w

ChEMBL−265935 are
actual distributions of TI1,1,0.8 on ChEMBL obtained by querying two randomly selected fingerprints from ChEMBL,
w

rand is obtained by randomly selecting a value from 1, . . . , k for m = 5 × 831 times and dividing each observed
frequency by m.

n 831 831× 101 831× 102 831× 103 831× 104 Ideal value
w

ChEMBL−177159 0.03552 0.01738 0.01101 0.01009 0.00977 0.00981
w

ChEMBL−265935 0.02991 0.01337 0.00903 0.00798 0.00784 0.00807
w

rand 0.00914 0.0041 0.00309 0.00279 0.00305 0.00289

Security analyses for padding dummies for the case when the user is allowed to send

more than one query

One might suspect that the attacker can detect the true TI(p, q) by sending the same query twice and finding the
value which is appeared in both results. However, this attack does not easily succeed if n is sufficiently larger than k
(i.e., ideally, all possible values of TI are covered by sufficient number of dummies), and we consider that k is not too
large in practice as we discussed in Parameters settings of the protocol section.

In order to evaluate the security achieved by the padding dummies for the case when the user is allowed to submit
L queries, we performed following analyses. Here we evaluate the security achievement by comparing the case of using
our protocol based on the padding dummy and the ideal case of returning only the sign of TI(p, q). In order to perform
rigorous analyses, we assume the most severe case in which the attacker keeps sending the same query L times. For
this case, the probability that TI(p, q) is the i0-th possible value after sending L queries on condition that frequency

of i-th possible value of j-th query a
(j)
i for j = 1, . . . , L is

L
∏

j=1

a
(j)
i · wi

∑k
h=1 a

(j)
h · wh

. (5)

This implies that the user’s best strategy is to choose i-th possible value which maximizes equation (5). As
mentioned above, we compared the success ratio of the attack based on the above strategy and the ideal success ratio
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when the user makes the guess only from the given distribution w. We also assumed more realistic case that user
did not know the exact distribution of dummy but knew the distribution that was similar to the actual distribution
the server used. For the evaluation of this case, we generated dummies from the distribution u, which was slightly
different from uniform distribution, while the user assumed that dummies were generated from uniform distribution.
u was generated as follows:

ui = r · 1/k, where r ∼ N (1 , δ2 ).

We performed the experiment for L = 1, 10, 102, . . . , 105, n = 831×10, 831×50, 831×102 and δ = 0, 0.05, 0.1, 0.15, 0.2
based on the same approach used in the evaluation of single query security. i.e., for each trial, n dummies were ran-
domly chosen according to u (note that u was equal to uniform distribution when δ = 0), true value TI(p, q) was
selected according to w and the attacker’s guess was made based on the equation (5). We performed 10, 000 trials
for each triplet of L, n and δ. Those experiments were conducted for the same three distributions: wChEMBL−177159,
w

ChEMBL−265935 and w
ChEMBL−random. We compared the success ratio of the attack and the ideal success ratio when

the user made the guess without seeing search results. The results are shown in Fig. 4. The success ratio of user’s
attack decreased as the number of dummies increased and became closer to the ideal value when the sufficient number
of dummies are given, even for the case that a large number of queries were sent. Although an efficient method for
dummy generation remains as a future task, the results also show that hiding the distribution of dummy is signifi-
cantly effective for protecting database privacy and the user has to know it with high accuracy in order to steal extra
information from the server.

Database privacy in malicious model

For our protocol, the difference between the malicious and semi-honest models is that in the malicious model the user
may use an invalid input q whose components qi are not necessarily in {0, 1}. If the user chooses q in such a way that
some component qi is extremely large and the remaining ℓ − 1 components are all zero, then TI(p, q) will also be an
extreme value (distinguishable from the dummy values) and depend dominantly on the bit pi; therefore, the user can
almost surely guess the secret bit pi. Since our protocol detects whether or not qi is a bit value without invading user
privacy, it can safely reject illegal queries and prevent any illegal query attacks, including above case.

Performance evaluation

In this section, we evaluate the performance of the proposed method on two datasets created from ChEMBL.

Implementation

We implemented the proposed protocol using the C++ library of elliptic curve ElGamal encryption [24], in which the
NIZK proposed in the previous study [21] is also implemented.

