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Abstract

Background: Searching for similar compounds in a database is the most
important process for in-silico drug screening. Since a query compound is an
important starting point for the new drug, a query holder, who is afraid of the
query being monitored by the database server, usually downloads all the records
in the database and uses them in a closed network. However, a serious dilemma
arises when the database holder also wants to output no information except for
the search results, and such a dilemma prevents the use of many important data
resources.

Results: In order to overcome this dilemma, we developed a novel cryptographic
protocol that enables database searching while keeping both the query holder’s
privacy and database holder’s privacy. Generally, the application of cryptographic
techniques to practical problems is difficult because versatile techniques are
computationally expensive while computationally inexpensive techniques can
perform only trivial computation tasks. In this study, our protocol is successfully
built only from an additive-homomorphic cryptosystem, which allows only
addition performed on encrypted values but is computationally efficient compared
with versatile techniques such as general purpose multi-party computation. In an
experiment searching ChEMBL, which consists of more than 1,200,000
compounds, the proposed method was 36,900 times faster in CPU time and
12,000 times as efficient in communication size compared with general purpose
multi-party computation.

Conclusion: We proposed a novel privacy-preserving protocol for searching
chemical compound databases. The proposed method, easily scaling for
large-scale databases, may help to accelerate drug discovery research by making
full use of unused but valuable data that includes sensitive information.

Keywords: Chemical Compound; Similarity Search; Privacy Preserving Data
Mining; Tversky Index; Additive Homomorphic Cryptosystem

Introduction
In recent years, the increasing cost of drug development and decreasing number of

new chemical entities have become growing concerns [1]. One of the most popular

approaches for overcoming these problems is searching for similar compounds in

databases [2]. In order to improve the efficiency of this task, it is important to utilize

as many data resources as possible. However, the following dilemma prevents the

use of many existing data resources. Unpublished experimental results have been

accumulated at many research sites, and such data has scientific value [3]. Since data

holders are usually afraid of sensitive information leaking from the data resources,
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they do not want to release the full data, but they might allow authorized users

to search the data as long as the users obtain only search results from which they

cannot infer sensitive information. Likewise, private databases of industrial research

might be made available if the sensitive information were sufficiently protected. On

the other hand, query compounds are also sensitive information for the users, and

thus the users usually avoid sending queries and want to download all of the data in

order to conduct search tasks on their local computers. In short, we cannot utilize

important data resources because both the data holder and the data user insist

on their privacy. Therefore, an emerging issue is to develop novel technology that

enables privacy-preserving similarity searches. We show several use cases in the next

section.

Let us start by clarifying privacy problems in database searches. In a database

search, two types of privacy are of concern: “user privacy” (also known as input

privacy) and “database privacy” (also known as output privacy). The first is equal

to protecting the user’s query from being leaked to others including the database

holder. The second is equal to protecting the database contents from being leaked

to others including the database user, except for the search results held by the user.

Here we firstly consider the case of using no privacy-preserving techniques; namely,

the user sends a plain query to the server and the server sends the search result. In

this case, the user’s query is fully obtained by the server. On the database side, the

server’s data is not directly leaked to the user. However, there is a potential risk

that the user may infer the database contents from the search results. To protect

user privacy, a scheme called single-database private information retrieval (PIR) has

been proposed [4]. The simplest method for achieving PIR is that the user downloads

all the contents of the database and searches on his/her local computer. Since this

naive approach needs a huge communication size, several cryptographic techniques

have been developed, in which the query is safely encrypted/randomized in the

user’s computer and the database conducts the search without seeing the query.

Although PIR is useful for searching public databases, it does not suit the purpose

of searching private databases because of the lack of database privacy. Likewise,

similarity evaluation protocols keep user privacy [5–7] but they do not sufficiently

protect database privacy because the server directly outputs similarity scores that

become important hints for inferring database contents.

Generally speaking, it is very difficult to keep both user privacy and database

privacy, because the database side must prevent various attacks without seeing the

user’s query. Among them, the following two attacks are major concerns.

• Regression attack

Given one data point, the similarity between a target and the data point be-

comes a strong hint for detecting the target. The accuracy of the detection

increases as the number of given data points becomes larger. In fact, a proto-

col that is not suitably designed may lead to even a small number of queries

enabling the database user to detect the target. For example, when the server

returns the exact distance between a query and a database entry, the range

of the entry is rapidly narrowed as the number of queries increases, and the

entry is finally detected uniquely by only almost the same number of queries

as the dimension of the entry. For example, in the case of using the MACCS
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keys, which are 166 bit structural key descriptors and often used for repre-

senting chemical compounds, a database entry is detected by sending only

166 queries. Therefore, it is necessary for the server to return the minimum

information that is sufficient for the purpose of the search (see Fig. 1 for a

detailed explanation).

• Illegal query attack

Searching with an illegal query often causes unexpected server behaviour. In

such a case, the server might return unexpected results that include important

server information. To prevent this, the server should ensure the correctness

of the user’s query.

A schematic view of the privacy-preserving database search problems discussed here

is shown in Fig. 2.

