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Abstract 

 

RNA-seq is a powerful tool for gene expression profiling and differential expression analysis. Its 

power depends on sequencing depth which limits its high-throughput potential, with 10-15 

million reads considered as optimal balance between quality of differential expression calling 

and cost per sample. We observed, however, that some statistical features of the data, e.g. 

gene count distribution, are preserved well below 10-15M reads, and found that they improve 

differential expression analysis at low sequencing depths when distribution statistics is 

estimated by pooling individual samples to a combined higher-depth library. Using a novel gene-

by-gene scaling technique, based on the fact that gene counts obey Pareto-like distribution1, we 

re-normalize samples towards bigger sequencing depth and show that this leads to significant 

improvement in differential expression calling, with only a marginal increase in false positive 

calls. This makes differential expression calling from 3-4M reads comparable to 10-15M reads, 

improving high-throughput of RNA-sequencing 3-4 fold. 
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Introduction 

RNA-Seq is an actively used technique for transcriptome profiling, providing a powerful 

alternative to microarrays due to several strong advantages over it. First, RNA-Seq does not 

require existing information about the genome sequence, and thus allows analysis of 

transcription, measuring unknown trnascripts including novel non-coding genome regions. 

Second, RNA-Seq introduces less background noise, avoiding the microarray’s probe cross-

hybridization noise. Finally, since there is no upper limit for quantification in RNA-Seq, it gives a 

much wider dynamic range of detection in comparison with the microarray method2, which has 

both saturation and background limitations. All these benefits of RNA-Seq make it very 

attractive for the key task in functional genomics – identifying differential expression (DE).  

However, the ability to find differential expression is strongly influenced by the 

sequencing depth – the deeper sequencing, the higher the statistical power to detect 

differentially expressed genes3. On the other hand, to achieve maximum power within the same 

budget, one should find a trade-off between sequencing depth and number of samples 

sequenced. Although the power to detect differentially expressed genes increases with both the 

increased number of biological replicates and increased sequencing depth, sequencing deeper 

a certain number of reads in each sample generates the diminishing returns for the power of 

detecting DE genes. According to Liu et al., 20134, the increase in number of DE genes with 

sequencing depth gives lower outcome after 10-15 million (10-15M) reads. Furthermore, for 

practical reasons one usually does not go beyond duplicates or triplicates in the experimental 

design while a substantial increase in power with increase of replication occurs independently of 

sequencing depth up to 5-7 samples4. 

Given the current instrumental throughput capabilities, such sequencing depth still 

makes RNA-seq experiments prohibitively expensive for high-throughput studies. One avenue 

to increase throughput of RNA-seq based studies is to compensate for decreases in sequencing 

depth by leveraging additional information present in RNA-seq data. In this work, we show that 
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global read coverage distribution provides the source of such information that can be leveraged 

to improve detection of differential expression at the sequencing depths of 3-5 million reads to 

match that of 10-12 million reads sequencing depth with only minor loss of specificity. 

 

Results 

Consistent with previous estimates4,  we have also observed that 10-15 million reads is 

the optimal sequencing depth using the common benchmark RNA-seq dataset from Bottomly et 

al5, comparing downsampled datasets from two different mouse strains, B6 and D2, originally 

sequenced at ~30M reads per sample. As one can see from Fig. 1a, most of the differentially 

expressed genes are called in the libraries of sequencing depth of 10-15 M, and with further 

depth increase, number of detected DE genes increses only decrementally (using genes with 

adjusted p-value below 0.05 at 30M depth in 3 replicates vs 3 replicates comparison as a set of 

truly DE genes, further referred as the verification set here). Furthermore, the number of false 

negative(FN) DE genes decreases almost twofold upon increasing depth from 1M to 10M, while  

the p-values of these FN genes drastically increase.  This means that  only less significant DE 

genes are lost when increasing sequencing depth beyond ~10M reads. Overall, this confirms 

that sequencing depth of ~10-15M represents the current “golden ratio” point for RNA-seq in 

terms of balancing multiplexing and quality of differential expression calling. 

