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ABSTRACT 

Motivation: We propose a method for estimating lipidome homol-

ogies analogous to the ones used in sequence analysis and phylo-

genetics. Results: Algorithms were developed to quantify the 

structural similarity between lipids and to compute chemical space 

models of sets of lipid structures and lipidomes. When all lipid 

molecules of the LIPIDMAPS structure database were mapped in 

such a chemical space, they automatically formed clusters corre-

sponding to conventional chemical families. Homologies between 

the lipidomes of four yeast strains based on our LUX score reflect-

ed the genetic relationship, although the score is based solely on 

lipid structures. Availability: www.lux.fz-borstel.de  

1 INTRODUCTION  

A lipidome can be an indicator of health, disease, stress or meta-

bolic state. Using model organisms, the role of lipid metabolism 

has been studied in diseases such as diabetes, metabolic syndrome, 

neurodegeneration and cancer (Yetukuri et al., 2007; Kühnlein, 

2012; Subramanian et al., 2013; Hindle et al., 2011; Lopez and 

Scott, 2013; Kiebish et al., 2008). To this end, lipidomes from 

yeast and fruitfly have been characterised (Ejsing et al., 2009; 

Guan et al., 2010; Carvalho et al., 2012; Klose et al., 2012; Guan 

et al., 2013) enabling one to identify fundamental lipid metabolic 

processes (Lam and Shui, 2013; Peng and Frohman, 2012). How-

ever, a critical question remains: How relevant are changes in the 

lipidome of a biological model for understanding human physiolo-

gy if these lipids are not present in humans? 

For example, it would be a challenge to relate differences in li-

pid metabolism in D. melanogaster or S. cerivisae to human bio-

chemistry. One would only have to look at their differing sphin-

golipid compositions (Kraut, 2011). In humans, sphingomyelins 

(SM) are highly abundant, but they are basically absent in the fruit-

fly. 

Furthermore, drosophila sphingolipids have a shorter sphingoid 

alkyl chain (C14), but their amide bond fatty acids are usually 

longer than those in humans. 

Homology measures for genes and protein sequences are well 

established. The theme in this work is the development of similar 

metrics for lipidome homology. We started by converting lipid 

structures to Simplified Molecular Input Line Entry Specification 

(SMILES) (Weininger, 1988). This representation is compact and 

allows one to use methods developed for fast string comparisons. 

One can also take advantage of the literature on SMILES-based 

methods in cheminformatics (Vidal et al., 2005; O’Boyle et al., 

2011; Krier and Hutter, 2009). Given this structure representation, 

we used alignment and scoring methods such as Smith and Water-

man (1981) and the Levenshtein distance (Levenshtein, 1966; 

Damerau, 1964) and looked at the distances between lipids. Build-

ing on these distances, one can represent a whole lipidome as a 

dissimilarity matrix. This numerical representation can then be 

used for further analyses such as estimating the homology between 

lipidomes. 

Following the use of chemical space models in the field of drug-

discovery, the lipid similarity measures were used to define a high 

dimensional space (Reymond et al., 2010). This approach was 

evaluated on all lipids of the LIPIDMAPS Structure Database 

(LMSD) (Sud et al., 2007). Finally, we determined homology be-

tween lipidomes of four well characterized yeast strains (Ejsing et 

al., 2009). 

2 METHODS 

Details of SMILES generation, principal component analysis (PCA), 
structural similarity methods and annotation of lipids are given in 

supplementary methods. 

2.1 Lipid Structure Datasets 

Lipid structures for figures 1 and 2 were drawn and SDF files were gen-

erated using PubChem Sketcher (Ihlenfeldt et al., 2009). The complete 

LIPIDMAPS Structure Database (LMSD) in SDF format was downloaded 

on Nov 9, 2011 from www.lipidmaps.org (LMSDFDownload9Nov11.zip) 

(Sud et al., 2007). 

Lipidome data of yeast mutants was taken from Ejsing et.al. (2009). 

LIPIDMAPS structure drawing tools were customized to draw all required 

lipid structures for yeast. For ergosterol and ergosta-5,7-dien-3β-ol, SDF 

files were obtained from the LMSD. SMILES for phytosphingosine 1-

phosphate was made by hand from the corresponding phytosphingosine.  

