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Abstract

Intracellular protein copy numbers show significant cell-to-cell variability within an isogenic population due to the random
nature of biological reactions. Here we show how the variability in copy number can be controlled by perturbing gene expression.
Depending on the genetic network and host, different perturbations can be applied to control variability. To understand more fully
how noise propagates and behaves in biochemical networks we developed stochastic control analysis (SCA) which is a sensitivity-
based analysis framework for the study of noise control. Here we apply SCA to synthetic gene expression systems encoded on
plasmids that are transformed into Escherichia coli. We show that (1) dual control of transcription and translation efficiencies
provides the most efficient way of noise-vs.-mean control. (2) The expressed proteins follow the gamma distribution function as
found in chromosomal proteins. (3) One of the major sources of noise, leading to the cell-to-cell variability in protein copy numbers,
is related to bursty translation. (4) By taking into account stochastic fluctuations in autofluorescence, the correct scaling relationship
between the noise and mean levels of the protein copy numbers was recovered for the case of weak fluorescence signals.
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Controlling E. coli gene expression noise

I. INTRODUCTION

CELL-TO-CELL variability in protein copy numbers
within isogenic populations are typically observed in

various types of cells due to underlying random biochemical
reaction processes [1], [2], [3]. The variability can lead to
noise-induced cellular phenotypes such as cellular differentia-
tion [3], multiple stability [4], and either sensitivity enhance-
ment or suppression [5], [6]. Here we investigate the ability
to differentially control the noise and mean levels of gene
expression in E. coli.

Such differential control in gene expression has been
achieved in different organisms such as yeast [7], [8], [9],
soil bacteria [10], and mammalian cell lines [11]. In E.
coli, systematic noise control have not been performed by
perturbing promoter DNA sequences and ribosome binding
sites, while most studies have been focused on genome-wide
expression without such perturbations [16], [21], [2]. Here we
aim to understand differential control of mean and noise levels
of protein concentrations at the single cell levels of E. coli.

The approach we use is based on stochastic control analysis
(SCA)[13], [12], a body of theory we developed and reported
in previous publications. SCA is a sensitivity analysis frame-
work, that is a direct extension of metabolic control analysis
[14], [15] to the stochastic regime [13]. This approach is based
on a local sensitivity analysis that can be applied to study
first-order effects of finite-size perturbations. SCA can identify
which parameters in stochastic systems – here, gene regulatory
circuits – need to be varied by how much to achieve a desired
control aim. This includes orthogonal control of noise levels
with respect to mean levels, and simultaneous changes in noise
and mean levels in the same or opposite directions for the
same or different protein species. SCA can provide control
efficiency and strength to identify the most effective control
schemes that are experimentally relevant [12]. Here, we apply
SCA experimentally to E. coli genetic systems.

In this paper, gene circuits are encoded on plasmid back-
bones, which are transformed into E. coli MG1655. The
circuits express green fluorescent proteins (GFP) under the lac-
promoter. We perturbed the expression system by inducing the
promoter with isopropyl β-D-1-thiogalactopyranoside (IPTG)
and using a library of ribosome binding sites (RBS). We found
that by taking into account stochastic fluctuations in autoflu-
orescence, scaling relationship between GFP signal noise and
mean levels can be extended to weak signal regions, where
autofluorescence becomes moderately strong. This implies that
when fluorescent signals are not strong enough compared to
autofluorescence, stochasticity in autofluorescence can be sys-
tematically taken into account to characterize cellular systems.
In addition, we aimed to understand what the major sources of
GFP signal noise are by investigating the scaling relationship
between the GFP signal noise and mean levels via promoter

induction and RBS perturbation. We found that one of the
major noise sources is bursty translation.

II. STOCHASTIC CONTROL ANALYSIS: REVIEW

SCA [12], [13] is a local sensitivity analysis based on control
coefficients, which are defined approximately as percentage
change in a response signal (y) divided by the percentage
change in a system parameter (p):

Cyp =
p

y

dy

dp
=
d log y

d log p
.

We note that the slope in the log-log plot of y vs. p corresponds
to Cyp . The response signal can be the mean or noise levels of
mRNAs or proteins. The parameters can include transcription
and translation efficiencies, degradation rates of mRNAs and
proteins, dilution rate due to cell growth, and reaction rates
of transcription-factor binding and unbinding from promoter
regions, etc. Another important quantity in SCA, is the con-
trol vector, each element of which corresponds to a control
coefficient for a given response signal (y):

Cy
p = (Cyp1 , C

y
p2 , · · · , C

y
pN ),

where N defines the number of parameters (dimension of the
parameter space) that will be varied to control the value of
y. In this paper, we are mostly interested in dual control of
transcription and translation efficiencies, i.e., N = 2. One of
the important properties of the control vector is that its inner-
product with a parameter perturbation vector δp becomes the
amount of change in the response signal δy,

Cy
p ·

δp

p
=
δy

y
.