For the implementation, we used parameters called secp192k1, as recommended by SECG (The Standards for
Efficient Cryptography Group). These parameters are considered to be more secure than 1024-bit RSA encryption,
which is the most commonly used public-key cryptosystem. The implementation of

Owing to the limitation of the range of plaintext, the implementation here does not include sign-preserving ran-
domization. For the purpose of comparison, we also implemented a GP-MPC protocol by using Fairplay [25]. In order
to reduce the circuit size of the GP-MPC, we implemented s simple task that computes the sign of Tversky index
between a query and a fingerprint in the database, and repeated the task for all the fingerprints in the database. Thus
the CPU time and data transfer size of the implementation is linear to the size of database.

Experimental setup

The Jaccard index along with the threshold θ = 0.8 were used for both protocols. For SSCC, we used 10,000
dummies. These two implementations were tested on two datasets: one, referred to as ChEMBL 1000, was the first
1000 fingerprints stored in ChEMBL, and the other, referred to as ChEMBL Full, was 1,292,344 fingerprints in the
latest version of ChEMBL. All the programs were run on a single core of an Intel Xeon 2.9 GHz on the same machine
equipped with 64 GB memory. To avoid environmental effects, we repeated the same experiment five times and
calculated average values.
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Figure 4: The comparison of the experimental success ratios of the user’s guess based on the server’s
return as well as the prior distribution of true value when the user sends many queries (δ = 0, . . . , 0.2),
and success probability based only on a guess from the prior distribution (ideal value). TI1,1,0.8 (k = 831)
is assumed and results are calculated for three different numbers of dummies (n = 831× 10, 831× 50, 831× 102) when
the user sends L = 1, 10, . . . , 105 queries and three different distributions: w

ChEMBL−177159 and w
ChEMBL−265935 are

actual distributions of TI1,1,0.8 on ChEMBL obtained by querying two randomly selected fingerprints from ChEMBL,
w

rand is obtained by randomly selecting a value from 1, . . . , k for m = 5 × 831 times and dividing each observed
frequency by m.

Results

The results are shown in Table 2. Despite the proposed method including elaborate calculation like the NIZK proof,
we can see from the results that both the CPU time and communication size of the proposed method are significantly
smaller than those of the GP-MPC protocol. Furthermore, it is clear that SSCC provides industrial-strength perfor-
mance, considering that it works, even on a huge database like ChEMBL Full, taking no more than 167 s and 173 s
for the server and client respectively.
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Table 2: CPU time and communication size of secure similar compounds counter (SSCC) and those of general-purpose
multi-party computation (GP-MPC). The experiment on ChEMBL Full by GP-MPC did not finish within 24 hours.

ChEMBL 1000 ChEMBL Full
CPU time (s)
SSCC (server) 0.69 167.19
SSCC (client) 1.53 172.37
GP-MPC (server) 4, 075.15 −
GP-MPC (client) 4, 366.18 −
Communication size (MB)
SSCC (server → client) 2.24 265.33
SSCC (client → server) 0.03 0.03
GP-MPC (server → client) 42.50 −
GP-MPC (client → server) 2, 128.00 −

The experiment on ChEMBL Full by using GP-MPC did not finish within 24 hours. Since both CPU time and
communication size are exactly linear to the size of database for the GP-MPC protocol, the results of ChEMBL Full
for GP-MPC are estimated to be more than 1600 hours for both sides and 3 Gbyte data transfer from client to server,
considering the results of ChEMBL 1000.

By using simple data parallelization, the computational speed will be improved linearly with the number of CPUs.
Since all the programs were run on the same machine there was almost no latency for the communication between the
two parties in these experiments. Therefore, GP-MPC, whose communication size is huge, is expected to require far
more time when it runs on an actual network that is not always in a good condition. The other important point is
that SSCC requires only two data transfers, which enables data transfer after off-line calculation. On the other hand,
GP-MPC must keep online during the search because of the high communication frequency. We also note that it
took less than 100 MB to compile SSCC, while GP-MPC required more than 16 GB. Considering these observations,
SSCC is efficient for practical use. It is known that several techniques improve the performance of GP-MPC and the
previous work by Pinkas et al. [26] reported that Free XOR [27] and Garbled Row Reduction [26], which are commonly
used in state-of-the-art GP-MPC methods [28] [29] [30] [31], reduced running time and communication size by factors
of 1.8 and 6.3 respectively when a circuit computing an encryption of AES was evaluated. Though these techniques are
not implemented in Fairplay, we consider that GP-MPC is yet far less practical for the large-scale chemical compound
search problem compared to our method which improved running time and communication size by factors of 36, 900
and 12, 000.

