
SW#db: GPU-accelerated exact sequence similarity

database search

Matija Korpar
1
, Martin Šošić

2
, Dino Blažeka

2
 and Mile Šikić

2,3,*

1
MicroBlink Ltd. 40 Gracechurch street IPLAN, London, EC3V 0BT, UK

2
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, HR 10000

Zagreb, Croatia

3
Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, 138671 Singapore

*To whom correspondence should be addressed. Email: mile.sikic@fer.hr or

miles@bii.a-star.edu.sg

Keywords: sequence alignment, protein sequence database search, CUDA, GPU, Smith-

Waterman

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 14, 2015. ; https://doi.org/10.1101/013805doi: bioRxiv preprint

mailto:mile.sikic@fer.hr
mailto:miles@bii.a-star.edu.sg
https://doi.org/10.1101/013805
http://creativecommons.org/licenses/by-nc/4.0/

Abstract

The deluge of next-generation sequencing (NGS) data and expanding database poses higher

requirements for protein similarity search. State-of-the-art tools such as BLAST are not fast

enough to cope with these requirements. Because of that it is necessary to create new algorithms

that will be faster while keeping similar sensitivity levels. The majority of protein similarity

search methods are based on a seed-and-extend approach which uses standard dynamic

programming algorithms in the extend phase. In this paper we present a SW#db tool and library

for exact similarity search. Although its running times, as standalone tool, are comparable to

running times of BLAST it is primarily designed for the extend phase where there are reduced

number of candidates in the database. It uses both GPU and CPU parallelization and when we

measured multiple queries on Swiss-prot and Uniref90 databases SW#db was 4 time faster than

SSEARCH, 6-10 times faster than CUDASW++ and more than 20 times faster than SSW.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 14, 2015. ; https://doi.org/10.1101/013805doi: bioRxiv preprint

https://doi.org/10.1101/013805
http://creativecommons.org/licenses/by-nc/4.0/

Introduction

Searching for protein homologous has become a daily routine for the many biologists. Popular

BLAST tools (PSI/DELTA/BLASTP) [1–3] produce search results for a single query in less than

a second and many bioinformatical tools have come to depend upon the BLAST tool family to

find matches in the database of sequences. However, protein sequence databases grow at an

unprecedented pace and very often we would like to find homologous of not one, but hundreds,

thousands or even more queries. With existing tools, the extensive time cost for such a search

can hinder the research. BLAST family of tools, not being naturally parallelisable, is unable to

utilize the development of new hardware focused on a low level parallelism (inter-core and

many-core architectures).

While the exact dynamic programming algorithms such as Smith-Waterman [4] provide optimal

and thus more sensitive results, they are generally slower than BLAST algorithms. The main

reason for the BLAST acceleration is the heuristic culling of candidate sequences in the first step

of database search. In the second step, BLAST family tools still use exact algorithms for

computing the alignment between the query and the sequences from the reduced database. This

step is usually the slower one. However, due to database reduction the total running time is much

faster.

In this work we present our implementation of the database search sequence similarity method

based on standard dynamic programming algorithms for sequence alignment tailored to utilize

both CUDA GPUs and CPU SIMD instructions. SW#DB is an extension of our previous work

on GPU-enabled exact pairwise alignments for long sequences (1). It supports multiple GPU

cards. This implementation is additionally optimised for multiple queries rendering it

significantly faster than both the state-of-the-art CUDASW++ [5–7] GPU enabled database

search tool and SIMD-optimized (Single Instruction Multiple Data) tools such as SSEARCH [8]

and SSW [9]. Also, depending on the databases and queries this tool can perform either slightly

slower or faster than BLASTP.

Although the running times of SW#DB for searching the whole database are comparable with the

ones of the BLAST family tools, our main intention is to provide an open source library for the

alignment step of the database search tools. To provide the tools with maximum freedom and

flexibility, we provide the functionality of using a custom subset of seed sequences from which

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 14, 2015. ; https://doi.org/10.1101/013805doi: bioRxiv preprint

https://doi.org/10.1101/013805
http://creativecommons.org/licenses/by-nc/4.0/

to generate alignments, enabling researchers to experiment and tailor the results to their need.

SW#DB is optimised for the simultaneous computing of alignments and due to this architecture,

much faster than the implementations used in BLAST tools. The library could be used not only

for protein database search based on the local protein alignment, but it could be also be used for

the global or semi-global alignment of both protein and nucleotide queries on databases.