We can quantify which parameter value, and by how much
it should be controlled to achieve specific control aims. For
example, consider a case where the noise level of a protein
needs to be reduced by 9%, while its mean level should remain
the same. Here, the noise level (n) is defined by the variance
divided by the squared mean value, i.e., squared coefficient
of variation. Two control vectors for the noise and mean
levels, Cn

p and Cm
p , need to be computed based on a given

mathematical model. System parameters need to be perturbed
while satisfying

δn

n
= Cn

p ·
δp

p
= −0.09 and

δm

m
= Cm

p ·
δp

p
= 0.

The perturbation vector δp/p satisfying these two equations
can be solved, but the solutions can be infinite. In that case, it
is important to select the optimal control scheme (perturbation
vector) among the possible solutions. For this, the control
efficiency and strength were introduced [12]. Based on these
two quantities, one can choose desired control schemes that are
appropriate to systems of interest with the maximum control
strength and/or efficiency.
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𝒌𝒐𝒏 𝒌𝒐𝒇𝒇 𝜶𝒎 𝜸𝒎 𝜶𝒑 𝜸𝒑

Noise -1.00 1.00 -1.00 0.05 -0.02 0.97

Mean 1.00 -1.00 1.00 -1.00 1.00 -1.00

A. B.

C.

Fig. 1. GFP expression system: (A) GFP is expressed under the lac-promoter
(BioBrick part BBa R0010) with a ribosome binding site (BBa B0034).
This expression cassette was placed in a low-medium copy number plasmid
backbone (pGA3K3; origin of replication p15A). The ’T’ symbol represents a
terminator (double terminator used here to ensure transcription termination).
(B) Two-promoter-state model. When the promoter is active, mRNA is
transcribed with a rate constant αm. From the transcript, GFP is translated
with a rate constant αp. mRNA and GFP degrade or are diluted with net rate
constants γm and γp, respectively. (C) Control coefficients for noise and mean
levels are listed. All control coefficients in the same row add up to zero (up
to rounding error), satisfying summation theorems in SCA [13]. Parameters
(unit: hr−1): kon = 50, koff = 51000, αm = 160, γm = 30, αp = 1400,
and γp = 1 (refer to the Material and Methods for the detailed description of
the mathematical model and its parameters).

III. SCA FOR A SINGLE GENE EXPRESSION CASSETTE

We constructed plasmid expression systems that express
green fluorescent protein (GFP) under lac-promoters in E. coli
(Fig. 1A). The plasmid copy number in a single cell fluctuates
in time because a set of plasmids are randomly partitioned
during cell division and are synthesized in a stochastic fashion.
Thus, the copy number of lac-promoters per cell fluctuates. For
simplicity, we will assume that the plasmid copy number is
tightly controlled, i.e., constant at the first level of approxima-
tion. The total number of plac will be the sum of the number
of inactive and active lac-promoters (Fig. 1B), which will be
set to a constant, Np. We call this the two-state model. The
plasmid backbone that we used is pGA3K3 with the replication
origin, p15A (Np = 10− 30). Based on this two-state model,
we computed control vectors for the mean and noise levels of
GFP fluorescence as shown in Fig. 1C (refer to the Materials
and Methods and [12] for the control vector computation).

The computed control coefficients show that noise can be
controlled efficiently by varying kon, koff , αm or γp; Cnkon =
Cnαm = −1.00, Cnkoff = 1.00 and Cnγp = 0.97, indicating that,
for example, with an increase in αm by 10%, n will reduce
by 10% (this is a first-order approximation, because control
coefficients are defined locally). Similarly, with an increase in
γp by 10%, n will increase by 9.7%. For the mean level (m),
any model parameter will efficiently change m, because the
absolute values of all the control coefficients for m are equal
to one.