For some molecules, the number of hydroxylations and double bonds was 

known, but their position was not. In these cases, a list of possible isomers 

was generated. The position of double bonds and hydroxylations in yeast 

fatty acids were taken from previous studies (Hashimoto et al., 2008). 

Pairwise distances between all isomers were calculated using the Le-

venshtein distance method (Levenshtein, 1966; Damerau, 1964). The iso-

mer with smallest average distance to other isomers was chosen as repre-

sentative molecule (Supplementary Result 1).  
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2.2 Template-based SMILES  

LIPIDMAPS perl scripts were modified to generate a wider spectrum of 

lipid structures (Fahy et al., 2007; Sud et al., 2012). These scripts are 

available at www.lux.fz-borstel.de. Molecule structures were obtained in 

SDF format and subsequently converted to SMILES using the OpenBabel 

molecular conversion tool with the default algorithm (O’Boyle et al., 

2011). Characters indicating chirality, cis–trans isomerism and charges 

were removed automatically for the yeast lipidome analysis. 

2.3 Structural similarity scoring methods 

Six similarity scoring methods were tested 1) OpenBabel FP2 Fingerprint 

2) LINGO 3) Bioisosteric similarity 4) SMILIGN 5) Smith Waterman 

Local Alignment 6) Levenshtein distance. Details are given in supplemen-

tary methods. The Levenshtein method was applied for analyzing LMSD 

and yeast lipidome (Figures 4, 5 and 6). This algorithm was originally 

designed for correcting spelling errors, but the principle can be applied to 

compare any pair of strings including SMILES (Levenshtein, 1966; 

Damerau, 1964). The source code used in this study is provided in our 

website www.lux.fz-borstel.de. 

2.4 Lipidome Juxtaposition Score (LUX) Calcu-

lation 

The LUX score is based on the Hausdorff distance (Jain et al., 1999) and 

summarizes the similarity between lipidomes. In pseudocode, the distance 

from lipidome A to B is calculated from: 

 

 

for each lipid in A 

 find distance d to most similar lipid in B 

 dsum ∶= dsum + d 

 n = n +1 

return dsum/n 

This yields the average shortest distance dAB from A to B. The larger of dAB 

and dBA was used as the lipidome homology score (AB). The LUX score is 

a simple measure of the homology between a pair of lipidomes. Lower 

LUX scores signify higher homology. 

2.5 Hierarchical Cluster Analysis 

Complete linkage clustering was performed with R, version 2.14.1, 
library – ‘stats’ and function ‘hclust’ using the LUX score, Pearson and 

common lipid count as similarity metrics. An error model for the yeast 

lipidome analysis was computed by iterating all lipid quantities x of the 
original data set according to:  

for each lipid with abundance x 

x' = x + rnorm(1,0,s) 
if x'  > tdetect  

return x' 

The detection limit tdetect and standard deviation s were defined so that 
only low abundant lipids were significantly affected. We chose the 

following three parameter sets: 1) tdetect = 0.003 mol % - 4.3 % of all 

reported quantities, s = 0.001mol % - 11.4 % of all reported standard 
deviations 2) tdetect = 0.003 mol %, s = 0.002 mol% - 20.3 % of all 

reported standard deviations and 3) tdetect = 0.006 mol% - 8.7 % of all 

reported quantities, s = 0.004 mol% - 34.7 % of all reported standard 
deviations. The number of occurrences for each branch was counted after 

100 iterations using the R library, ape::boot.phylo::prop.part 

Fig. 1. Alignment-based distance calculation algorithms can distinguish isomeric lipid molecules. A. Structure of 17 ceramide molecules consisting of a C16 
sphingoid base (light green) and an amide-linked hydroxy fatty acid. The carbon atom number of the hydroxyl group position at the fatty acid chain (red) is 

used for naming individual molecules. B. SMILES representation of first and last molecules. Color coding of atoms is identical in SMILES- and structure- 

representations. C-H. Heat map of pairwise distances calculated using Open Babel’s FP2 Fingerprint (C), LINGO (D), Bioisosteric (E), SMILIGN (F), 
Smith-Waterman (G) and Levenshtein distance (H) algorithms. Bioisosteric method uses CACTVS canonical SMILES whereas for all other methods 

template-based SMILES were used. Color bars in each panel indicate range of distances values of the particular method. Black denotes a distance value of 