Conclusion

In this study, we proposed a novel privacy-preserving protocol for searching chemical compound databases. To our
knowledge, this is the first practical study for privacy-preserving (for both user and database sides) similarity searching
in the fields of bioinformatics and chemoinformatics. Moreover, the proposed method could be applied to a wide range
of life science problems such as searching for similar single-nucleotide polymorphism (SNP) patterns in a personal
genome database. While the protocol proposed here focuses on searching for a number of similar compounds, we are
examining further improvements of the protocol such as the client being able to download similar compounds; we
expect this on-going study to further contribute to the drug screening process. In recent years, open innovation has
been attracting attention as a promising approach for speeding up the process of new drug discovery [32]. For example,
research on neglected tropical diseases including malaria has been promoted by the recent attempt to share chemical
compound libraries in the research community. In spite of high expectations, such an approach is still limited to
economically less important problems on account of privacy problems [33]. Therefore, privacy-preserving data mining
technology is expected to be the breakthrough promoting open innovation and we believe that our study will play an
important role.
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[5] Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On private scalar product computation for privacy-preserving
data mining. In: Proceedings of the 7th Annual International Conference on Information Security and Cryptology.
ICISC 2004, pp. 104–120 (2004)

[6] Blundo, C., Cristofaro, E.D., Gasti, P.: EsPRESSo : Efficient Privacy-Preserving Evaluation of Sample Set Sim-
ilarity. In: Proceedings of Data Privacy Management and Autonomous Spontaneous Security: 7th International
Workshop, DPM 2009 and 5th International Workshop, SETOP 2012. DMP/SETOP 2012, pp. 89–103 (2012)

[7] Murugesan, M., Jiang, W., Clifton, C., Si, L., Vaidya, J.: Efficient privacy-preserving similar document detection.
The VLDB Journal 19(4), 457–475 (2010)

[8] Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foun-
dations of Computer Science. SFCS ’86, pp. 162–167 (1986)

[9] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Sympo-
sium on Theory of Computing. STOC ’09, pp. 169–178 (2009)

[10] Togan, M., Plesca, C.: Comparison-based computations over fully homomorphic encrypted data. In: Communi-
cations (COMM), 2014 10th International Conference On, pp. 1–6 (2014). doi:10.1109/ICComm.2014.6866760

[11] Laur, S., Lipmaa, H.: On private similarity search protocols. In: Proceedings of the 9th Nordic Workshop on
Secure IT Systems. NordSec 2004, pp. 73–77 (2004)

[12] Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: In: Proceedings of the 23rd ACM Symposium on
Operating Systems Principles. SOSP 11, pp. 85–100

[13] Martin, Y.C., Kofron, J.L., Traphagen, L.M.: Do structurally similar molecules have similar biological activity?
Journal of Medicinal Chemistry 45(19), 4350–4358 (2002)

[14] Miller, J.L.: Recent developments in focused library design: targeting gene-families. Current Topics in Medicinal
Chemistry 6(1), 19–29 (2006)

[15] Curty, R., Tang, J.: Someone’s loss might be your gain: A case of negative results publications in science. In:
Proceedings of the American Society for Information Science and Technology. ASISTS, vol. 49 (2012)

[16] Gaulton, A., Bellis, L.J., Bento, A.P., Chambers, J., Davies, M., Hersey, A., Light, Y., McGlinchey, S.,
Michalovich, D., Al-Lazikani, B., Overington, J.P.: ChEMBL: a large-scale bioactivity database for drug dis-
covery. Nucleic Acids Research 40(Database issue), 1100–1107 (2012)

[17] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

[18] Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Proceedings of the 17th
International Conference on Theory and Application of Cryptographic Techniques. EUROCRYPT’99, pp. 223–238
(1999)