IV. MEAN LEVEL CONTROL

From the computed control coefficients, the mean protein
levels can be controlled without changing the noise level (with
a minor change, ∼10 folds less than the change in the mean
levels) by varying either αp or γm. To confirm this theoretical
prediction, we changed the translation efficiency αp by using
a library of both ribosome binding sites (RBSs) and spacer
sequences as shown in Fig. 2. Among them, four different

spacers – TACTAG, AAAAAA=(A)6, (A)10, and (A)13 – that
are placed between B0034 and the start codon showed distinct
GFP expression levels when plac is fully active ([IPTG] =
1 mM). Here, the introduced spacer sequences are presumed
to change ribosome binding affinity, in particular, translation
initiation – the limiting step for a translation rate [23], [24].
We note that strong RBSs can recruit many ribosomes to
mRNAs, causing an implication depending on the availability
of ribosomes. This can apply an upper limit in the value of
αp.

Based on our flow cytometry data, the mean level was suc-
cessfully varied by using different spacer sequences as shown
in Fig. 3 and Fig. 4A. We compared three different cases:
Points A, B, and C in Fig. 3, corresponding to [IPTG]=1 mM.
As shown in Fig. 4A, the rescaled probability density functions
(pdfs) were overlapped with a minor discrepancy. This scale
invariance confirms that the noise levels of all the points are
the same.

Scale invariance in the gamma distribution: Furthermore,
the observed invariance implies a special property that we need
to consider carefully. This invariance property is satisfied by
the gamma distribution function as shown in the Materials and
Method section when the burst size is rescaled together. This
implies that the difference between the system parameters of
Points A, B, and C is only the burst size. For these Points,
different spacer sequences were used between B0034 and the
start codon, while the lac-promoter was fully induced (satu-
rated). Thus, the translation rate constant αp is expected to be
varied for these three Points and the burst size must be closely
related to αp, which is consistent with theoretical prediction
based on our model (Eq. (3)). This result supports that the
observed distribution functions are the gamma distributions
(confer to [25], [26] about claims for other types of distribution
functions). To confirm this, we fit the GFP pdfs to the gamma
distribution functions as shown in Fig. 5. We confirmed that
the pdfs follow the gamma distributions well.

V. NOISE LEVEL CONTROL

As discussed above, the noise level can be efficiently con-
trolled by varying kon, koff , αm and γp. However, when these
parameters are changed, the mean level also changes with the
same fold difference but in the opposite direction; for example,
in Fig. 1C, Cnαm and Cmαm are −1.00 and 1.00, meaning that
when αm is increased by x%, the noise level decreases by
x%, while the mean level increases by x%. Thus, to change
the noise level without changing the mean level, we must vary
at least two different parameters simultaneously.

Since the mean level can be controlled almost independently
of the noise level by changing αp, we will vary αp along with
one of the parameters in {kon, koff , αm} to compensate for
the change. The reason that we did not choose to vary γp
is that this parameter is highly dependent on cell growth rate,
rather than protein degradation in E. coli; GFP lifetime is much
longer than the cell doubling time ∼ 1 hr in M9 media.

Based on the SCA, an individual change in kon, koff ,
and αm and any combination of the individual changes can
vary the noise and mean levels while satisfying the same
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IPTG
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Transcription 
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Fig. 2. Perturbations in the GFP expression systems: The GFP expression
cassette is placed in the plasmid backbone pGA3K3 in E.coli MG1655Z1 that
constitutively expresses LacI. IPTG concentrations were varied for a given
complex of ribosome binding site and spacer. ∼ 10 fold increase in the GFP
noise level can be achieved without changing its mean level.
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Fig. 3. Scaling relationship between noise and mean levels: Four different
cases of spacer sequences between the ribosome binding site BBa B0034
and the start codon are shown. The same symbol represents the same spacer
with different [IPTG]. The noise levels (squared coefficient of variation)
are inversely proportional to the mean level. For comparison, a line with
a slope −1 is drawn. The contribution to the noise level by background
fluorescence signals was removed via the noise level correction method
(Materials and Methods). For the IPTG concentration information, we refer
to the Supplementary Notes Fig. 2.

scaling law: n = c/m with c a constant (not varied). We
note that the ratio of control coefficients for n and m for a
given parameter, e.g., kon, has a graphical meaning: In Fig. 3,
when [IPTG] is varied, the corresponding data point shifts
(e.g., Point C → D) and the slope of the shift in the log-
log plot corresponds to the ratio of the control coefficients:
Cnkon
Cmkon