ZERO, indicating molecular identity. Numbers in rows and columns simultaneously represent the molecule name and the position of hydroxyl group in fatty 

acid moiety. 
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3 RESULTS 

3.1 Alignment-based similarity scoring methods 

distinguishes between positional isomers 

As a basis for our similarity scoring, we established a template-

based SMILES generation algorithm for lipids. We were able to 

write SMILES in a consistent and predictable manner using tem-

plate-based structure drawing tools (Fahy et al., 2007; Sud et al., 

2012) and OpenBabel default SMILES algorithm (Supplementary 

Result 2). We then tested alignment methods and distance metrics, 

analogous to those used for protein or nucleotide sequences. Our 

quality criterion was based on the methods' sensitivity to small 

structural differences commonly found in lipids. The first test da-

taset consisted of a set of 17 ceramide molecules with the chemical 

composition C34H68O4N1. The position of the hydroxyl group was 

successively changed from position 2 to 18 at the fatty acid moiety 

resulting in 17 isomeric molecules (Figure 1A). All isomers were 

converted into SMILES in which the shift of the hydroxyl group 

can easily be recognized and we tested six similarity scoring meth-

ods (Supplementary Result 2, Figure 1C-H). Three from the litera-

ture were used as described under Methods: FP2 Fingerprint 

(O’Boyle et al., 2011), LINGO (Vidal et al., 2005) and Bioisoster-

ic similarity (Krier and Hutter, 2009). Three methods were intro-

duced here: the SMILIGN, Smith and Waterman (1981) and Le-

venshtein (1966) distance (Damerau, 1964). 

The first clear result is that a large subset of isomeric structures 

cannot be distinguished by either OpenBabel FP2 Fingerprint or 

LINGO (Figure 1 C-D). The FP2 Fingerprint algorithm computed 

a distance of zero for 78 pairs of ceramide isomers (Figure 1C – 

black pixels). LINGO gave a zero distance for 91 pairs of isomers 

(Figure 1D). This would only be correct if the molecules were 

identical. Both methods segment SMILES into shorter sub-strings 

(1-7 character length in Path-length Fingerprint and 4 characters by 

LINGO) and apply the Tanimoto coefficient for determining dis-

tances. This segmentation into short sub-strings loses the infor-

mation on the position of the hydroxyl group. In contrast, the Bi-

oisosteric algorithm differentiated all 17 isomeric structures, even 

though it uses CACTVS Canonical SMILES. There are no zero 

distances off the diagonal (Figure 1E). The Bioisosteric method 

also segments SMILES into sub-strings, but in a hierarchical man-

ner, preserving information on the position of the hydroxyl group 

(Krier and Hutter, 2009). There is a distinct pattern in the heat map 

of the Bioisosteric method characterized by a gradual increase in 

distance values for isomers having the hydroxyl group closer to the 

terminal methyl carbon. The Bioisosteric method returns a distance 

of 0.13 units for the shift of the hydroxyl group from position 5 to 

7 (Figure 1E - light green pixel), but returns 0.26 units for position 

10 to 12 (Figure 1E - yellow pixel) and for positions 16 to 18, a 

distance of 0.41 was calculated (Figure 2E - white pixel). This 

dependence of the distance values on the position of the hydroxyl 

group leads to an unwanted weighting which is a clear problem 

with the approach. 