16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 28, 2015. ; https://doi.org/10.1101/013995doi: bioRxiv preprint 

https://doi.org/10.1101/013995
http://creativecommons.org/licenses/by-nc-nd/4.0/


[19] ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions
on Information Theory 31(4), 469–472 (1985)

[20] Goldreich, O.: Foundations of Cryptography: Volume 1. Cambridge University Press, ??? (2001)

[21] Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Omote, K.: Methods for restricting message space in public-key
encryption. IEICE Transactions 96-A(6), 1156–1168 (2013)

[22] Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1977)

[23] Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party
computation for equality, comparison, bits and exponentiation. In: Proceedings of the 3rd Theory of Cryptography
Conference. TCC 2006, pp. 285–304 (2006)

[24] C++ Library implementing elliptic curve ElGamal crypto system [19]. https://github.com/aistcrypt/Lifted-
ElGamal. URL accessed April 13, 2015 (2015)

[25] Ben-david, A., Nisan, N., Pinkas, B.: Fairplaymp: A system for secure multi-party computation. In: Proceedings
of ACM Conference on Computer and Communications Security. CCS 2008, pp. 17–21 (2008)

[26] Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Proceedings
of the 15th International Conference on the Theory and Application of Cryptology and Information Security.
ASIACRYPT 2009, pp. 250–267 (2009)

[27] Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Proceedings of the
35th International Colloquium on Automata, Languages and Programming. ICALP 2008, pp. 486–498 (2008)
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A An Encryption Scheme with Zero-Knowledge Proof

For self-containment, we briefly recall the lifted ElGamal encryption scheme with the non-interactive zero-knowledge
proof (NIZK) system which proves that the plaintext is either 0 or 1, proposed in [21], and provide some intuition for
it. Let G be a group of prime order p such that the Decisional Diffie-Hellman assumption holds (i.e., the resulting
encryption scheme provides a standard security property called semantic security). The public key is (g, h, f) where
g, f are random generators in G and h = gz for z randomly picked from Zp = {0, 1, . . . , p − 1}. The secret key is z.
Let H be a hash function. Encrypting a plaintext b ∈ {0, 1} gives a ciphertext (C1 = gu, C2 = huf b), for random
u ∈ Zp. Decryption computes y = C2C

−z
1 and outputs 1 if y = f or outputs 0 if y = 1.

• Encrypting a plaintext 0 outputs the ciphertext (C1, C2) where

C1 = gu, C2 = hu

where u is randomly picked from Zp. The proof that its plaintext is either 0 or 1 consists of

(s0, t0, s1, t1) where s0 = r + t0u and t0 = H(C1, C2, g
r, hr, gs1−ut1 , hs1−ut1f t1)− t1

where r, s1, t1 are randomly picked from Zp.

• Encrypting a plaintext 1 outputs the ciphertext (C1, C2) where

C1 = gu, C2 = huf

where u are randomly picked from Zp. The proof that its plaintext is either 0 or 1 consists of

(s0, t0, s1, t1) where s1 = r + t1u and t1 = H(C1, C2, g
s0−ut0 , hs0−ut0f−t0 , gr, hr)− t0

where r, s0, t0 are randomly picked from Zp.

The verification of the proof is done by computing

X1 = gs0C−t0
1 , X2 = hs0C−t0

2 , Y1 = gs1C−t1
1 , Y2 = hs1C−t1

2 f t1 ,

and checking whether

t0 + t1 = H(C1, C2, X1, X2, Y1, Y2).

Correctness can be verified straightforwardly. As for security, we provide the intuition as follows:

• Soundness. The relations for X1, X2 prove that the plaintext is 0, while the relations for Y1, Y2 prove that
the plaintext is 1. The prover can produce exactly one real proof and one simulated fake proof due to the
fact that the term t0 + t1 is constrained to the hash of r. In case of encrypting a bit b, the prover chooses tb̄
freely, where b̄ is the flipped bit of b. The fact that the prover cannot control tb implies that it has to know the
ciphertext randomness u in order to produce the correct sb (à la the Fiat-Shamir Paradigm [34]). This implies
that there exists u so that (C1, C2) forms an encryption of b, and hence the soundness. In other words, since the
output of the hash function H cannot be predicted before determining its input, in order to satisfy the condition
t0+ t1 = H(C1, C2, X1, X2, Y1, Y2), the only possible strategy is to choose at least one of t0 and t1 in a consistent
manner after the input for H is determined. Now note that