= d logn
d logm

∣∣∣
kon

. For kon, koff , and αm, the ratios are

A. B.Point A
Point B
Point C

IPTG = 1 mM
Point D
Point E

(A)10  IPTG = 0.13 mM

TACTAG, IPTG = 0.1 mM 

Fig. 4. Probability density functions (pdfs) of GFP fluorescence signals
measured from a flow cytometer: (A) Orthogonal mean level control: Points A,
B, and C in Fig. 3 correspond to [IPTG]=1 mM. In the inset plot, both the pdfs
were re-scaled by the mean values of their respective GFP fluorescence signals,
so that the transformed pdfs are centered around one. (B) Orthogonal noise
level control: Points D and E. Both the [IPTG] and the spacer sequences were
varied. [IPTG]=.13 mM for Point D and .1 mM for Point E. Autofluorescence
was removed via the fluorescence histogram correction method (Materials and
Methods).

Fig. 5. True GFP signal distribution function for the (A)10 cases with different
IPTG concentrations: The fluorescence histogram correction was applied to
remove autofluorescence effects. The true GFP signal distribution satisfies the
Gamma distribution functions.

the same:
Cnkon
Cmkon

=
Cnkoff
Cmkoff

=
Cnαm
Cmαm

= −1. This implies that

the directions of data point shifts in the log-log plot of n vs.
m are identical for each individual perturbation of kon, koff ,
and αm, and thus for any combination of these three individual
perturbations. Therefore, the shift of data points with the slope
of −1, observed when varying IPTG concentrations as shown
in Fig. 3, cannot determine which parameters among kon, koff ,
and αm were affected by IPTG concentration changes. We note
that in [21] promoter perturbations in E. coli was claimed to
affect koff only.

As shown in Fig. 3, by using a library of RBS as well as
different concentrations of IPTG, the noise level was controlled
and ∼ 10 fold change in the noise level was achieved without
changing the mean level. What is the biological reason that
noise can be increased in this way? In other words, what
causes to increase the value of the Fano factor? In the scaling
relationship, n = c/m, c is the Fano factor, which is expressed
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for the case of E. coli (Materials and Methods):

c ' 1 + b(1 + bm),

where
b =

αp
γm

and

bm =
αm

kon + koff

koff
kon + koff

.

b is the translational burst size, quatifying the number of
proteins that are synthesized from a single mRNA during
the mRNA lifetime (1/γm). bm is the transcriptional burst
size, quantifying the number of mRNA that are synthesized
per plasmid during the time-scale (1/(kon + koff )) of gene
switching (refer to the Materials and Methods). The Fano
factor depends on both transcriptional and translational bursts.
In our case of lacIq expression of LacI, we can neglect the
transcriptional burst (Materials and Methods). Thus, the Fano
factor becomes c = 1 + b, and n can be expressed as

n ' 1 + b

m
. (1)

The Fano factor can be increased by applying stronger transla-
tion efficiencies (from Point C to A) and remains the same by
decreasing [IPTG] (from Point A to E), leading to the increase
in the noise level without changing the mean level.

The translational bursts lead to longer-tail pdfs, more pre-
cisely, higher cutoff values in the pdfs (in the gamma distribu-
tion, there is an exponential factor e−x/b and b acts as a cutoff
value): Figure 4B shows that a longer tail in the GFP pdf can
be generated by using stronger translation efficiency (Point D
→ Point E).

Another interpretation for the observed longer tail in Fig. 4B
is that the major source of fluctuations in the protein copy num-
bers is in mRNA copy numbers, which merely get amplified
by the translation rate in a non-bursty way:

Npr(t) ∼ (αp/γp)Nrna(t).

The variance in protein expression levels becomes

Variance(Npr) ∼ (αp/γp)
2Variance(Nrna),

resulting in that the noise level does not depend on αp:

n =
Variance(Npr)

Mean(Npr)2
∼ Variance(Nrna)

Mean(Nrna)2
.

Since the protein mean level m must be proportional to the
translation rate constant αp (i.e., m = βαp with β a constant),
we obtain again similar scaling relationship:

n is independent of αp.⇔ n ∝ αp
βαp

=
αp
m
.

The Fano factor again increases with αp. Therefore, based
on the scaling relationship alone, it is difficult to differentiate
whether the translation is bursty or not.
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(A)10
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Fig. 6. GFP mean and noise levels for the cases that lac-promoters are fully
induced ([IPTG] = 0.20, 0.32, 1.0 mM). Two biological replicates were used
for (A)6 and (A)10.