Design and Implementation

In database alignment one or more sequences, also called queries, are aligned to the database of

sequences. Deterministic database alignment using Smith-Waterman algorithm can be divided

into three phases, scoring, filtering and reconstruction. In the scoring phase only the alignment

score of every query-database sequence pair is obtained. In the filtering phase obtained scores

are sorted by their e-value, calculated in the way found in BLAST [1], and filtered by the e-value

threshold and the maximum number of desired alignments. In the reconstruction phase pairs of

query-database sequences that passed the filtering are fully aligned.

Smith-Waterman algorithm has quadratic time complexity for both the scoring and the

reconstruction phase, linear memory complexity for the scoring phase and quadratic memory

complexity for the reconstruction phase. Because of the linear memory complexity scoring phase

is much more suitable for CUDA implementation. In addition to CUDA enabled optimization,

SW# uses single instruction multiple data (SIMD) architecture on both CPU and GPU processors

and utilizes multi core CPU architectures. SW# database module is also divided into three

submodules, scoring, filtering and reconstruction. Scoring and reconstruction submodules are

time consuming and will be further explained.

SW# database module scoring submodule depends on five methods for scoring pairs of

sequences, three utilizing CUDA architecture and two utilizing only the CPU architecture.

Methods utilizing CUDA architecture are: single thread, single sequence method, single thread,

multiple sequences method and multiple threads, single sequence method. Methods that run on

CPU are: single thread, single sequence method and single thread multiple sequence method.

Each of the CUDA enabled methods is divided into two phases, database preparation and scoring

phase. In the database preparation phase, database is converted to a specific format that enables

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 14, 2015. ; https://doi.org/10.1101/013805doi: bioRxiv preprint

https://doi.org/10.1101/013805
http://creativecommons.org/licenses/by-nc/4.0/

the CUDA methods to maximally utilize the parallelization architecture, and copied to the

graphics card. In the scoring phase, methods use the prebuilt database to score against the query.

All of the CUDA methods also utilize query profile optimization [10] to lower the number of

slow memory reads from the global memory. Number of CUDA threads will be denoted as T,

and number of blocks as B.

CUDA single thread methods align the database in sequence blocks where each block contains

B * T sequences sorted by length. Each sequence in the block is stored vertically in the memory.

All sequences shorter than the maximum sequence length in the block are padded with the

neutral element to avoid branching in the parallelized method. Memory consumption of this

format of the database is at most two times the size of the input database. This method performs

best on shorter database sequences that don’t deviate as much in their length. In single thread

single sequence method, at a time B * T sequences are scored. To lower the number of slow

memory operations, four sequence characters are read at a time. For every char four scores from

the query profile are loaded at a time. To further reduce the number of reads, for each sequence

character the query profile scores are read twice. With these optimizations, method solves 32

cells with only 9 memory read operations. Single thread, multiple sequence method works in the

same way, except it utilizes CUDA SIMD operations to score four sequences at a time.

Disadvantage of the SIMD method is that it supports scores up to 127, because the computation

it done with chars. Another disadvantage of this method is that CUDA cards bellow architecture

3.5 do not support CUDA SIMD. However, we found this method very useful because, in

general, most of the scores are fewer than 127.

Opposed to single thread CUDA method, multiple threads single sequence method performs best

on long database sequences. It stores the database in its original format. Additional memory is

used for the communication between threads which sums it up to nine times the memory needed

for the input database. This method scores B sequences at a time with T threads working on each

sequence. Threads are computing the score by solving the scoring matrix antidiagonal in parallel,

using the wavefront method. Threads communicate through a horizontal bus. To lower the

number of memory operations each thread solves four rows of the scoring matrix. Threads need

to be synchronized after each thread solves one cell in each of four rows.

CPU single thread, multiple sequence method utilizes SWIMD library. SWIMD library is a CPU

only Smith-Waterman database scoring library that utilizes SIMD and AVX architectures to

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 14, 2015. ; https://doi.org/10.1101/013805doi: bioRxiv preprint

https://doi.org/10.1101/013805
http://creativecommons.org/licenses/by-nc/4.0/

solve up to sixteen sequences at a time. Library offers a method that calculates the scores up to

127 and is much faster that the unbounded ones. Disadvantage of this method is that it requires a

minimum of SIMD 4.0 architecture which is not available on older CPUs.