In the SMILIGN algorithm, SMILES strings are treated as if they 

were amino acid sequences and a multiple sequence alignment was 

calculated with MUSCLE (Edgar, 2004). The pairs of lipids were 

rescored using an identity matrix. The SMILIGN method distin-

guished all 17 ceramide isomers (Figure 1F), but we noticed an 

irregular distribution of distance values. For example, comparing 

molecule pairs where the hydroxyl group was shifted by one posi-

tion 11-12, 12-13, 13-14 and 14-15 resulted in four different dis-

tance values of 0.03, 0.13, 0.25 and 0.06 units respectively. In this 

Fig. 2. The relationship between phosphatidylinositol (PI) molecules is 

retained in a two dimensional structural space (The structures and 
SMILES are provided in Supplementary Result 1). Pairwise distances 

between 16 PIs were calculated with Bioisosteric, SMILIGN, Smith-

Waterman and Levenshtein methods (A-D). PCA was carried out on the 

distance matrices to generate two- and three- dimensional maps. 

Approximate contribution of each principal component to the total 

variance is shown in brackets. Molecules with double bonds are in grey 
and without double bonds are in black. Euclidian distance between the 

first molecule PI (10:0/10:0) and all others in the PC1-PC2 plane are 

shown as bar graphs on the right panels. Molecules were numbered 
according to the length of the sn2 acyl chain length, wherein an underlined 

number XX indicate the presence of the double bond.  
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regard, we identified two problems with the algorithm. First, there 

were several misalignments that lead to incorrect distances. Sec-

ond, one needs 35 characters to represent all the structural details 

of all lipid molecules of the LMSD (LipidMaps Structure Data-

base). The software is limited to only 20 characters and too much 

information is lost. To overcome these two limitations of 

SMILIGN, we tested two pair-wise alignment methods that do not 

require conversion to amino acid sequences. 

With the Smith-Waterman method, pair-wise alignments are car-

ried out directly with the SMILES strings. All ceramide isomers 

were distinguished, but we noticed an anomaly in distance values 

for molecules 17 and 18 (Figure 1G). A closer examination of the 

pair-wise alignments revealed an inherent issue when applying 

local alignment procedure to lipids. In the aligned SMILES pairs 

2-17 and 2-18, the hydroxyl groups in the fatty acid were ignored, 

while for the pairs 2-15 and 2-16 the characters were retained. The 

Smith-Waterman algorithm is designed to find high scoring re-

gions in strings, so differing ends are ignored by design and not by 

accident. This means that functional groups at the omega position 

are ignored, despite their role in biology (Kniazeva et al., 2004). 

Although one could try to adjust parameters, the Smith-Waterman 

method is fundamentally not appropriate for this kind of compari-

son. 

Finally, we tested the Levenshtein distance for measuring simi-

larities between lipid molecules (Figure 1H). Unlike Smith-

Waterman, the Levenshtein approach always aligns all characters 

for a given pair of SMILES. This method was the most successful. 

It distinguished all ceramide molecules and for each molecule, it 

correctly scored and ranked distances up to the molecule’s third 

closest isomers. From the fourth closest isomer onwards, a fixed 

distance of 0.12 was determined. Unlike other methods, it guaran-

tees a symmetric distance matrix with no unwanted weighting of 

groups due to their positions.  

These tests of structural similarity measures led to two conclu-

sions. First, the alignment step is necessary. Second, the Le-

venshtein distance was most likely to be generally applicable for 

all molecules in a lipidome. 

3.2 From structural similarity to chemical space 

A set of distances between n molecules defines an (n − 1) dimen-

sional space. The coordinates of molecule i are simply the distanc-

es to all members of the set (including the zero distance to mole-

cule i itself). This is formally a vector space so similar molecules 

will have similar coordinates. It is, however, not very compact and 

because of structural similarities, coordinates in some dimensions 

would be highly correlated with others. Principal component anal-

ysis (PCA) was then used to reduce the dimensionality and see 

how much information would be lost. The first test was performed 

on a set of 16 phosphatidylinositol molecules (Supplementary Re-

sult 1). 

Considering just the first two principal components was suffi-

cient to highlight problems with some of the distance measures. 