While ability to determine differential expression declines rapidly, not all the information 

is lost at an equal pace when reducing sequencing depth below 10M. In fact, as seen in Fig. 1b, 

relative ranking of DE genes is mostly preserved at as low a sequencing depth as 2M per 

library, even though accurate calling of differential expression is not directly feasible at 2M, due 

to the loss of statistical power (see, for example, table in the panel Fig. 1a). Thus, we have 

asked if it was possible to leverage the information content that is preserved below 10M depth 

to recover information about DE genes at the lower sequencing depth. 
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To address this question we have examined the statistical properties of RNA-seq 

datasets to find the most conserved characteristics, starting from gene level distribution of 

sequencing reads. It has been shown recently that the double Pareto lognormal (dPLN) fitting 

provides a very accurate approximation of the gene expression reads distribution for RNA 

sequencing data1,6. Briefly, its main improvement over the lognormal fitting is that it better 

describes the end segments of the distribution corresponding to both low and high numbers of 

reads. Since for the random value X distributed with the dPLN law, log(X) follows the Normal 

Laplace distribution (NL), we used the natural logarithm of the reads and the NL density function 

for fitting1,7,8. Indeed, we observed that the NL density function accurately fits gene level 

distribution of sequencing reads at both low and high sequencing depths (Fig 2a-b, 

Supplementary Fig. 1a-b). 

In the context of microarray studies, typical shape of signal distribution is used to 

normalize the data; while in the context of RNA-sequencing data, normalization has played little 

role other than equilibrating sequencing depth between different samples. Most of differential 

expression methods are traditionally more concerned with accurate statistical representation of 

noise impact, rather than the shape of read distribution. Typical sample normalization includes 

only simple rescaling to average library depth, using a common normalization factor for all 

genes in individual libraries, such as geometric mean (GM) normalization employed in DESeq9, 

DEXSeq10 and DESeq211. We asked if a model-based approach with explicit descriptions of 

gene counts distribution (e.g. based on double Pareto lognormal) could improve accuracy of 

differential expression calling in the regimes of low sequencing depths. A major potential 

advantage of using explicit distributions is the ability to model RNA-Seq dataset at higher 

sequencing depths, effectively re-scaling the data from 2-5M towards 10-15M in a statistically 

and biologically meaningful way. 

To investigate this possibility in details, we devised the following normalization 

procedure, illustrated by scaling 5 million read depth dataset (obtained through downsampling)  
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towards its original 30 million reads deep sequencing of B6 mouse cells from Bottomly et al 

data5 (Fig.2a-b). First, a cumulative distribution function is built for both datasets and a cutoff is 

introduced to the 5M dataset to avoid considering non-expressed genes with zero or few reads. 

Considering cumulative distribution curves, this cutoff value is re-scaled for deeper sequencing 

distribution by finding a point with the same y-axis value, reflecting the fact that area under the 

curve (i.e. cumulative probability of non-expressed genes) should be preserved between two 

distributions (Supplementary Fig. 2). Next, we estimate the parameters of corresponding Pareto 

distributions for each dataset by plotting a histogram of gene counts (Fig. 2a-b,e), bins are 

depicted with empty circles. Given explicit functions for each distribution, we scale 5M dataset 

on a gene-by-gene basis. The normalization approach consists of multiplying each count from 

the initial distribution by the coefficient Xi = xi,r/xi,n, where xi,n is the x-coordinate corresponding to 

the ith gene read count in the non-normalized distribution and xir is x-coordinate at the 30M 

reference curve with the same y-coordinate as xir (Fig. 2c). Notably, coefficients Xi are nonequal 

across the expression levels in our normalization approach (Fig. 2d). 

The main difference between our NL normalization approach and the geometric mean 

(GM) transformation is that the first one normalizes distributions to the reference with the 

highest depth of sequencing, while the GM approach comes up with the averaged distribution 

(see dashed lines on Fig.2 e-f. showing the peak positions.). Hence the resulting distributions 

will correspond to the deepest one, in the case of NL, and to the mean one, in the GM case 

(Fig. 2e-f). In other words, the NL transformation takes advantage of the samples with the 

highest sequencing depth and thus has potential to increase DE detection power as we show 

below. Importantly, the GM normalization uses single normalization factor per one distribution 

leading to distortion at the ditribution tails, while NL method leverages explicit model effectively 

allowing for number of normalization factors equal to the number of genes in the dataset. As a 

consequence, the NL transformation gives more tight fits than the GM normalization (Fig. 2f). 
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To evaluate the effect of the NL transformation towards higher depth on the quality of the 

differential expression calling, we have performed differential expression analysis for 3 B6 vs 3 

D2 replicates per sample, for data by Bottomly et al.5 for both initial and the NL transformed 

datasets at different levels of downsampling. Data downsampled to different depths from 2 to 10 

million reads were NL renormalized to known 15M dataset distribution by the procedure 

described above. The DE genes were found via DESeq211 for each downsampled sequencing 

depth with adjusted p-value threshold of 0.05. We then calculated sensitivity, precision, 

specificity, and accuracy of differential expression calls using verification set defined above (see 

also Methods).  