In the field of cryptography, there have been studies of versatile techniques such

as general purpose multi-party computation (GP-MPC) [8] and fully homomorphic

encryption (FHE) [9], which enable the design of systems that maintain both user

privacy and database privacy. However, these techniques require huge computa-

tional costs as well as intensive communications between the parties, so they are

scarcely used in practical applications. In order to avoid using such techniques, a

similarity search protocol using a trusted third party [10] and a privacy preserving

SQL database using a trusted proxy server [11] have been proposed, but those meth-

ods assure privacy only when the third party does not collude with the user or the

server, which is not convenient for many real problems. As far as we know, no prac-

tical method has been proposed despite the great importance of privacy-preserving

similarity searching. To overcome this lack, we propose a novel privacy-preserving

similarity search method that can strongly protect database privacy as well as user

privacy while keeping a significantly low computational cost and small communica-

tion size.

The rest of this paper is organized as follows. In the next section, we summarize

our achievements in this study. This is followed by the Cryptographic background

section and the Method section, where we define the problem and introduce details

of the proposed protocol. In the Security analyses section, both the user privacy and

database privacy of the proposed protocol are discussed in detail. In the Performance

evaluation section, the central processing unit (CPU) time and communication size

of the proposed protocol are evaluated for two datasets extracted from ChEMBL.

Finally, we present our conclusions for this study in the Conclusion section.

Our Achievements
Here we focus on similarity search with the Tversky index of fingerprints, which

is the most popular approach for chemical compound searches [12] and is used for

various search problems in bioinformatics. To provide a concrete application, we

address the problem of counting the number of similar compounds in a database,

which solves various problems appearing in chemical compound searches. The fol-

lowing model describes the proposed method.

Model 1 The user is a private chemical compound holder, and the server is a pri-

vate database holder. The user learns nothing but the number of similar compounds
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in the server’s database, and the server learns nothing about the user’s query com-

pound.

Here we introduce only a small fraction of the many scientific or industrial prob-

lems solved by Model 1.

1 Secure pre-purchase inspection service for chemical compound.

When a client considers the purchase of a commercial database such as a

focused library [13], he/she wants to check whether the database includes

a sufficient number of similar compounds, without sending his/her private

query, but the server does not allow downloading of the database.

2 Secure patent compound filtering.

When a client finds a new compound, he/she usually wants to know whether

it infringes on competitors’ patents by searching the database of patent-

protected compounds maintained by third parties. The same problem occurs

when the client wants to check whether or not the compound is undesirable.

3 Secure negative results check.

It is a common perception that current scientific publication is strongly biased

against negative results [3], although a recent study showed statistically that

negative results brought meaningful benefit [14]. Since researchers are reluc-

tant to provide negative results, which often include sensitive information, a

privacy-preserving system for sharing those results would greatly contribute to

reducing redundant efforts for similar research topics. For example, it would

be useful to have a system that allows a user to check whether the query

is similar to failed compounds that have previously been examined in other

laboratories.

In this study, we propose a novel protocol called the secure similar compounds

counter (SSCC) which achieves Model 1. The first main achievement of this study

is that SSCC is remarkably tolerant against regression attacks compared with ex-

isting protocols which directly output the similarity score. Moreover, we propose

an efficient method for protecting the database from illegal query attacks. These

points are discussed in the Security analyses section.

The second main achievement is that SSCC is significantly efficient both in com-

putational cost and communication size. We carefully designed the protocol such

that it uses only an additive-homomorphic cryptosystem, which is computationally

efficient, and does not rely on any time-consuming cryptographic methods such

as GP-MPC or FHE. Hence the performance of the protocol is sufficiently high

for a large-scale database such as ChEMBL [15], as is shown in the Performance

evaluation section.

Cryptographic background
Additively homomorphic encryption scheme

In this paper, we use an additive-homomorphic cryptosystem to design our protocol.

The key feature of the additive-homomorphic cryptosystem is that it enables to per-

form additive operations on encrypted values. Therefore, intuitively, any standard

computation algorithm can be converted into the privacy-preserving computation

algorithm, if operations used in the standard algorithm can be replaced by addi-

tions.
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More formally, we use a public-key encryption scheme (KeyGen;Enc;Dec), which

is semantically secure; that is, an encryption result (ciphertext) leaks no informa-

tion about the original message (plaintext) [16]. Here, KeyGen is a key generation

algorithm for selecting a pair (pk, sk) of a public key pk and a secret key sk; Enc(m)

denotes a ciphertext obtained by encrypting message m under the given pk; and

Dec(c) denotes the decryption result of ciphertext c under the given sk. We also

require the following additive-homomorphic properties:

• Given two ciphertexts Enc(m1) and Enc(m2) of messages m1 and m2,

Enc(m1 + m2) can be computed without knowing m1, m2 and the secret

key (denoted by Enc(m1)⊕ Enc(m2)).

• Given a ciphertext Enc(m) of a message m and an integer e, Enc(e ·m) can be

computed without knowing m and the secret key (denoted by e⊗ Enc(m)).

For example, we can use either the Paillier cryptosystem [17] or the “lifted” version

of the ElGamal cryptosystem [18] as such an encryption scheme; now the second

operation ⊗ can be achieved by repeating the first operation ⊕. We notice that

the range of plaintexts for those cryptosystems can be naturally set as an integer

interval [−N1, N2] for some sufficiently large N1, N2 > 0; therefore, the plaintexts

are divided into positive ones, negative ones, and zero.