For example, the map in Figure 2A shows a clear weakness with 

the Bioisosteric method. The extension of the fatty acid chain at 

the sn2 position and degree of unsaturation are not accurately rep-

resented (Figure 2A, scatter plot). We also computed the Euclidian 

distance between molecules in the plane of the first two compo-

nents. This showed an inconsistent trend in the distance increase 

with each structural alteration (Figure 2A, bar graph). Principal 

components can often be interpreted in terms of the original de-

scriptors and in the case of SMILIGN, the first two components are 

dominated by the extension of the acyl chain at the sn2 position 

(Figure 2B). For SMILIGN, the first two principal components are 

not sufficient to distinguish molecules that differ only in the pres-

ence of a double bond, but the third principal component does 

capture it (Supplementary Result 3).  

Fig. 3. The structural space model clusters thousands of sphingolipids (SP) 

according to their chemical relationship. A. Three dimensional map of 3510 
SP obtained by PCA from a pair wise distance matrix calculated with 

Levenshtein distance. B. Plot of all neutral SP within the same coordinate 

system as panel A indicating several associated glycosphingolipid series. C. 
Complex glycosphingolipids are highlighted showing the influence of 

structural changes in the ceramide backbone and sugar moiety.  
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In contrast, distances based on Smith-Waterman and Levenshtein 

algorithms reflected all gradual structural changes in the molecules 

(Figure 2 C,D). In both cases, the projection leads to a set of points 

in a ‘U’ shape and, if we take molecule 10 as a reference, stepwise 

changes to the chemistry are reflected in distinct shifts in the prin-

cipal coordinates. We further recognized that the changes in coor-

dinates, when the acyl chain is extended by two methylene groups 

(molecules 15-17, 17-19) are about twice as large as the difference 

between pairs differing by a single methylene group (Figure 2C-

D). The first two principal components combined, accounted for 

95% of the variability in the underlying data set for Smith-

Waterman and Levenshtein. Summarizing the results, we see the 

Levenshtein method coupled with template-based SMILES as the 

best approach for calculating structural differences in small mole-

cule sets. PCA is an appropriate way to reduce dimensionality and 

the relation between molecules can be depicted in a PCA map, 

which we treat as chemical space. 

The set of 16 phosphatidylinositol molecules is useful for high-

lighting details, but one is interested in using the method on much 

larger molecule sets. To this end, we used the 3510 sphingolipids 

(SP) from LMSD as a test dataset (Sud et al., 2007). All lipid 

structures were converted into template-based SMILES and pair-

wise distances were computed using the Levenshtein method. Fig-

ure 3A shows the position of all molecules in terms of the first 

three principal components. There are two clear observations. 

First, three principal components account for 99% of the total vari-

ance and no two SP have the same coordinates. Second, there was 

no biochemical knowledge put into the procedure, but the mole-

cules cluster naturally into chemically similar groups (Figure 3A). 

Sphingosines, ceramides and phosphosphingolipids were clustered 

separately from the complex glycosphingolipids (GSL). Further-

more, the acidic and neutral GSL where placed in different clus-

ters. Looking at the globo, lacto, neolacto and isoglobo series of 

neutral GSL, one can see changes in the sugar moiety and a clear 

separation from the simple ‘Glc’ series (Figure 3B). This observa-

tion fits the intuitive expectation that the ‘Glc’ series with simple 

sugar moieties (glucose, galactose or lactose) should be farther 

from lipids with complex sugar composition. We noted that chang-

es in the sugar moiety composition of neutral GSL, which have a 

strong impact on biochemical behavior, were separated by a larger 

distance compared to changes in the ceramide backbone (Figure 

3B). In addition, we were intrigued by the recurring appearance of 

geometrical patterns in the form of ‘I’, ‘C’ and ‘L’ shapes and 

investigated the structure within these clusters. Within each cluster, 

lipids were organized based on changes in the ceramide moiety 

(Figure 3C) so that, for example, eight molecules of the isoglobo 

series formed a twisted ‘L’ shape with each successive lipid carry-

ing a gradual change in the ceramide backbone (Figure 3C – light 

brown colored points). Analogous geometric arrangements were 

observed for the globo, lacto and neolacto series (Figure 3C – red, 

violet and light-blue points). Next we tested, how all the 30 150 

lipids of the LMSD would be organized in a chemical space based 

on only the structural similarity. All lipid molecules had unique 

coordinates in the computed chemical space, indicating that our 

approach can distinguish between all lipid structures within 

known, natural lipidomes. With no additional input, the method 

grouped lipids into clusters that correspond to the popular lipid 

classification of LIPIDMAPS (Figure 4A) (Fahy et al., 2008). 