As expected, the number of detected DE genes increased with the growth of sequencing 

depth for both NL transformed and GM normalized data (Fig. 3a). Importantly, the number of 

differentially expressed genes called upon NL transformation was several fold higher in the 

cases of low depth libraries, hence dramatically improving the amount of differnetially expressed 

genes. To see if the increase was due to inclusion of true positive DE genes previously lost due 

to insufficient statistical power, we computed sensitivity and precision at each level of 

downsampling. Indeed, NL transformed data showed higher sensitivity in comparison with not 

normalized (Fig. 3b): for  NL transformed 2M data we got roughly the same amount of DE genes 

as for 7.5M not transformed dataset and for 5M NL transformed data result was similar to 

between 12.5M - 15M not transformed dataset. Such increase in sensitivity (2.4 times for 2M 

and 1.8 times for 5M) was accompanied with only mild drop of precision – about 10-20%. 

Accuracy and specificity metrics were almost unchanged (Supplementary Fig. 3a-b). Thus, we 

conclude that provided information about gene count distribution at higher sequencing depths, 

one can drastically increase sensitivity of the DE detection while maintaining good precision. 

However, for the actual high-throughput experiment with 20-30 samples per lane, the 

reference "high depth distribution" is not known. To reconstruct a reference distribution one can 

use a “pooling” approach, summing up reads for each gene through replicates and samples. In 
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our case, we summed up reads for 2 samples with 2 replicates per each sample (Fig. 4a). For 

example, with 3M sequencing depth we gained effectively 12M depth reference distribution 

under the assumption that the majority of the genes are not differentially expressed. Then, we 

NL normalized each sample separately to the pooled reference distribution. As the result in 2 vs 

2 replicates per sample comparison, the number of DE genes increased along with the 

sensitivity, while the precision dropped mildly (Fig. 4 b-d, Table 1) and accuracy, specificity did 

not change much (Supplementary Fig. 5). Hence, with reference distribution reconstructed 

through sample pooling we see a significant improvement in the number of found TP genes with 

a marginal loss in precision.  

To pictorially represent dramatic improvement due to NL normalization, we plotted Venn 

diagrams of intersections between DE gene sets found in normalized and initial data, along with 

the verification set at low sequencing depths on Fig. 5. The dark brown area shows TP genes 

represented both in non-normalized and NL transformed data (preserved genes), the bright red 

region depicts the TP genes found as a result of the transformation procedure in addition to 

those discovered with non-transformed data. So for the 2 vs 2 sample comparison the 

transformation gives two times more discovered TP genes at 15M and an almost five times 

increase in TPs for 2M depth. The number of FP genes found with transformed data (shown in 

light blue) is much lower than the number of additionally found TP genes. The yellow region 

depicts the number of lost TP genes after transformation. Additional improvement can be gained 

by combining DE genes found with and without normalization. It means recovering TP genes 

lost in the transformation procedure (yellow region), with very low addition of FP genes found 

with non-transformed data. Detailed information about 2 vs 2 DE analysis with means and errors 

is given in Supplementary Table 1. To summarize, 4-5M sequencing depth with transformation 

gives sensitivity very close to 10M for non-transformed data both with 2 vs 2 and 3 vs 3 (see 

Fig. 4, Supplementary Fig. 4, Supplementary Tables 1-2) replicates comparison, which is 

usually considered an appropriate sequencing depth for DE analysis. 
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Discussion 

Currently, the high-thoughput potential of RNA-sequencing relies heavily on both the depth of 

sequencing and the number of biological replicates per condition. Here we present a 

computational strategy that leverages information about gene count distribution in order to 

improve differential expression calling at low sequencing depths. By using additional information 

about distribution of sequencing gene calls, one can re-scale a RNA-Seq dataset towards 

higher depth, compared to the one actually achieved in the experiment. As we show, such 

normalization can increase sensitivity of the sequencing with 4M-5M libraries depth to become 

comparable to 10M-15M depth with only a mild drop in precision. This approach will be very 

useful in the high-throughput applications of RNA-sequencing. 
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ONLINE METHODS  