Non-interactive zero-knowledge proof

Below, we discuss the following situation: A user (a prover) wants to make a server

(a verifier) convinced that a ciphertext c generated by the user corresponds to a

message m in {0, 1}, but does not want to reveal any information about which of 0

and 1 ism. This can be achieved by using a cryptographic tool called non-interactive

zero-knowledge (NIZK ) proof. In the present case, it enables the user to generate a

“proof” associated with c, so that:

• If m is indeed in {0, 1}, then the server can verify this fact by testing the

proof (without knowing m itself).

• If m 6∈ {0, 1}, then the user cannot generate a proof that passes the server’s

test.

• The server cannot obtain any information about m from the proof, except for

the fact that m ∈ {0, 1}.

(See [19] for a general formulation.) Besides the existing general-purpose NIZK

proofs, Sakai et al. [20] proposed an efficient scheme specific to the “lifted” ElGamal

cryptosystem, which we use below.

Method
The goal of this study is to design a protocol between a user and a server that

enables the user to obtain the number of compounds in the server’s database that are

similar to the user’s target compound. Here, a fingerprint of compound is modeled

as ~p ∈ {0, 1}ℓ (i.e., a bit string of length ℓ). An equivalent way to refer to ~p is

the set of all indices i where pi = 1. We denote such a set by p. The similarity of

two compounds p, q is then measured by Tversky index which is parameterized by

α, β > 0 and is defined as:

TIα,β(p, q) =
|p ∩ q|

|p ∩ q|+ α|p \ q|+ β|q \ p|
.
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Tversky index is useful since it includes several important similarity measurements

such as Jaccard Index (JI, which is exactly TI1,1 and also known as Tanimoto Index)

and Dice index (which is exactly TI1/2,1/2) [21]. First, we introduce the basic idea

and two efficient techniques for improving database privacy. Then, we describe our

full proposed protocol.

Basic idea

We firstly consider the simplest case that the user has (the fingerprint of) a target

compound q as a query and the server’s database consists of only a single fingerprint

p. The case of a larger database is discussed later. The goal here is to detect whether

or not the Tversky index of p and q is larger than a given threshold 1 ≥ θ > 0. The

main idea of our approach is to calculate the score

θ−1(|p ∩ q|)− (|p ∩ q|+ α|p \ q|+ β|q \ p|) (1)

from encrypted fingerprints p and q by an additive-homomorphic cryptosystem.

The score is non-negative if and only if the Tversky index of p and q is at least θ.

Now since |p \ q| = |p| − |p ∩ q| and a similar relation holds for |q \ p|, the score

(1) is positively proportional to

λ1|p ∩ q| − λ2|p| − λ3|q| ,

where λ1 = c(θ−1 − 1 + α + β), λ2 = cα, λ3 = cβ and any positive value c. We

assume that the parameters and the threshold for the Tversky index are rational

numbers denoted by α = µa/γ, β = µb/γ and θ = θn/θd, where µa, µb, γ, θn

and θd are non-negative integers. By using c = γθng
−1 under this assumption, λ1,

λ2 and λ3 become non-negative integers where g is the greatest common divisor of

γ(θd − θn) + θn(µa + µb), θnµa and θnµb.

Motivated by this observation, we define the following modified score, called the

threshold Tversky index:

Definition 1 Given parameters α and β and a threshold θ for the Tversky index

which are rational numbers denoted by α = µa/γ, β = µb/γ and θ = θn/θd where

µa, µb, γ, θn and θd are non-negative integers, then the threshold Tversky index

TIα,β,θ = TIα,β,θ(p, q) for fingerprints p and q is defined by

TIα,β,θ := λ1|p ∩ q| − λ2|p| − λ3|q| ,

and non-negative integer parameters λ1, λ2 and λ3 are defined by

λ1 = γθng
−1(θ−1 − 1 + α+ β) ,

λ2 = γθng
−1α ,

λ3 = γθng
−1β ,

where g is the greatest common divisor of γ(θd−θn)+θn(µa+µb), θnµa and θnµb.
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By the above argument, we have TIα,β(p, q) ≥ θ if and only if TIα,β,θ(p, q) ≥ 0.

Therefore, the user can know whether or not his/her target compound q is similar

(i.e., TIα,β(p, q) ≥ θ) to the fingerprint p in the database, by obtaining only the

value TIα,β,θ(p, q).

In the protocol, the bits of the user’s target fingerprint q and the value |p| held

by the server are both encrypted using the user’s public key. Since TIα,β,θ(p, q) can

be computed by the addition of these values and multiplication by integers, the

protocol can calculate (without the secret key) a ciphertext of TIα,β,θ(p, q), which

is then decrypted by the user. For simplicity, we will abuse the notation and write

TI(p, q), TI(p, q) without subscripts α, β, θ when the context is clear.

We emphasize that our protocol does not use time-consuming cryptographic meth-

ods such as GP-MPC and FHE, and data transfer occurs only twice during an

execution of the protocol. Hence, our protocol is efficient enough to scale to large

databases.