 

Fatty acyls, glycerophospholipids (GPL), sphingolipids (SP) and 

polyketides occupied opposite ends of the chemical space. In con-

trast, glycerolipids and GPL shared a common region because of 

their head group similarity. Sterol lipids formed a distinct cluster 

due to their unique four-ringed core structure. Prenol lipids were 

widely distributed in the chemical space reflecting their varying 

chemical composition. For GPL, we observed several distinct clus-

ters, which on closer examination, could be recognized as spatially 

separated lipid classes like phosphatidylcholine (PC), phosphati-

dylserine (PS) and phosphatidylinositols (PI). 

Fig. 4. Spatial distribution of related phosphatidylcholines (PC) moelcules 
remains stable in the background of large structure data sets. A. Lipid map 

of 30 150 lipid molecules obtained from LMSD. Pair wise distances were 

calculated using the Levenshtein method of template-base SMILES. B. 
Structures of the 14 PC molecules. Molecules are named based on the 

number of carbon atoms of the sn2 acyl chain. C. Two dimensional map of 

the selected PC molecules displaying their chemical relation to each other. 
Euclidian distances in PC1-PC2 plane between the smallest PC (12) and 

all others are shown in the bar graph. D. Spatial distribution of 14 PCs in 

the background of 30136 lipids determined from three principal 
components and projected on the PC1-PC2 plane. Euclidian distances 

between first molecule (12) and all other was determined form the first 

two principal components and its trend is shown as bar graph. 
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3.3 The spatial organization of lipids is robust to 

changes in background molecule ensemble 

As with the set of PI molecules described above, (Figure 2D) the 

PC molecules in the two-dimensional representation form an in-

verted 'U' pattern (Figure 4C). However, the PC molecules formed 

a flipped ‘L’ pattern if all other 30 136 lipids of the LMSD were 

present (Figure 4D). In both cases, the sequential arrangement of 

the PC-molecules in the two-dimensional chemical space accurate-

ly represents the gradual increase in acyl chain length. We also 

observed a gradual increase of the Euclidian distance from the 

molecule PC (12:0 / 12:0) to all species with longer sn2 acyl chains 

(Figure 4 C, D). When we gradually increased the complexity of 

the set of lipid molecules, we noticed that the PCA approach could 

disturb relationships between structurally similar molecules. In the 

case of a set consisting of only GPLs and only GPLs and SPs (data 

not shown), we noticed that the distances between molecule 12 and 

molecules 21-26 did not reflect the sn2 chain length increase any-

more. Interestingly, one can observe that the gradual addition of 

more diverse lipid structures spanning a broader chemical variety 

compensates for this bias. It seems that the Levenshtein distances 

and the projection to a chemical space automatically reconstructs 

conventional lipid class definitions. The next natural step is to use 

these lipid coordinates to analyze and compare complete lip-

idomes.  

3.4 The Lipidome jUXtaposition (LUX) score, a 

single metric for calculating the homology 

between lipidomes 

The approach to lipidome comparison was then tested on real 

data. All lipids from four yeast strains BY474, Elo1, Elo2 and Elo3 

(Ejsing et al., 2009) were combined, yielding a reference lipidome 

with 248 members, each with unique coordinates (Supplementary 

Result 1). For clarity, this is shown in a 2D map (Figure 5A), 

which is the basis of comparisons of the four strains and two 

culturing temperatures (24°C and 37°C). Triacylglycerols (TAG) 

occupy the largest area on the map in terms of the variety of 

structures. Mannose-bis(inositolphospho)ceramides (M(IP)2C) 