Libraries alignment, down-sampling and DE genes detection 

We used RNA-Seq data from Bottomly et al. obtained for two different mouse strains cells B6 

and D2 with 3 biological replicates per sample, SRA026846 (B6: SRR099237, SRR099238, 

SRR099239 and D2: SRR099240, SRR099241, SRR099242), ~30M reads in each of 6 

libraries. The libraries were single-end reads of 70 bp and were evaluated to be unstranded 

using CollectRnaSeqMetrics utility from Picard tools. All libraries were aligned to GRCm38.p2 

assembly of mouse genome using STAR aligner12 with Gencode vM213  transcripts included into 

pre-generated reference for reads 70 bp long (--sjdbOverhang 69). We then randomly down-

sampled the RNA-seq reads of each sample to generate datasets of 1M, 2M, 3M, 4M, 5M, 

7.5M, 10M, 12.5M, 15M, 20M, 25M reads using fastq-sample utility from fastq-tools. Using 

these down-sampled sequence reads, we generated raw counts of number of tags on each 

gene by using htseq-count utility from HTseq package14. Gencode vM2 (with –t exon option) 

was used as a reference GTF, and the library was processed as unstranded (-s no). DESeq2 

package11 (Version 1.4.5 ) was used to detect differentially expressed genes between two 

samples. The found DE genes for each evaluation set we defined as E. The 2200 found DE 

genes at 30M depth with the same adjusted p-value threshold of 0.05 we defined as the 

verification set V of truly DE genes. So the true positive genes we defined as TP = V ∩ E, false 

positive genes FP = E \ (V ∩ E), false negative genes FN = V \ (V ∩ E), true negative TN = <all 

genes> \ (FP + FN + TP). Then we used the four benchmark criteria: sensitivity = TP/(TP+FN),  

precision = TP/(TP+FP), specificity  = TN/(FP+TN), accuracy = (TP+TN)/(TP+FP+TN+FN).  

Fitting and normalization procedures. All the R functions and brief tutorial on their usage is 

provided in the supplemntary material. If a random variable X follows a double Pareto 

Lognormal (dPLN) distribution, then its logarithm follows the normal-Laplace (NL) distribution, 

which can be described as a convolution of Normal and Laplace distributions. Assuming that the 
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RNA-Seq data we analysed from Bottomly et al. follow the dPLN distribution, we fitted natural 

logarithm of expression counts with NL probability density function7. Before fitting we applied a 

cutoff so that in a cumulative form of a distribution were kept values only above a chosen Y-axis 

threshold which was the same across all fitted distributions (Fig. 2c and Supplementary Fig. 2).  

To carry out NL normalization we used reference distribution of higher sequencing depth than 

the one we were normalizing. At first we found normalization coefficients individual for each 

gene in the distribution we were transforming. For each ith gene, we found a corresponding x-

value on the integral of the pdf function, fitted to its distribution – xi,n on 5M (Fig. 2c). The point 

on the integral of pdf curve fitted to the reference distribution with the same y-value as xi,n have 

x-value xi,r. So the normalization coefficient for the ith gene is Xi = xi,r/ xi,n. Then we multiplied 

logarithm of gene counts of the ith gene by the normalization coefficient Xi. To get the 

normalized RNA-Seq data table in count values we simply took exponent of the expression 

levels after normalization rounded to the nearest integer. 

  

Geometric mean averaging was done as in DESeq, DEXSeq, DESeq2. The normalization 

parameters sij are considered constant within a sample and are estimated with the median-of-

ratios method via formula 
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where Kij is a read count for gene i in sample j 11. 
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Figure captions: 

Fig.1. Most of the significant differentially expressed genes are called in the libraries of 

sequencing depth of 10M-15M. Result of 3 vs 3 samples comparisons from the Bottomly et al. 

dataset. 

A. –Log2(adj. p-value) of FN genes. P-values obtained from 30M sequence depth in 3 vs 3 

sample comparison. Statistical power of not detected DE genes decrease mostly to 10M 

reads per sample and then after 10M-12.5M doesn’t change much. 

B. 500 most significantly expressed genes from the verification set (defined above) mostly 

preserve their ranking at sequencing depths below 10M. Black lines correspond to top 

500 genes with lowest p-values from the verification set. All genes are ranked top down 

by adjusted p-value increase. Enrichment bars obtained using GSEA software 

(http://www.broadinstitute.org/gsea). DE genes have mostly the highest statistical power 

and are presented at the top of the ranked lists. But it is not clear how to call directly DE 

genes since statistical power of differential expression goes down with decreasing 

number of reads.  