Database security enhancement techniques against regression attack

The ideal situation for the server is that the user learns only the similarity/non-

similarity property of fingerprints p and q, without knowing any other information

about the secret fingerprint p. This means that only the sign of TI(p, q) should

be known by the user. However, in our basic protocol, the value of TI(p, q) is fully

obtained by the user; Database privacy is not protected from regression attacks. (See

the Security analyses section for details.) In order to send only the sign of TI(p, q),

we firstly considered using a bit-wise decomposition protocol [22] for extracting

and sending only the sign bit of TI(p, q). Although this approach is ideal in terms

of security, the protocol requires more than 30 rounds of communications, which

is much more efficient than using GP-MPC or FHE, but rather time-consuming

for large-scale databases. Therefore, here we propose the novel technique of using

dummy replies, which requires only one round of communication while sufficiently

minimizing information leakage of p. In the proposed technique, besides its original

reply t = Enc(TI(p, q)), the server also chooses random integers φ1, . . . , φn from a

suitable interval and encrypts those values under the user’s public key pk. Then

the server sends the user a collection of ciphertexts t,Enc(φ1), . . . ,Enc(φn) that

are shuffled to conceal the true ciphertext t, as well as the number sd of dummy

values φk with φk ≥ 0. The user decrypts the received n + 1 ciphertexts, counts

the number sc of non-negative values among the decryption results, and compares

sc to sd. Now we have TI(p, q) ≥ 0 if and only if sc − sd = 1; therefore, the user

can still learn the sign of TI(p, q), while the actual value of TI(p, q) is concealed by

the dummies. We have confirmed that the information leakage of p approaches zero

as the number of dummies becomes large; see the Security analyses for pudding

dummies section for more detailed discussion. (We have also developed another

security enhancement technique using sign-preserving randomization of TI(p, q); see

the Further security enhancement technique by using sign-preserving randomization

section in Supporting Information for details.)

Database security enhancement technique against illegal query attack

Illegal query attacks can be prevented if the server can detect whether or not the

user’s query is valid. To keep user privacy, the server must conduct this task with-

out obtaining more information than the validity/invalidity of the query. In fact,
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this functionality can be implemented by using the NIZK proof by Sakai et al. [20]

mentioned in the Non-interactive zero-knowledge proof section. The improved pro-

tocol requires the user to send the server a proof associated with the encrypted

fingerprint bits qi, from which the server can check whether q is indeed a valid

fingerprint (without obtaining any other information about q); the server aborts

the protocol if q is invalid. Here we use the “lifted” ElGamal cryptosystem as our

basic encryption scheme to apply Sakai’s scheme. (We note that if we require the

user to send Enc(−|q|) used by server’s computation, then another NIZK proof is

necessary to guarantee the validity of the additional ciphertext, which decreases the

communication efficiency of our protocol. Hence our protocol requires the server to

calculate Enc(−|q|) by itself.)

Secure similar compounds counter

For the general case that the database consists of more than one fingerprint p, we

propose the protocol shown in Algorithm 1 to count the number of fingerprints

p similar to the target fingerprint q. In the protocol, the server simply calculates

the encryption of the threshold Tversky indices for all database entries and, as

discussed above, replies with a shuffled collection of these true ciphertexts and

dummy ciphertexts, as well as the number sd of non-negative dummy values. Then

the value sc − sd finally obtained by the user is equal to the number of similar

fingerprints p in the database.

Parameter settings of the protocol

Decrypting an encrytion of too large value needs huge computation cost if the

lifted-ElGamal cryptosystem is used. Therefore, in order to keep the consistency

and efficiency of the protocol, the range of TI(p, q) should not be too large. i.e., the

integer parameters λ1, λ2 and λ3 in the threshold Tversky index should not be too

large. In fact, this will not cause a problem in practice; For example, the parameters

become λ1 = 9, λ2 = λ3 = 4 for computing TI1,1,0.8 which is a typical setting of a

chemical compound search. In this case, a minimum value and a maximum value of

TI(p, q) is -664 and 166 for 166 MACCS keys, which is a sufficiently small range.

(See Ranges of TI for typical parameter settings section in Supporting Information

for details.)

Security analyses
In the area of cryptology, the following two standard security models for two-party

computation have been considered:

• Semi-honest model : Both parties follow the protocol, but an adversarial one

attempts to infer additional information about the other party’s secret input

from the legally obtained information.

• Malicious model : An adversarial party cheats even in the protocol (e.g., by

inputting maliciously chosen invalid values) in order to illegally obtaining

additional information about the secret.

In this section, we evaluate security of SSCC in both the semi-honest and malicious

models.
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Algorithm 1 The secure similar compounds counter (SSCC)

• Public input: Length of fingerprints ℓ and parameters for the Tversky index θ = θn/θd, α =
µa/γ, β = µb/γ

• Private input of a user: Target fingerprint q

• Private input of a server: Set of fingerprints P = {p(1), . . . ,p(M)}

1 (Key setup of cryptosystem) The user generates a key pair (pk, sk) by the key generation
algorithm KeyGen for the additive-homomorphic cryptosystem and sends public key pk to the
server (the user and the server share public key pk and only the user knows secret key sk).

2 (Initialization) The user encrypts his/her fingerprint q as a vector of ciphertexts: ~Enc(qk) :=
(Enc(q1), . . . ,Enc(qℓ)). He/she also generates v as a vector of proofs. Each proof vi is associated
with Enc(qi).