All of the currently mentioned methods are used for scoring. SW# library contains CPU

implementations of scoring and reconstructions with no architecture dependencies. These

methods utilize Ukkonen's banded algorithm [11] to lower the time complexity. SW# library also

contains CUDA accelerated reconstruction methods described in [12]. In addition for SIMD

enabled CPU architectures reconstruction utilizes the SWIMD library.

SW# database aligning method begins with CUDA database initialization. Database initialization

is time consuming process because copying large amount of data on the graphics card takes time.

For that reason, initialization is done once and the prepared database can be used for unlimited

number of queries. If the required space to store the database is smaller than available CUDA

memory, database is split into smaller parts and is solved part by part. Scoring process begins by

dividing sequences on short and long according to predefined threshold N. In parallel two

methods are called, one for long sequences and one for short sequences. Long sequences are

solved using SWIMD or standard SW# CPU implementation, depending which is available.

Short sequences are solved in parallel, longer short sequences are solved the same way as long

sequences, and shorter are solved with single thread, single or multiple sequences method,

depending which is available. CUDA method begins with shorter sequences and CPU method

begins with longer sequences and when the two methods overlap, the method is over. Using two

parallel methods eliminates importance of the N parameter. When scoring of short sequences is

finished, CPU method solving long sequences is stopped. Rest of the long sequences are solved

with multiple threads, single sequence CUDA method. If CUDA SIMD is available the whole

process is first done using SIMD methods which calculate scores up to 127. After the whole

process is done, all sequences with score equal to 127 are scored again without using SIMD.

SW# database aligning software is available as library through a C API, as well as a standalone

executable. Additionally standalone executable, which utilizes MPI for database alignment on

multiple CUDA powered nodes, is provided in the package. Except with the mentioned Smith-

Waterman algorithm, SW# provides alignment using Needleman-Wunsch [13] and semi-global

alignment algorithms. SW# library is intended for external usage in database aligning heuristics,

as it provides simple, flexible and powerful API. Main advantage of the library is in preparing

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 14, 2015. ; https://doi.org/10.1101/013805doi: bioRxiv preprint

https://doi.org/10.1101/013805
http://creativecommons.org/licenses/by-nc/4.0/

the GPU database in advance for multiple scoring. In case of multi query database alignment,

this lowers execution time significantly. Library also provides methods for database alignment

with indexes, method of only aligning the selected sequences from the database. These methods

can be very useful when used with heuristic database alignment solutions, since almost all of the

heuristic solutions rely on Smith-Waterman algorithm at some point.

Results

To systematically compare the performance of SW#DB with BLASTP, SSW, CUDASW++

(versions 2.0 and 3.1) and SSEARCH we used a list of proteins of various lengths (Table 1) and

ASTRAL dataset [14] as queries and swissprot and Uniref90 as databases. Tests were performed

on two configurations: single-GPU (Intel® Core™ i7-4770K CPU, 32 GB RAM, NVIDIA

GeForce GTX 780, 256 GB SSD) and multi-GPU (Intel(R) Core(TM) i7-3770 CPU, 16 GB

RAM, 2 * NVIDIA GeForce GTX 690, 256 GB SSD). Since NVIDIA GeForce GTX 690 has

two GPUs, the multi-GPU configuration has 4 GPUs.

Table 1 The list of Uniprot IDs and lengths of proteins used in performance testing.

Uniprot ID Length (residues)

O74807 110

P19930 195

B8E1A7 299

Q3ZAI3 390

P18080 513

O84416 607

A9BIH4 727

Q2LR26 804

B4KLY7 980

Q5R7Y0 1465

Q700K0 5124

P0C6V8 6733

P0C6W9 7094

O01761 8081

Q6GGX3 10746

Q9I7U4 18141

Q8WXI7 22152

Q3ASY8 36805

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 14, 2015. ; https://doi.org/10.1101/013805doi: bioRxiv preprint

https://doi.org/10.1101/013805
http://creativecommons.org/licenses/by-nc/4.0/

Although SW#DB is primarily tailored for multiple queries, we tested performances for single

queries as well. The results in Fig 1 and Fig 2 show that while for shorter queries, up to 600

residues long, CPU based tools BLASTP and SSEARCH are faster, for longer queries GPU

based tools are comparable to BLASTP and up to 4 times faster than SSEARCH. The slower

running times for shorter queries are expected due to the latency in transferring database to GPU.