X1 = gs0−ut0 , X2 = hs0−ut0f−bt0 , Y1 = gs1−ut1 , Y2 = hs1−ut1f (1−b)t1

if (C0, C1) is a ciphertext of b. The shapes of X1 and X2, in particular the exponent −bt0 of f in X2, imply
that t0 is uniquely determined from X1 and X2 unless b = 0. Similarly, the shapes of Y1 and Y2, in particular
the exponent (1− b)t1 of f in Y2, imply that t1 is uniquely determined from Y1 and Y2 unless b = 1. Therefore,
unless b = 0 or b = 1, there is no room to adjust the value of t0 or t1 after the input for H is determined as
required above. By the contraposition, the existence of a valid proof implies that the plaintext b must be 0 or 1,
ensuring the soundness.

• Zero-Knowledge. Observe that, in both cases, the proof elements (s0, t0, s1, t1) distribute identically, due to
the uniform randomness of u, r, sb̄, tb̄ (in case of encrypting b). Hence, the information on the plaintext bit is
hidden from the proof.
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B Further security enhancement technique by using sign-preserving ran-

domization

As mentioned at the end of the Database security enhancement techniques against regression attack section, we can
further improve the output privacy by using “sign-preserving randomization” of the threshold Tversky index. Namely,
the server calculates r1 · TI(p, q) + r2 with random integers 0 ≤ r2 < r1 for each p and uses it instead of the true
value TI(p, q) (the range of the dummy values φ1, . . . , φn should also be changed accordingly). This modification
makes it more difficult for the user to guess the true TI(p, q); it does not affect the correctness of the protocol, since
r1 ·TI(p, q)+r2 has the same sign as TI(p, q). Therefore, it is qualitatively obvious that the output privacy is improved
by the sign-preserving randomization. However, it is hard to quantitatively evaluate the achieved improvement; more
detailed evaluations will be a future research topic.

C Ranges of TI for typical parameter settings

In the Parameter settings of the protocol section, we mentioned that the range of TI is not too large for practical cases
of chemical compound search. Here we list the ranges of typical parameter settings in Table 3. In our protocol, it is
sufficient to check whether or not the TI is positive value. Therefore, the range which is necessary to be verified is
smaller in practical.

Table 3: Range of TI for the most typical parameter settings.
166 1.0 1.0 0.7 ( 498 , -1162 ) 499
166 1.0 1.0 0.8 ( 166 , -664 ) 167
166 1.0 1.0 0.9 ( 166 , -1494 ) 167
166 1.0 1.0 1.0 ( 0 , -166 ) 1
166 0.5 0.5 0.7 ( 996 , -1162 ) 997
166 0.5 0.5 0.8 ( 166 , -332 ) 167
166 0.5 0.5 0.9 ( 332 , -1494 ) 333
166 0.5 0.5 1.0 ( 0 , -166 ) 1
166 1.0 0.0 0.7 ( 498 , -1162 ) 499
166 1.0 0.0 0.8 ( 166 , -664 ) 167
166 1.0 0.0 0.9 ( 166 , -1494 ) 167
166 1.0 0.0 1.0 ( 0 , -166 ) 1
960 1.0 1.0 0.7 ( 2880 , -6720 ) 2881
960 1.0 1.0 0.8 ( 960 , -3840 ) 961
960 1.0 1.0 0.9 ( 960 , -8640 ) 961
960 1.0 1.0 1.0 ( 0 , -960 ) 1
960 0.5 0.5 0.7 ( 5760 , -6720 ) 5761
960 0.5 0.5 0.8 ( 960 , -1920 ) 961
960 0.5 0.5 0.9 ( 1920 , -8640 ) 1921
960 0.5 0.5 1.0 ( 0 , -960 ) 1
960 1.0 0.0 0.7 ( 2880 , -6720 ) 2881
960 1.0 0.0 0.8 ( 960 , -3840 ) 961
960 1.0 0.0 0.9 ( 960 , -8640 ) 961
960 1.0 0.0 1.0 ( 0 , -960 ) 1

D The attack algorithm by using a hit query

In this section, we showed the full algorithm to reveal the server’s fingerprint when a “hit” query is given, as mentioned
in the Thresholding largely improves output privacy section.