3 (Query of entry) The user sends the vector of ciphertexts ~Enc(qk) and the vector of proofs v

to the server as a query.

4 (Query validity verification) The server verifies the validity of ~Enc(qk) by testing the vector of
proof v. If v does not pass the server’s test, the user cannot move on to the next step.

5 (Calculation of threshold Tversky index)

(a) The server calculates the greatest common divisor of γ(θd − θn) + θn(µa + µb), θnµa

and θnµb as g, and calculates λ1 = γθng−1(θ−1 − 1 + α + β), λ2 = γθng−1α , and
λ3 = γθng−1β .

(b) The server calculates Enc(−|q|) = Enc(−
∑ℓ

i=1 qi) from ~Enc(qk): Enc(−|q|) = −1 ⊗
⊕ℓ

i=1 Enc(qi).

(c) for j = 1 to M do

i. The server calculates −|p(j)| = −
∑ℓ

i=1 p
(j)
i and encrypts it to obtain a ciphertext

Enc(−|p(j)|).

ii. The server calculates a ciphertext tj of threshold Tversky index TI(p(j), q).
c← Enc(0)
for k = 1 to ℓ do

if pk
(j) = 1

c← c⊕ Enc(qk) ⊲ Computing Enc(|p(j) ∩ q|)

end if

end for

tj ← λ1 ⊗ c⊕ λ2 ⊗ Enc(−|p(j)|)⊕ λ3 ⊗ Enc(−|q|)

end for

6 (Padding of dummies)

(a) The server generates a set of dummy values {φ1, . . . , φn} and counts the number sd of
non-negative dummies φi ≥ 0.

(b) The server encrypts φi to obtain a ciphertext Enc(φi) for i = 1, . . . , n.

(c) The server shuffles the contents of the set T = {t1, . . . , tM ,Enc(φ1), . . . ,Enc(φn)}.

7 (Return of matching results) The server sends T and sd to the user.

8 (Decryption and counting) The user decrypts the contents of T and counts the number sc of
non-negative values.

9 (Evaluation) The user obtains sc − sd as the number of similar fingerprints in the database.
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User privacy

The semantic security of the encryption scheme used in the protocol (see the Addi-

tively homomorphic encryption scheme section) implies immediately that the server

cannot infer any information about the user’s target fingerprint q during the pro-

tocol. This holds in both the semi-honest and malicious models.

Thresholding largely improves database privacy

By the analysis described below, we show the large difference between the “ideal”

case, in which the user learns only the sign of TI(p, q) during the protocol, and the

“plain” case, in which the user fully learns the value TI(p, q). Note that SSCC aims

for the “ideal” case while the methods proposed in previous studies aim for the

“plain” case. Here we consider the general case in which the user is allowed to send

more than one query and those queries are searched by Jaccard Index. We also

suppose that the database consists of a single fingerprint p in order to clarify the

effect of thresholding.

The goal of an attacker is to reveal p by analysing the results returned from the

server. It is generally effective for the attacker to exploit the difference between

the two outputs obtained by sending two different queries. In fact, when the server

returns TI, TI(p, q) - TI(p,0) becomes positive if and only if pi = 1, where q =

(0, . . . , qi = 1, . . . , 0) and 0 = (0, . . . , 0). This means that the attacker can reveal

any bit in p by sending the single query after sending the first query 0. Therefore,

p can be fully revealed by sending only ℓ+1 queries. On the other hand, there is no

deterministic attack for revealing p from only the sign of TI, because two different

inputs do not always lead to different outputs. Since we know of a linear algorithm

that fully reveals p in response to at most 2ℓ queries after making a “hit” query

q such that TI(p, q) > 0, here we evaluate database privacy by the probability of

making at least one hit query when the user is allowed to send x queries. (See the

The attack algorithm by using a hit query section in Supporting Information for

details.) This probability is denoted as

∑

p

Pr
(

X = p

)

·
(

1− (1− fp)
x
)

, (2)

where fp , defined as follows, is the probability that the user makes one hit query

with a single trial when p is given.

fp :=
∑

q

Pr
(

Y = q

)

· Pr
(

TI(p, Y ) > 0
∣

∣

∣
Y = q

)

.

For ease of calculation, we computed the upper bound of equation (2) for x =

1, 10, 102, . . . , 106 and θ = 0.7, 0.8, 0.9, 1.0. (See the Derivation and calculation of

upper bound of the probability for making at least one hit query section in Sup-

porting Information for details.) Since publicly available 166 MACCS keys are the

most popular fingerprint for chemical compound searches, we set ℓ to 166. From

the results shown in Fig. 3, we can see that the probability of making a hit query is

sufficiently small even though the user is allowed to send a large number of queries.

Considering that the user learns p by using no more than ℓ+1 queries when he/she
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learns TI, we can conclude that database privacy is largely improved by thresh-

olding. In other words, the proposed protocol, which aims to output only the sign

of the similarity score, has stronger security than other previous methods, which

directly output similarity scores.

Security analyses for padding dummies

We showed that the output privacy in the “ideal” case is significantly improved

from the “plain” case. Here we experimentally evaluate how the actual situation of

our proposed protocol is close to the “ideal” case.