form a distinct cluster located in the top-left quadrant of the 

reference map. In the top right quadrant of the reference map, there 

is a cluster of GPLs consisting of phosphatidic acid (PA), 

phosphatidylethanolamines (PE), phosphatidylcholines (PC) and 

TAG. The reference lipidome map clearly shows temperature- and 

strain-specific changes. The lipidomes of the wild type yeast 

strains BY4741 and Elo1 grown at 24°C showed only minor 

differences (Figure 5B). In contrast, the lipidome of the Elo2 

mutant is very different to the wild type strain BY4741 (Figure 

5C). The mutation has led to dramatic changes amongst the 

inositol phosphorylceramides seen in the top-left quadrant and the 

appearance of new species not present in the wild type. Using this 

well-defined lipidome map, one can determine the closest related 

lipid in the wild type strain If one calculates the distances that 

lipids would have to move to make the members of each pair 

overlap, one can use the Hausdorff distance to compare lipidomes 

(arrow marked lipids, Fig 5C, D). For that, we chose the 

coordinates of all lipids in the two dimensional coordinate system 

of the first lipidome and determined the Euclidean distance to its 

closest structural neighbor in the second. Subsequently, the 

average of all distances was determined, including all distance 

values of zero for identical molecular species. Because the 

Hausdorff distance depends on the direction of the comparison, we 

used the maximum of the two values (max(dAB,dBA)). We named 

this measure as the ‘Lipidome jUXtaposition (LUX) score’. This 

score is a distance, so larger values indicate more dissimilarity and 

Fig. 5. Lipidome maps highlight relationships between yeast strains. A. All lipids from yeast strains, BY4741, Elo1, Elo2 and Elo3 cultured at 24ºC and 

37ºC are combined to create a reference map of the yeast lipidome. Each colored circle corresponds to a unique lipid. B. Comparison of lipidomes from 
strains BY4741 and Elo1 (cultured at 24ºC). Arrows in first plot indicate lipids that are present in Elo1, but not in BY4741 and vice versa in the second plot. 

C. Comparison of BY4741 and Elo2 lipidomes. A two dimensional Lipidome jUXtaposition (LUX) score is calculated for a pair of lipidomes using 

reference-map coordinates (Supplementary Result 1). 
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identity results in a LUX score of zero. From that perspective, one 

can see that the LUX score between BY4741 and the Elo2 strain is 

three-fold larger than the distance between BY4741 and Elo1 

(Figure 5B, C).  

Next we evaluated the LUX score by computing a hierarchical 

clustered tree of all eight reported lipidomes of yeast (Figure 6A) 

and compared it to dendrograms based on the lipid concentrations 

(Figure 6B), and simply by counting common lipids (Figure 6C). 

That allowed us to test if our approach can correctly depict the 

genetic and phenotypic relationship between the yeast strains 

reported earlier (Ejsing et al., 2009). The tree computed from the 

LUX score as well as common lipid count indicates that mutation 

of the Elo1 gene had less influence on the composition of the 

lipidome than the temperature shift. Both strains, BY4741 and 

Elo1 were closest neighbours to each other at the culturing 

temperature of 24°C and 37°C. The lipidomes from mutant strains 

Elo2 and Elo3 were clustered together using the LUX score (Fig. 

6A) but in counting common lipids, Elo2 clustered with BY4741 

and Elo1 (Fig 6C). This marks the major difference between both 

metrics. It was reported that no aberrant phenotype for Elo1 was 

observed and that Elo2 and Elo3 had distinct alterations in their 

intracellular organization (Ejsing et al., 2009; Oh et al., 1997), 

which seems better represented with the LUX score. However, we 

verified this finding with an error model that modify only the 

presence and quantity for low abundant lipids to estimate a 

robustness for the observed clustering. One can recognize that the 

LUX score (Fig 6A) as well as the common lipid count (Fig 6C) 

comprise a sufficiently robust tree topology and groups Elo2 

systematically different. We concluded from this experiment that 

compositional differences itself are useful to assign a phenotype 

while comparison purely based on quantities are dominated by 

changes of abundant lipids (Fig 6B). We also note that just 

counting of lipids is a simplistic, binary measure of compositional 

differences. In contrast, the LUX score provides a refined measure 

of lipidome structural diversity, which we recognize as an 

advantage.       