19

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 28, 2015. ; https://doi.org/10.1101/013995doi: bioRxiv preprint 

https://doi.org/10.1101/013995
http://creativecommons.org/licenses/by-nc-nd/4.0/


Here we assume following case: The user is allowed to send more than one query and the database consists of
a single fingerprint p. For each trial, the user learns from the server whether or not TI(p, q) > 0. Prior to his/her
attack, the user is given a hit query q̃ such that TI(p, q̃) > 0. The goal of the algorithm shown here is to reveal the
server’s fingerprint p. Here, we denote the reverse bit of x as Rev(x).

Theorem 2. Let there be bit vectors p and q̃ where TI(p, q̃) > 0 holds for p and q̃, and a bit vector q which is defined

by q = (q̃1, . . . , Rev(q̃i), . . . , q̃ℓ). Then the inequality TI(p, q̃) ≥ TI(p, q) holds if and only if q̃i = pi.

Proof. If pi = q̃i = 1, |p∩q̃| = |p∩q|−1 and |q̃| = |q|−1. Therefore TI(p, q̃)−TI(p, q) = λ1−λ3 = γθng
−1(θ−1−1+α) ≥

0 from the definition of TI where α, γ, θn, g
−1 ≥ 0 and 1 ≥ θ > 0.

If pi = q̃i = 0, |q̃| = |q| + 1. Therefore TI(p, q̃) − TI(p, q) = λ3 = γθng
−1β ≥ 0 from the definition of TI where

γ, θn, g
−1, β ≥ 0.

According to Theorem 2 and considering that θ > 0.5 is used for similarity search, it is trivial that TI mostly keeps
decreasing along with bits of q̃ being reversed sequentially and finally reaches a minus value. Therefore, we can find
a bit vector q̂ such that it satisfies

TI(p, q̂) > 0, ∃ i ∈ {1, . . . , ℓ}; 0 > TI(p, (q̂1, . . . ,Rev(q̂i), . . . , q̂ℓ)),

and we call the bit vector “detective” query.
The inequality TI(p, q̂) > 0 > TI(p, (q̂1, . . . ,Rev(q̂i), . . . , q̂ℓ)) holds if and only if q̂i = pi according to Theorem 2.

Therefore the attacker knows whether or not q̂i is equal to the database’s fingerprint pi from the observation of
TI(p, (q̂1, . . . ,Rev(q̂i), . . . , q̂ℓ)). We show full description of the attack algorithm in Algorithm 2.

E Derivation and calculation of upper bound of the probability for mak-

ing at least one hit query

Here we provide a detailed derivation of the upper bound of (2) in the Thresholding largely improves database
privacy section. In order to simplify the problem, the condition TI(p, q) > 0 is replaced by the equal condition
1−θ
θ · |p ∩ q| > HD(p, q) where HD(p, q) is the Hamming distance of p and q. For further simplification, we use the

bound f̂p ≥ fp, derived from |p| ≥ |p ∩ q|, where

f̂p :=
∑

q

Pr
(

Y = q

)

· Pr
( 1− θ

θ
· |p| > HD(p, Y )

∣

∣

∣
Y = q

)

,

to obtain the following probability, which is the upper bound of the probability (2).

∑

p

Pr
(

X = p

)

·
(

1− (1− f̂p)
x
)

(6)

We use the known approximation (1− fp)
x ≃ 1−x · fp to avoid underflow for the computation. In this evaluation, we

calculate the probability (6) based on the assumption that both the user and the server create fingerprints by using
the same model which generates each bit independently according to the same Bernoulli distribution with probability
w for the occurrence of the true bit. We notice that this simple assumption is a rather rough approximation to the
real problem where bit generation is not always independent and w is not equal for all the bits; however, we still think
that this evaluation reflects an important tendency of the effect of thresholding and helps us to understand the output
privacy of the proposed protocol.

Now, the probability (6) and f̂p are denoted by w as follows.

ℓ
∑

|p|=0

(

ℓ

|p|

)

w|p|(1− w)ℓ−|p| ·
(

1− (1− f̂p)
x
)

.

f̂p =

⌊ 1−θ

θ
|p|⌋

∑

j=0

j
∑

i=0

(

|p|

i

)(

ℓ− |p|

j − i

)

w|p|−2i+j(1− w)ℓ−|p|+2i−j .