Before going into detail analyses, let us discuss how to generate dummies. It is

ideal for the server privacy to generate a dummy according to the same distribution

where TI(p, q) is generated from. However, this is not realistic because TI(p, q)

is determined by both p and q which is user’s private information. Therefore, in

our analyses, we assume that a dummy is generated from uniform distribution over

possible values of TI(p, q). For example, if possible values of TI(p, q) is {1, 2, 3, 4, 5},

dummies are randomly selected from any one of them. The purpose of pudding

dummies is to mitigate the risk of leaking TI(p, q). In order to clarify the effect of

the use of dummy values, we concentrate on the basic case; the database contains

a single p, and there exist k possible values of TI(p, q). i-th value of the k possible

values arises as the true TI(p, q) according to the probability wi. Namely, true

TI(p, q) is generated from the multinomial distribution with k different probabilities

w = w1, . . . , wk, while dummies are generated from the multinomial distribution

with equal probability 1/k. To conduct stringent analyses, we assume that the user

knows w, and he/she also knows that dummies are uniformly distributed over k

possible TI(p, q).

In this experiment, we evaluate the security of our protocol by comparing the

probabilities that the user correctly guesses the value TI(p, q) in two cases: The

case in which the user makes a guess based only on a prior knowledge w, and the

other case in which the user makes a guess based on the observation of the search

result under the condition that he/she knows w.

For the first case, the user’s best strategy for guessing TI(p, q) is to choose the

i0-th possible value, where

i0 = arg max
1≤i≤k

wi . (3)

In this case, the success probability of the guess is wi0 .

Let us consider the best strategy for the second case. As described above, we con-

sider an practical case that n dummy values φ1, . . . , φn chosen from the k possible

values uniformly at random, and the user makes a guess from the received n + 1

shuffled values φ1, . . . , φn,TI(p, q). Now suppose that the user received the i-th pos-

sible value ai times for each 1 ≤ i ≤ k (hence
∑k

i=1 ai = n + 1). Since the choices

of φ1, . . . , φn are independent of TI(p, q), the probability that the user received i-th

possible value ai times for each 1 ≤ i ≤ k and that TI(p, q) is i0-th possible value is

(

n

a1, . . . , ai0 − 1, . . . , ak

)(

1

k

)n

· wi0 = ai0 · wi0

n!

a1! · · · ak!kn
.
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Therefore, the conditional probability that TI(p, q) is the i0-th possible value,

conditioned on the set of the user’s received values, is

(

n
a1,...,ai0

−1,...,ak

) (

1
k

)n
· wi0

∑k
i=1

(

n
a1,...,ai−1,...,ak

) (

1
k

)n
· wi

=
ai0 · wi0

∑k
i=1 ai · wi

.

This implies that the user’s best strategy is to guess that TI(p, q) is the i0-th

possible value, where

i0 = arg max
1≤i≤k

ai · wi . (4)

We estimated success probabilities of user’s guess for the both cases by simulation

experiments. Here we assumed typical case when TI1,1,0.8 and 166 MACCS keys are

used. In this case, k = 831 and we performed the experiments for n = 831 ×

100, 831× 101, . . . , 831× 104 on three different distributions of TI(p, q) which were

obtained by the following schemes:

1 We randomly selected one fingerprint q from ChEMBL and calculated TI(q,p)

for all the entries in ChEMBL and used the observed distribution as w.

In our experiment, 177159-th fingerprint was selected as q (referred as

w
ChEMBL−177159).

2 The same scheme as 1) was used when q was 265935-th fingerprint (referred

as wChEMBL−265935).

3 We randomly selected a value from 1, . . . , k for m times and count frequency

of i as hi and set wi = hi/m (referred as wrandom). We used k × 5 as m.

All the distributions used here are shown in the Distribution of w used in the

experiments section in Supporting Information.

We performed 100, 000 trials for each experiment. Each trial consisted of choosing

φ1, . . . , φn uniformly at random; choosing TI(p, q) according to w; deciding the

user’s guess i0 by formula (3) and formula (4) respectively (we adopted a uniformly

random choice if there were more than one such i0); and checking whether or not

TI(p, q) was the i0-th possible value for both rules (i.e., the user’s guess succeeded).

The results of the experiment are given in Table 1; they show that the user’s attack

success probability became significantly close to the ideal case when a sufficiently

large number of dummies were used; therefore, our technique of using dummies

indeed improves the output privacy.

One might suspect that the attacker can detect the true TI(p, q) by sending the

same query twice and finding the value which is appeared in both results. However,

this attack does not easily succeed if n is sufficiently larger than k (i.e., ideally, all

possible values of TI are covered by sufficient number of dummies), and we consider

that k is not too large in practice as we discussed in Parameters settings of the

protocol section. In order to evaluate the security of the case when the user is

allowed to submit L queries, we performed following analyses. For the efficiency of

the attack, we assumed that the attacker keeps sending the same query L times.