VI. TRANSLATION IS BURSTY.
We claim that translation processes are bursty. The data

points in bold in Fig. 6 correspond to different RBS strength
but the same level of [IPTG] equal to 1 mM, where the lac-
promoter becomes constitutively active. The noise values for
TACTAG, (A)6, and (A)10 were similar, but the noise level
for (A)13 was higher than the rest. This difference cannot
be explained in the non-bursty translation scenario, because n
should be independent of αp, i.e., RBS strength. In the bursty
translation scenario, the noise level can be dependent on the
value of αp, especially when the value of αp is similar to that
of γm. Since m is proportional to αp (m = βαp), Eq. (1)
becomes

n =
1 + αp/γm

βαp
=

1

βαp
+

1

βγm
(2)

For a strong RBS such as the TACTAG case, αp can be
roughly around 1400 hr−1 (Materials and Methods). In this
case, αp/γm ∼ 1400/30 ' 47, i.e. much larger than 1. Thus,
Eq. (2) becomes n ' αp/γm

βαp
= 1

γmβ
, resuling in that n is

independent of αp, which is what we observed from Point
A to C. For the case of (A)13 (Point F), the RBS strength
is reduced by ∼ 60 times (by comparing the mean levels of
Point A and F) and αp/γm ' 47/60 ' 0.8. Thus, n becomes
dependent on αp (Eq. (2)). As αp decreases, n increases. This
is consistent with our observation.

VII. SCALING RELATIONSHIP BETWEEN THE NOISE AND
MEAN LEVELS

Figure 7 shows that the scaling relationship n = c/m
can be observed after autofluorescence was systematically
removed, even for the small mean value region, where the
autofluorescence interferes with the true GFP signals. We
took into account the stochasticity in autofluorescence and
assumed that the fluctuations in the autofluorescence signals
are statistically independent of the true GFP signals. Under this
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A. B.

Fig. 7. Effect of autofluorescence on scaling relationship between n and m:
Autofluorescence was removed in two different ways via (1) the noise level
correction method (red squares) and (2) the fluorescence histogram correction
method (blue triangles) (refer to the Materials and Methods). To show the
trend clearly, the data corresponding to the same biological replicate are only
shown.

assumption, we compensated for the autofluorescence effect
in two different ways: (1) direct noise level correction (red
squares in Fig. 7) and (2) fluorescence histogram correction
(blue triangles in Fig. 7; an example is presented in Fig. 8)
(Materials and Methods). This implies that it is important
to take into account the stochasticity of the autofluorescence
signals when characterizing the systems by using the pdfs of
fluorescence signals.

Fluorescence (AU)

alpha = 3

Fig. 8. Autofluorescence compensation: The green dots correspond to
autofluorescence (IPTG=0 case), the blue dots to the measured GFP signals,
and the red dots to the optimized solution S, i.e., the pdf of the true GFP
signals. The black line is to verify the optimized solution S can generate the
measured GFP pdfs via convolution (refer to the Materials and Methods).

VIII. CONCLUSIONS

In summary, we perturbed the strength of ribosome binding
sites and investigated scaling relationship between the mean
and noise levels of the expressed proteins. We confirmed that
translational bursts are one of the important sources of noise
at the protein level by using our numerical sensitivity analysis
method, SCA, and the analytical structure of noise propagation.
To investigate the scaling relationship further in detail, we
compensated the effect of autofluorescence by taking into
account stochasticity in the autofluorescence and recovered the

expected scaling relationship even when autofluorescence be-
comes moderately strong. This shows that the autofluorescence
can be systematically removed and its compensation can be
applied to characterize cellular systems.

MATERIALS AND METHODS

A. GFP expression circuits and strains

All genetic components used in this manuscript are BioBrick
parts, from which genetic circuits were constructed by using
the Gibson assembly method [30]. The constructed circuits
were integrated into a low-to-medium copy number plasmid
pGA3K3 with a Kanamycin resistance gene and Escherichia
coli MG1655 Z1 was transformed with the plasmids. The strain
(lacIq) constitutively overexpresses LacI from its chromosome.