The complexity of the yeast lipidome comparison is relatively 

small compared to higher organisms. Nevertheless, the two-

dimensional structural space reflecting 63% of the overall 

variability of the dataset (Fig. 5A) is sufficient to determine 

lipidome similarities based upon the LUX score. We also note that 

the tree topology does not change whether one uses just three 

principal components (covering 83% of the variability) or the 

original pairwise distance matrix (data not shown).  This indicates 

that our approach enables a simple way to reduce the complexity 

of large lipid structure datasets, which can further help to depict 

results of a lipidome homology analysis in a well-defined manner. 

In this way researchers can report their findings for interspecies, 

cell type and cell compartment lipidome analyses in a defined 

graphical representation. At the same time, the LUX score 

determination workflow can be customized with regards to the 

complexity of the lipidome study. 

4 DISCUSSION 

Our study offers a general approach to characterizing and com-

paring lipidomes based on the structures of their constituents. It is 

certainly useful for making function / phenotype associations and 

allows one to correlate changes with habitat, genetic relationships 

and environmental stresses. The approach is dependent on the ini-

tial SMILES strings which is both an advantage and possible 

weakness. One can consider a comparison with small molecule 

classification. There, the problem is sometimes easier, especially 

when one is dealing with derivatives which are closely related, but 

even in small molecule chemoinformatics, there is no universally 

accepted scheme (Bender et al, 2009). Optimization of such struc-

tures often depends on the interaction sites of a protein and phar-

maceutical requirements for administration of drugs (Mohanapriya 

and Achuthan, 2012; Ahmed and Ramakrishnan, 2012). In this 

study, the analysis does not stop after comparing the details of 

individual structures. The larger aim is whole lipidome comparison 

and these are sets of structures whose members are functionally 

related. In this work, we leverage a SMILES generation scheme 

which works well on large sets, but there will probably be patho-

logical examples where it does not perform well. It definitely 

seems useful when working with lipids where it reflects 1) chain 

length 2) double bond position and 3) bond frequency. However, 

lipids are very special with regards to their structural diversity, and 

some better similarity metrics might be available in future. 

The definition of structural similarity and chemical space model 

also concisely depicts the complexity of a lipidome. The projection 

down to two- and three-dimensional maps lead to clusters which fit 

standard lipid nomenclature. This means that one can intuitively 

see qualitative differences between lipidomes. The reference map 

for multiple comparisons also shows changes in the overall organi-

zation of a lipidome which can support functional association re-

Fig. 6.  For the yeast strains, BY4741 (wild type), Elo1, Elo2 and Elo3 (Elongase mutants) cultured at 24°C and 37°C, dendrograms were computed from 

two-dimensional LUX scores (A) Comparing concentrations of common lipids (B) and counting the percentage of common lipids in a pair of lipidomes (C). 
All dendograms are based on complete linkage using Euclidean distance as the similarity metric (a.u - arbitrary units). The number of occurrences for each 

branch in 100 iterations is indicated with coloured numerals that correspond to the utilized parameter set for detection threshold tdetect and standard deviation s 

applied in the error model (see methods). 
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lated to membrane organization and metabolic adaptations. For the 

analysis of compositional differences between lipidomes and its 

interpretation, we recommend to apply an error model as intro-

duced in this study. We recognized that clustering approaches are 

often not verified with an error model, which negatively affects the 

value of subsequently derived biological and/or medical interpreta-

tions. The lipidome comparisons in this study are solely based 

upon an identity matrix for exchange values which does not ac-

count for quantitative changes. This is parsimonious, but obviously 

not optimal for comparing biological systems in terms of their 

lipidomes. In future work, we will test how quantitative changes 

should be weighted with respect to structural changes. We will 

estimate such weight measures from well understood model sys-

tems based on larger data sets that are now becoming available 

(Voynova et al., 2014; Tarasov et al., 2014). However, this study 

shows that the structural composition of a lipidome is sufficient to 

recognize the degree of genetic alteration and growth temperature 

dependence in yeast strains in an unsupervised manner. In contrast, 

all correlation based methods using lipid quantities as input failed.  

The growth in experimental data combined with methods like the 

LUX score may provide a basis for disease and trait association 

studies as used in genome research. 
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