Fig.2. Fitting and transformation procedure of RNA-Seq distributions. 

We consider here as an example the two B6 mouse strain sequencing data with 30M and  

downsampled from it 5M sequencing depth 

A. – B. Distributions for the RNA-Seq datasets with 30M(right) and downsampled 5M(left) 

sequencing depth. Logarithmed distributions were fitted with Normal-Laplace functions 

after cut off was applied. Y-axes are in log scale.    

C. Transformation procedure. Two integral distribution curves correspond the two 

differential distributions at A. Threshold was applied by cutting off the curves below the 
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certain y-value (dashed line). The 5M is being transformed (normalized) to 30M. 

Coefficients of normalization Xi are individual for each gene. 

D. Dependence of distribution normalization coefficients from C. on the gene expression 

levels (natural logarithm of reads per gene). Coefficients are nonuniform and change 

across expression levels.  

E. Initial not transformed RNA-Seq reads distributions for 2M-15M sequence depth. Going 

from the 2M to 15M the more distinct peak is observed.  

F. Geometric mean transformed distributions from D.  

G. Normal-Laplace transformed distributions from D. The peak of the normalized 

distributions is at about 5.8 as opposed to 4.9 at F., which is a result of normalization to 

the largest library distribution instead of averaging all distribution datasets.  

Each curve at D-F corresponds to average of 3 downsampling repeats from one 

biological replicate. The y-axis corresponds to the normalized density values and the x-

axis to the natural logarithm of expression calls number. 

Fig.3. Benchmark of DE calls, sensitivity and precision for data normalized to 15M reference 

distribution with 3 vs 3 biological replicates comparison. The verification true positive set was 

the DE genes detected at ~30M library size for 3 vs 3 biological replicates comparison. The DE 

genes at the current sequencing depth were defined from comparisons of 3 vs 3 samples from 

the Bottomly et al.5 with adjusted p-values less than 0.05. Green lines are result of NL 

normalization, green lines are for not normalized datasets. 

A. Dependence of DE calls on sequencing depth for NL normalized and not normalized 

data. Roughly the same number of DE genes as at 10M was obtained with only 5M NL 

transformed data, normalization of 2M library yields the amount of DE detected genes as 

at 5M – 7.5M depth with not normalized datasets. 
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B. and C. – sensitivity and precision (see definition in text). Very similar increase in 

sensitivity occured as in DE detection on A, while drop in sensitivity from 2M to 5M was 

about 20%.  

 

Fig.4. Benchmark of DE calls, sensitivity and precision for data normalized to pooled reference 

distribution with 2 vs 2 biological replicates comparison. To improve high-throughput, many 

samples can be sequenced to lower depth and then information from all samples and replicates 

can be combined together to obtain more information about DE expression at a given 

sequencing depth. Bars mean +/- SEM. Green lines – NL  normalized and blue lines – not 

normalized data. 

A. Schematic representation of the pooling approach. Two biological replicates per each of 

two samples were summed up so that the counts corresponding to the same genes were 

combined together.. The resulting “pooled” distribution was used as a reference 

distribution. For example, starting with 3M sequencing depth and 2 replicates per each 

of two samples the one can obtain effectively 12M reference distribution. 

B. Number of detected DE genes for 2 vs 2 biological replicates comparison. The amount 

of  detected at 10M-12.5M DE genes  can be achieved with 4M-5M normalized data. 

C. and D. – sensitivity and precision. The normalization procedure gave the same result in 

termes of sensitivity at 2M–5M as the one would get at 5M–10M with initial data.  

 

Fig.5. Venn diagrams of intersections between verification gene set, DE genes obtained from 2 

vs 2 replicates comparison of not normalized samples and the ones normalized with the pooling 

approach. Diagrams were plotted for 2M-7.5M sequencing depth. Light blue region represents 

FPs gained by the NL normalization, dark bright red – TPs gained by NL normalization, dark 

brown – TPs reproduced by NL normalization, the biggest green region – not detected by both 

methods DE genes, yellow – DE genes detected without normalization and not found after 
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normalization was applied. After normalization we obtained ~4 times more TPs at 2M and 2.4 

times more at 5M. Almost all TPs found without normalization were reproduced with our 

approach, while number of gained FPs was comparably low: ~1/2 at 2M and ~1/5 at 5M of 

gained TPs via normalization. See Table 1 in addition to the Venn diagrams. 
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