In addition for shorter queries the parallelization is not as efficient as for longer ones. These

figures do not include results achieved by SSW, because it was much slower than other tools. It

was 3 to 15 times slower than the second slowest tool, SSEARCH.

The real power of parallelization could be noticed for multiple queries. We used all programs to

align ASTRAL database against UniprotKB/Swiss-prot and Uniref90 databases. The results are

presented in Table 2. It shows that running times for BLASTP and SW#DB are comparable. For

the smaller database (Swiss-prot) they are almost equal, while for the longer one (Uniref90)

BLASTp is 1.7 times faster. In comparison with other parallelized exact algorithms SW#DB is 4

times faster than SSEARCH, 6-10 times faster than CUDASW++ and more than 20 times faster

than SSW.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 14, 2015. ; https://doi.org/10.1101/013805doi: bioRxiv preprint

https://doi.org/10.1101/013805
http://creativecommons.org/licenses/by-nc/4.0/

Fig. 1 Comparison of SW#DB against BLASTP, CUDASW++ v. 2.0, CUDASW++ v. 3.1

and SSEARCH for queries of different length for Swiss-prot database. The insets show

detailed results for shorter queries. Upper graph shows results for single-GPU machine (Nvidia

GeForce GTX 780). Lower graph shows results for multiple-GPU machine (2 × GeForce GTX

690). We could not start CUDASW++ v.3.1 on single-GPU machine.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 14, 2015. ; https://doi.org/10.1101/013805doi: bioRxiv preprint

https://doi.org/10.1101/013805
http://creativecommons.org/licenses/by-nc/4.0/

Fig. 2 Comparison of SW#DB against BLASTP and SSEARCH for queries of different

length for UniRef90 database. The insets show detailed results for shorter queries. Upper graph

shows results for single-GPU machine (Nvidia GeForce GTX 780). Lower graph shows results

for multiple-GPU machine (2 × GeForce GTX 690).

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 14, 2015. ; https://doi.org/10.1101/013805doi: bioRxiv preprint

https://doi.org/10.1101/013805
http://creativecommons.org/licenses/by-nc/4.0/

Table 2 Comparison of running times for SW#DB, BLASTP, CUDASW++ v2.0,

CUDASW++ v3.1, SSW and SSEARCH using ASTRAL database as a query file. We could

not run CUDASW++ 3.1 on the single-GPU machine (segmentation fault). Both versions of

CUDASW++ could not run on Uniref90. We did not measure running time of SSW for

Uniprot90 because it would last too long.

Database Configuration Running time (s)

SW#DB BLASTP SSEARCH CudaSW++

v2.0

CudaSW++

v3.1

SSW

Swiss-prot Single-GPU¹ 3523 3494 15123 23795 - 87118

Uniref90 Single-GPU¹ 123581 73117 490543 - - -

Swiss-prot Multi-GPU² 2709 3018 14088 32811 30545 85245

¹ Nvidia GeForce GTX 780 card

² 2×Nvidia GeForce GTX 690 cards

Availability and Future Directions

The source code can be obtained from http://sourceforge.net/projects/swsharp/ and the tool is

documented and rigorously tested. There are Windows and Linux releases. The further

development of SW#DB will be focused on the better utilization of parallelization capabilities of

both GPU and CPU and on the better load balancing between GPU and CPU.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 14, 2015. ; https://doi.org/10.1101/013805doi: bioRxiv preprint

http://sourceforge.net/projects/swsharp/
https://doi.org/10.1101/013805
http://creativecommons.org/licenses/by-nc/4.0/

Conclusion

In this paper we present the SW#DB, a parallelised version of exact database search algorithms

optimised for multiple queries. Although the emphasis is on the Smith-Waterman algorithm,

other exact algorithms such as global and semi-global alignment are provided as well. SW#DB is

parallelized on both GPU and CPU and it can run on multiple GPUs or in a cluster. The running

times for large databases are comparable to times achieved by BLASTP and at least four times

faster than state-of-the-art parallelized tools used for the same purposes such as SSEARCH,

CUDASW++ and SSW. Although it could be used for the protein database search instead of

BLASTP when the high sensitivity is required, our main intention was to build a library that

could provide fast and exact alignment between queries and a reduced database for various

bioinformatics tools.