B. Cell Growth and Flow Cytometry Measurements

E. coli strains were grown to OD600∼0.2 in 2 mL Luria-
Bertani (LB) media (Becton Dickinson) with kanamycin
50 µg/mL at 37◦C and 300rpm in a shaker. The cul-
tures were diluted 1:200 into 200 µL prewarmed fresh M9
media (Teknova 2M1990) in 96-well plates (Costar 3904)
with kanamycin 50 µg/mL. 12 different IPTG concentrations
(0 mM, 0.02∼1 mM) were used for each well (refer to the
Supplementary Notes for more detailed information on IPTG
concentrations) and grown to OD600=0.3-0.4 in a shaker
(37◦C, 300 rpm). For the flow cytometry measurements, the
grown cultures were diluted 1:4 in 1xPBS. A Sony Biotechnol-
ogy ec800 flow cytometer was used with a 525 nm filter and a
488 nm excitation laser for GFP fluorescence. 100,000 events
were collected for each sample and gated by using a 2-D nor-
mal distribution (Bioconductor flowCore norm2filter function
with scale.factor=1) [31] within the R software environment
as well as by using python package FlowCytometryTools
(http://gorelab.bitbucket.org/flowcytometrytools/#). To prevent
well-well contamination we executed a Medium Flush cycle
after each sample well. When computing the mean and noise
levels of GFP signals, background fluorescence was removed
by using the mean and noise levels of GFP signals, or the
signal histogram for the case without IPTG for each different
gene circuit.

C. Mathematical Model

A two-state model [27], [16], [28] is introduced to describe
active and inactive states of a promoter along with transcription
and translation processes:

Ni
konNi−−−−−⇀↽−−−−−
koffNa

Na

αmNa−−−−→ Nrna
γmNrna−−−−−→

αpNrna−−−−−→ Npr
γpNpr−−−−→ ,

where Ni denotes the number of inactive promoters, Na that
of active promoters, Nrna the RNA copy number, and Npr
the protein copy number. All the above reaction events are
generated stochastically. The noise level, n, of Npr can be
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analytically solved (refer to the Supplementary Notes of [27]
for all the detailed derivation):

n = CV2 =
c

m
,

with m denoting the mean value of Npr and the Fano factor
c is expressed as

c ' 1 + αpτm

(
1 + αm

koff
kon + koff

τp
1 + (kon + koff )τp

)
.

Here, we assumed that the protein lifetime τp, defined by 1/γp,
is much larger than the mRNA lifetime τm. We note that
control coefficients for n can be computed from this equation
analytically. We assume that the inactive and active promoter
states switch back and forth many times during the protein
lifetime (kon + koff � γp). We believe this is the case of
our experiments and refer to the parameter value estimation
described below. In this case, the above equation can be further
approximated:

c ' 1 + αpτm

(
1 +

αm
kon + koff

koff
kon + koff

)
. (3)

Here, 1/(kon + koff ) is the time scale of the promoter state
switching and koff/(kon + koff ) is a suppression weight
because the promoter state follows the binomial distribution
(due to the fact that the total promoter number is constant)
instead of the Poisson distribution. Thus, the second term in the
parenthesis can be considered as a transcriptional burst size bm.
In our case, αm/(kon + koff ) ∼ 160/(50 + 51000) ' 0.003.
Thus, c can be further simplified:

c ' 1 + αpτm,

implying that the change in the IPTG concentration has no
effect on the Fano factor, c, thus moving along the line of
slope −1 as shown in Fig. 3.

D. Model parameter estimation
Transcription rate constant, αm = 160 hr−1: The lac-

promoter strength, when fully induced with IPTG, was shown
∼1.5 time stronger than J23101 by directly measuring the
transcript levels with our malachite-green aptamer probes
(refer to Figure 6.3 of [22]). For J23101, αm was estimated
at 0.03 sec−1=110 hr−1 [32]. Thus, αm for our lac-promoter
can be estimated at 160 hr−1.

We used the translation rate constant, αp = 1400 hr−1
(Supplementary Notes in [33]), the dilution rate, γp = 1 hr−1,
and the degradation rate constant of mRNA, γm = 30 hr−1.

Gene inactivation, Na
koffNa−−−−−→ Ni: The number of the

inactive promoters is denoted by Ni and that of the active
promoters, Na. The sum of Ni and Na is equal to the
copy number of the plasmids, Np (considering that one lac-
promoter is included per plasmid). Here, we used Np ∼ 10
(http://parts.igem.org/Part:pSB3K3; pGA3K3 is a variant of
pSB3K3). koff is related to the search time for LacI to find
lac-promoter. When there exist one LacI molecule and one
lac-promoter within an E. coli cell, the search time is less

than 6 min = 0.1 hr [21]. In the case of Na unoccupied
lac-promoters and NlacI copies of LacI , the search time
becomes 0.1/NlacINa, which is equal to the inverse of the
inactivation rate (1/koffNa). Therefore, koff is estimated to
be 10NlacI hr−1. NlacI can be roughly estimated from the
fact that the strength of the lacIq is similar to the promoter
J23101 (αm of J23101 is 110 hr−1) [32]. Thus, the genomic
expression level of LacI, NlacI , becomes αp[mRNA]lacI /γp =
αpαm/γpγm = 1400 · 110/1 · 30 ' 5100. Thus, koff can be
roughly estimated as 5.1× 104 hr−1.