For this case, the probability that TI(p, q) is the i0-th possible value after sending
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L queries on condition that frequency of i-th possible value of j-th query a
(j)
i for

j = 1, . . . , L is

L
∏

j=1

a
(j)
i · wi

∑k
h=1 a

(j)
h · wh

. (5)

This implies that the user’s best strategy is to choose i-th possible value which

maximizes equation (5). In our experiment, we compared the success ratio of the

attack based on the above strategy and the ideal success ratio when the user makes

the guess only from the given distribution w. We also assumed more realistic case

that user did not know the exact distribution of dummy but knew the distribution

that was similar to the actual distribution the server used. For the evaluation of this

case, we generated dummies from the distribution u, which was slightly different

from uniform distribution, while the user assumed that dummies were generated

from uniform distribution. u was generated as follows:

ui = r · 1/k, where r ∼ N (1 , δ2 ).

We performed the experiment for L = 1, 10, 102, . . . , 105, n = 831 × 10, 831 ×

50, 831× 102 and δ = 0, 0.05, 0.1, 0.15, 0.2 based on the same approach used in the

evaluation of single query security. i.e., for each trial, n dummies were randomly

chosen according to u (note that u was equal to uniform distribution when δ =

0), true value TI(p, q) was selected according to w and the attacker’s guess was

made based on the equation (5). We performed 10, 000 trials for each triplet of

L, n and δ. Those experiments were conducted for the same three distributions:

w
ChEMBL−177159, wChEMBL−265935 and w

ChEMBL−random. We compared the success

ratio of the attack and the ideal success ratio when the user made the guess without

seeing search results. The results are shown in Fig. 4. The success ratio of user’s

attack decreased as the number of dummies increased and became closer to the

ideal value when the sufficient number of dummies are given, even for the case

that a large number of queries were sent. Although an efficient method for dummy

generation remains as a future task, the results also show that database privacy is

largely improved by hiding the distribution of dummy and the user has to know it

with high accuracy in order to attack the server successfully.

Database privacy in malicious model

For our protocol, the difference between the malicious and semi-honest models is

that in the malicious model the user may use an invalid input q whose components

qi are not necessarily in {0, 1}. If the user chooses q in such a way that some

component qi is extremely large and the remaining ℓ − 1 components are all zero,

then TI(p, q) will also be an extreme value (distinguishable from the dummy values)

and depend dominantly on the bit pi; therefore, the user can almost surely guess

the secret bit pi. Since our protocol detects whether or not qi is a bit value without

invading user privacy, it can safely reject illegal queries and prevent any illegal query

attacks, including above case.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2015. ; https://doi.org/10.1101/013995doi: bioRxiv preprint 

https://doi.org/10.1101/013995
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shimizu et al. Page 14 of 20

Performance evaluation
In this section, we evaluate the performance of the proposed method on two datasets

created from ChEMBL. We implemented the proposed protocol based on lifted

ElGamal encryption. For the implementation, we use elliptic curve parameters called

secp192k1, as recommended by SECG (The Standards for Efficient Cryptography

Group). These parameters are considered to be more secure than 1024-bit RSA

encryption, which is the most commonly used public-key cryptosystem. Owing to

the limitation of the range of plaintext, the implementation here does not include

sign-preserving randomization. For the purpose of comparison, we also implemented

a GP-MPC protocol by using Fairplay [23] whose input and output are a fingerprint

and the signs of the Tversky indices, respectively. The Jaccard index along with

the threshold θ = 0.8 were used for both protocols. For SSCC, we used 10,000

dummies. These two implementations were tested on two datasets: one, referred

to as ChEMBL 1000, was the first 1000 fingerprints stored in ChEMBL, and the

other, referred to as ChEMBL Full, was 1,292,344 fingerprints in the latest version

of ChEMBL. All the programs were run on a single core of an Intel Xeon 2.9 GHz on

the same machine. The results are shown in Table 2. To avoid environmental effects,

we repeated the same experiment five times and calculated average values. Since

both CPU time and communication size are exactly linear to the size of database for

the GP-MPC protocol, results of ChEMBL Full for GP-MPC were estimated from

the results of ChEMBL 1000 because of the limitation of computational resources.

Despite the proposed method including elaborate calculation like the NIZK proof,

we can see from the results that both the CPU time and communication size of the

proposed method are significantly smaller than those of the GP-MPC protocol.

Furthermore, it is clear that SSCC provides industrial-strength performance, con-

sidering that it works, even on a huge database like ChEMBL Full, taking no more

than 167 s and 173 s for the server and client respectively. By using simple data

parallelization, the computational speed will be improved linearly with the number

of CPUs. Since all the programs were run on the same machine there was almost

no latency for the communication between the two parties in these experiments.

Therefore, GP-MPC, whose communication size is huge, is expected to require far

more time when it runs on an actual network that is not always in a good condition.

The other important point is that SSCC requires only two data transfers, which en-

ables data transfer after off-line calculation. On the other hand, GP-MPC must

keep online during the search because of the high communication frequency. We

also note that it took less than 100 MB to compile SSCC, while GP-MPC required

more than 16 GB. Considering these observations, SSCC is efficient for practical

use. It is known that several techniques improve the performance of GP-MPC and

the previous work by Pinkas et al. [24] reported that Free XOR [25] and Garbled

Row Reduction [24], which are commonly used in state-of-the-art GP-MPC meth-

ods [26] [27] [28] [29], reduced running time and communication size by factors of 1.8

and 6.3 respectively when a circuit computing an encryption of AES was evaluated.