For the calculation of the probability (6) in the Thresholding largely improves database privacy section, we used
w = 0.28 which is the average ratio for the occurrence of the true bit over all 166 MACCS keys stored in ChEMBL.
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Algorithm 2 Full description of the attack algorithm by using a hit query

1: function Rev(x)
2: if x = 1 then
3: r ← 0
4: else
5: r ← 1
6: end if
7: return r
8: end function
9:

10: Initialization: q = q̃ , O = {1, 2, . . . , ℓ}.
11: while TI(p, q) > 0 do
12: i ∈ O.
13: qi ← Rev(qi) ⊲ Updating q for searching q̂.
14: O← O \ {i}.
15: end while
16: q̂ = q.
17: for i = 1 to ℓ do
18: q = q̂.
19: qi ← Rev(q̂i)
20: if TI(p, q) < 0 then
21: ri = q̂i ⊲ pi = q̂i is verified.
22: else
23: ri = Rev(q̂i) ⊲ pi 6= q̂i is verified.
24: end if
25: end for
26: return r
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F Distribution of w used in the experiments

In the Security analyses for padding dummies, we tested our method on four different distribution w. Here we list
those three distributions. wi is shown in ascending order by i.

• w
ChEMBL−177159: 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

, 0 , 0 , 0 , 0 , 0 , 1.54758e-06 , 0 , 0 , 0 , 7.73788e-07 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 7.73788e-07 , 7.73788e-07 , 7.73788e-07

, 0 , 0 , 0 , 0 , 7.73788e-07 , 7.73788e-07 , 3.09515e-06 , 0 , 1.54758e-06 , 7.73788e-07 , 2.32136e-06 , 1.54758e-06 ,

3.09515e-06 , 3.09515e-06 , 3.86894e-06 , 4.64273e-06 , 3.09515e-06 , 3.86894e-06 , 3.86894e-06 , 4.64273e-06 , 3.09515e-06

, 6.96409e-06 , 1.31544e-05 , 8.51167e-06 , 9.28545e-06 , 7.73788e-06 , 1.77971e-05 , 2.24398e-05 , 1.31544e-05 , 2.08923e-05

, 2.47612e-05 , 3.40467e-05 , 3.6368e-05 , 2.70826e-05 , 4.33321e-05 , 5.41651e-05 , 4.64273e-05 , 5.49389e-05 , 7.50574e-

05 , 7.27361e-05 , 8.51167e-05 , 8.43429e-05 , 0.000119937 , 0.000104461 , 0.000126127 , 0.000141603 , 0.000186483

, 0.000153984 , 0.000182614 , 0.000177197 , 0.000227494 , 0.00022672 , 0.000256898 , 0.000267731 , 0.000293266 ,

0.000297908 , 0.000321896 , 0.000332729 , 0.000372966 , 0.000404691 , 0.000425583 , 0.000419393 , 0.000518438 ,

0.000550937 , 0.00058421 , 0.000577246 , 0.000625221 , 0.000729682 , 0.00071498 , 0.000780752 , 0.00081712 , 0.000869737

, 0.000937057 , 0.00101211 , 0.0010067 , 0.00109181 , 0.00114907 , 0.00128604 , 0.0011986 , 0.00134175 , 0.00147097 ,

0.00151585 , 0.00150811 , 0.00168221 , 0.00178049 , 0.00186947 , 0.00185864 , 0.00201185 , 0.00220916 , 0.00213333

, 0.00223779 , 0.0024916 , 0.00250398 , 0.00265719 , 0.00266493 , 0.00291254 , 0.00304485 , 0.00307968 , 0.00322747

, 0.00337294 , 0.00349288 , 0.00360353 , 0.00366156 , 0.00376448 , 0.00405155 , 0.00412506 , 0.00421482 , 0.00449958

, 0.00457309 , 0.00466826 , 0.00485784 , 0.00492206 , 0.00512712 , 0.00515033 , 0.00539175 , 0.00550705 , 0.00555967

, 0.00578019 , 0.00594888 , 0.00602935 , 0.00623209 , 0.00642399 , 0.00639381 , 0.00655553 , 0.00680778 , 0.00679386
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