Gene activation, Ni
konNi−−−−→ Na: The activation rate con-

stant kon is related to how fast the genomically-expressed
LacI detached from its specific promoter plac (BBa R0010).
Considering that the dissociation constant is in the range of
0.1 − 1 pM = 10−4 − 10−3 (copy number unit; here we
used 1 nM corresponds to roughly 1 molecule number in the
volume of E. coli) [34], [35], kon can be in the range of
koff × (10−4 − 10−3) = 5.1− 51 hr−1.

E. Noise level correction
The mean level was corrected with a simple subtraction.

The noise level was corrected by using the property that the
observed variance (Varianceo) is the sum of the GFP variance
(Varianceg) and the background signal variance (Varianceb)
under the assumption that the GFP signals are statistically
independent of the background signals. More precisely, the
noise level of GFP signals, defined by the square coefficient
of variation, can be obtained by

CV2 =
Varianceo − Varianceb

(Meano −Meanb)2
.

where the subscripts o and b denote observed and background
signals, respectively.

F. Fluorescence histogram correction
The effect of autofluorescence was removed from the GFP

signal histogram, more precisely probability mass function
(pmf), by assuming that the autofluorescence is statistically
independent of the true GFP signals [36]. Under this assump-
tion, the pmf of the measured GFP signals, T (ν), is related to
both the autofluorescence pmf C(ν) and the true GFP signal
pmf S(ν) via convolution:

T (ν) =

∫ ν

0

C(ν − ν′)S(ν′)dν′.

S(ν) is obtained by minimizing the fitness function:

Mα(C, T, S) =

∫ a

0

[∫ ν

0

C(ν − ν′)S(ν′)dν′ − T (ν)

]2
dν

+α ‖ S(ν) ‖ .
Here, a is the value of ν beyond which T (ν) is essentially zero,
and in our study, we used the entire range of pmf. ‖ S(ν) ‖
is a regularization term, defined as

‖ S(ν) ‖=
∫ a

0

[g0(S(ν))2 + g1(dS(ν)/dν)2]dν
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Constants Values

a 1000
α 0.5
g0 0.001
g1 1.0
dS 10−6

TABLE I. CONSTANTS USED IN THE AUTOFLUORESCENCE
COMPENSATION ALGORITHM

where g0 and g1 are positive regularization constants. The
optimized solution of S(ν) is obtained by following the
procedure described below.

1) Remove background noise that is equipment-specific.
Fluorescence signals of strength 0 and 1 (Sony Biotech-
nology ec800) were considered as background noise
and removed. Then, T (ν) (for the induction case of
[IPTG] > 0) and C(ν) (for the case of [IPTG]=0) were
computed from the fluorescence signals using 1000
equal-width bins to obtain individual bin-sizes. Here,
the bin-size of T is larger than that of C.

2) To compute the convolution, we will set the bin-size
of C equal to that of T . Compute C again from the
raw data using the bin-size of T , and append an array
of zero at the end of C to make the total bin number
equal to 1000.

3) Set the initial values of S equal to T .
4) Generate two different random numbers ν1 and ν2 in

the range of [0, 999]. S(ν1) and S(ν2) were added
and subtracted, respectively, by a constant dS = 10−6:
S(ν1)→ S(ν1) + dS and S(ν2)→ S(ν2)− dS. When
S(ν2)− dS is less than zero, set S(ν1) equal to S(ν1)
+ S(ν2) and then S(ν2) equal to 0. In this way, the new
S is automatically re-normalized and guaranteed to be
non-negative.

5) Compute Mα. If Mα decreases, we accept the change
and, otherwise, reject it and revert S(ν) to the old S
values before the update.

6) Repeat the steps 4 and 5 until Mα converges and
compare

∫ ν
0
C(ν− ν′)Sop(ν′)dν′ and T (ν), where Sop

is the obtained optimized solution of S. If Sop(ν) shows
oscillation, reduce the value of α while rebalancing g0
and g1 and go back to the step 4. If Sop is noisy,
increase the value of α while rebalancing g0 and g1
and go back to the step 4.