Acknowledgments

We would like to thank Ana Bulović for proofreading the manuscript.

Funding

This work has been supported in part by Croatian Science Foundation under the project 7353

Algorithms for Genome Sequence Analysis.

References

1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment

search tool. J Mol Biol 215: 403–410. Available:

http://www.ncbi.nlm.nih.gov/pubmed/2231712.

2. Altschul SF, Madden TL, Schäffer a a, Zhang J, Zhang Z, et al. (1997) Gapped BLAST

and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids

Res 25: 3389–3402. Available:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=146917&tool=pmcentrez&ren

dertype=abstract.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 14, 2015. ; https://doi.org/10.1101/013805doi: bioRxiv preprint

https://doi.org/10.1101/013805
http://creativecommons.org/licenses/by-nc/4.0/

3. Boratyn GM, Schäffer A a, Agarwala R, Altschul SF, Lipman DJ, et al. (2012) Domain

enhanced lookup time accelerated BLAST. Biol Direct 7: 12. Available:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3438057&tool=pmcentrez&re

ndertype=abstract. Accessed 21 October 2013.

4. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol

Biol 147: 195–197. Available: http://www.ncbi.nlm.nih.gov/pubmed/7265238.

5. Liu Y, Maskell DL, Schmidt B (2009) CUDASW++: optimizing Smith-Waterman

sequence database searches for CUDA-enabled graphics processing units. BMC Res

Notes 2: 73. Available:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2694204&tool=pmcentrez&re

ndertype=abstract. Accessed 4 July 2011.

6. Liu Y, Schmidt B, Maskell DL (2010) CUDASW++2.0: enhanced Smith-Waterman

protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD

abstractions. BMC Res Notes 3: 93. Available:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2907862&tool=pmcentrez&re

ndertype=abstract. Accessed 23 September 2011.

7. Liu Y, Wirawan A, Schmidt B (2013) CUDASW++ 3.0: accelerating Smith-Waterman

protein database search by coupling CPU and GPU SIMD instructions. BMC

Bioinformatics 14: 117. Available:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3637623&tool=pmcentrez&re

ndertype=abstract. Accessed 25 October 2013.

8. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc

Natl Acad Sci U S A 85: 2444–2448. Available:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=280013&tool=pmcentrez&ren

dertype=abstract.

9. Zhao M, Lee W, Marth G (2012) SSW Library: An SIMD Smith-Waterman C/C++

Library for Use in Genomic Applications. arXiv Prepr arXiv12086350 00: 1–3. Available:

http://arxiv.org/abs/1208.6350. Accessed 12 June 2013.

10. Rognes T, Seeberg E (2000) Six-fold speed-up of Smith-Waterman sequence database

searches using parallel processing on common microprocessors. Bioinformatics 16: 699–

706. Available: http://www.ncbi.nlm.nih.gov/pubmed/11099256.

11. Ukkonen E (1985) Algorithms for approximate string matching. Inf Control 64: 100–118.

Available: http://www.sciencedirect.com/science/article/pii/S0019995885800462.

Accessed 22 May 2013.

12. Korpar M, Sikic M (2013) SW#-GPU-enabled exact alignments on genome scale.

Bioinformatics 29: 2494–2495. Available:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3777108&tool=pmcentrez&re

ndertype=abstract. Accessed 24 October 2013.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 14, 2015. ; https://doi.org/10.1101/013805doi: bioRxiv preprint

https://doi.org/10.1101/013805
http://creativecommons.org/licenses/by-nc/4.0/

13. Needleman SB, Wunsch CD (1970) A general method applicable to the search for

similarities in the amino acid sequence of two proteins. J Mol Biol 48: 443–453.

Available: http://www.ncbi.nlm.nih.gov/pubmed/5420325.

14. Chandonia J-M, Hon G, Walker NS, Lo Conte L, Koehl P, et al. (2004) The ASTRAL

Compendium in 2004. Nucleic Acids Res 32: D189–D192. Available:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=308768&tool=pmcentrez&ren

dertype=abstract. Accessed 18 February 2013.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 14, 2015. ; https://doi.org/10.1101/013805doi: bioRxiv preprint

https://doi.org/10.1101/013805
http://creativecommons.org/licenses/by-nc/4.0/