Though these techniques are not implemented in Fairplay, we consider that GP-

MPC is yet far less practical for the large-scale chemical compound search problem

compared to our method which improved running time and communication size by

factors of 36, 900 and 12, 000.
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Conclusion
In this study, we proposed a novel privacy-preserving protocol for searching chemical

compound databases. To our knowledge, this is the first practical study for privacy-

preserving (for both user and database sides) similarity searching in the fields of

bioinformatics and chemoinformatics. Moreover, the proposed method could be ap-

plied to a wide range of life science problems such as searching for similar single-

nucleotide polymorphism (SNP) patterns in a personal genome database. While the

protocol proposed here focuses on searching for a number of similar compounds, we

are examining further improvements of the protocol such as the client being able to

download similar compounds; we expect this on-going study to further contribute

to the drug screening process. In recent years, open innovation has been attracting

attention as a promising approach for speeding up the process of new drug discov-

ery [30]. For example, research on neglected tropical diseases including malaria has

been promoted by the recent attempt to share chemical compound libraries in the

research community. In spite of high expectations, such an approach is still limited

to economically less important problems on account of privacy problems [31]. There-

fore, privacy-preserving data mining technology is expected to be the breakthrough

promoting open innovation and we believe that our study will play an important

role.
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(b) Estimation from binary similarity

Sending first query

Sending second query Sending third query
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Figure 1 Schematic view showing a large difference in tolerance against the regression attack
between two cases: (a) The server’s reply is the distance between the attacker’s query and the
server’s data, (b) The server’s reply is the binary sign that shows whether or not the distance
between the attacker’s query and the server’s data is larger than the given threshold. The red
point represents the server’s data and x represents the attacker’s query. Prior to the query, the
search spaces (white areas) in (a-1) and (b-1) are equal. After the first query has been sent, the
search space in (a-2) is limited to the circle whose radius is the distance between the attacker’s
query and the server’s data. On the other hand in (b-2), only the small area of the dashed circle
whose radius is the given threshold (gray area) is excluded from the search space. By sending the
second query, the attacker knows that one of the two intersections of the two circles in (a-3) is
equal to the server’s data, while the search space is large in (b-3). Finally, the server’s data is
detected by sending the third query in (a-4), however in (b-4), the search space is still large, even
though the third query is within the given threshold.
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Figure 2 Schematic view of protection of (a) user privacy and (b) database privacy while
keeping user privacy. For user privacy, the user’s query and the search result which includes the
query information must be invisible to the database side during the search task. For database
privacy, the server minimizes output information for preventing regression attacks (b-1), and also
detects and rejects illegal queries that might cause unexpected information leakage (b-2). These
server’s tasks must be carried out with the encrypted queries in order to keep user privacy.
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Figure 3 Upper bounds of the probabilities that the user has at least one hit query out of
making 1, 10, . . . , 106 queries. Note that the hit query becomes the critical hint for revealing
database information. Each line shows the results with one of the four different thresholds.
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Figure 4 The comparison of the experimental success ratios of the user’s guess based on the
server’s return as well as the prior distribution of true value when the user sends many queries,
and success probability based only on a guess from the prior distribution. TI1,1,0.8 (k = 831) is
assumed and results are calculated for three different numbers of dummies (n = 831× 10,
831× 50, 831× 102) when the user sends L = 1, 10, . . . , 105 queries and three different

distributions: wChEMBL−177159 and w
ChEMBL−265935 are actual distributions of TI1,1,0.8 on

ChEMBL obtained by querying two randomly selected fingerprints from ChEMBL, wrand is
obtained by randomly selecting a value from 1, . . . , k for m = 5× 831 times and dividing each
observed frequency by m.
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Tables

Table 1 The experimental success ratios of the user’s guess based on the server’s return and the prior
distribution of true value, and success probability based only on a guess from the prior distribution.
TI1,1,0.8 (k = 831) is assumed and results are calculated for five different numbers of dummies
(n = 831, 831× 101, 831× 102, 831× 103, 831× 104) are used for three different distributions:

w
ChEMBL−177159 and w

ChEMBL−265935 are actual distributions of TI1,1,0.8 on ChEMBL obtained

by querying two randomly selected fingerprints from ChEMBL, wrand is obtained by randomly
selecting a value from 1, . . . , k for m = 5× 831 times and dividing each observed frequency by m.

n = 831 n = 831× 101 n = 831× 102 n = 831× 103 n = 831× 104 Ideal value

w
ChEMBL−177159 0.03552 0.01738 0.01101 0.01009 0.00977 0.00981

w
ChEMBL−265935 0.02991 0.01337 0.00903 0.00798 0.00784 0.00807

w
rand 0.00914 0.0041 0.00309 0.00279 0.00305 0.00289

Table 2 CPU time and communication size of secure similar compounds counter (SSCC) and those
of general-purpose multi-party computation (GP-MPC).

ChEMBL 1000 ChEMBL Full
CPU time (s)
SSCC (server) 0.69 167.19
SSCC (client) 1.53 172.37
GP-MPC (server) 4, 075.15 6, 081, 252.70
GP-MPC (client) 4, 366.18 6, 472, 194.42
Communication size (MB)
SSCC (server → client) 2.24 265.33
SSCC (client → server) 0.03 0.03
GP-MPC (server → client) 42.50 63, 195.68
GP-MPC (client → server) 2, 128.00 3, 165, 738.41
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