The constants used for the optimization are listed in Table I.
The analysis was performed with Python 2.7.9 with Numpy
1.9.2, Scipy 0.15.1, and Spyder 2.3.4. Our python code is
provided in the Supplementary Notes.

G. Nonlinear Regression

The gamma distribution function was used to fit our flow
cytometry data. Protein copy number Npr can be converted to
fluorescence signal intensity x: Npr = csx with cs a scaling

constant. The gamma distribution function can be rescaled:

p(Npr; a, b) = p(csx; a, b) =
(csx)a−1e−csx/b

Γ(a) ba

= c−1s
xa−1e−x/(b/cs)

Γ(a) (b/cs)a

= c−1s p(x; a, b/cs).

Here, Γ is a gamma function, and

a ≡ αm
γp

Na

is the number of mRNA produced per cell doubling time,
called burst frequency with Na the number of active promoters,
and

b ≡ αp
γm

is the number of proteins produced during the mRNA lifetime,
called burst size. Therefore, the fluorescence intensity should
also follow the gamma distribution if its corresponding copy
number follows the gamma distribution, with the burst size
rescaled with cs. Nonlinear regression was carried by using
the Scipy curve fit function (http://www.scipy.org/), which em-
ploys the Levenberg-Marquardt algorithm for the least squares
fitting to estimate a and b.
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Supplementary Notes

1 DNA sequences of promoter-RBS-insertion-start codon regions

Table 1 shows the DNA sequences that were used for the region of ribosome binding sites along with different
kinds of spacer sequences:

Name Sequence (BBa R0011 end-spacer-BBa B0034-spacer-BBa E0040 begin) Backbone

pKK16B34 TTTCACACATACTAGAGAAAGAGGAGAAATACTAGATGCGTAAA pGA3K3
pKK16A6 TTTCACACATACTAGAGAAAGAGGAGAAAAAAAAAATGCGTAAA pGA3K3
pKK16A10 TTTCACACATACTAGAGAAAGAGGAGAAAAAAAAAAAAAATGCGTAAA pGA3K3
pKK16A13 TTTCACACATACTAGAGAAAGAGGAGAAAAAAAAAAAAAAAAATGCGTAAA pGA3K3

Table 1: RBS region DNA sequences

2 Autofluorescence compensation in fluorescence histograms

Depending on the value of the regularization constant α, the optimized solution S(ν) can show oscillation. In this
section, we provide its sample pictures. There is a trade-off between the strength of noise in S and the fitting
accuracy (comparison between the black and the blue dots in Fig. 2).

The python code used for the compensation is provided below.

import os

import matplotlib.pyplot as plt

import scipy

import scipy.stats

import numpy as np

import FlowCytometryTools as fct

binno = 1000 # Number of bins

a = binno

g0 = .001

g1 = 1.

alphalist = ["list of alpha values"]

ds = 1e-6

repeat = 200000 #N

data = []

listfiles = []

histdata = []

binedgesdata = []

binsize = []

dirnames = ["Directories to the datasets"]

for i in range(len(dirnames)):

fullpath = []

for j in range(len(os.listdir(dirnames[i]))):

files = os.listdir(dirnames[i])

fullpath.append(os.path.join(dirnames[i],files[j]))

listfiles.append(fullpath)

#%% Gating

for i in range(len(listfiles)):

for j in range(len(listfiles[i])):

filename = listfiles[i][j]

1
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print listfiles[i][j]

sample = fct.FCMeasurement(ID = "KK16A10D7", datafile=listfiles[i][j])

gate1range = []#List of tuples for vertical interval gates

gate2range = []#List of tuples for horizontal interval gates

FSgate = fct.IntervalGate(gate1range[i][j], "FS -Lin", region="in")

SSgate = fct.IntervalGate(gate2range[i][j], "SS -Lin", region="in")

compgate = fct.core.gates.CompositeGate(FSgate , "and", SSgate)

gated_out = sample.gate(compgate)

fllin = gated_out.data["FL1 -Lin"]. values

fllin = np.array(fllin)

# Raw data preprocessing

fllin = np.delete(fllin , np.where(fllin == 0))

fllin = np.delete(fllin , np.where(fllin == 1))

data.append(fllin)

# Initial Histogram Calculation

hist , bin_edges = np.histogram(fllin , bins=binno , density=True)

binsize.append(np.diff(bin_edges)[0])

#%% Setting bin numbers equal to 1000

binnumbers = []

maxbin = np.max(binsize)

for i in range(len(listfiles)):

for j in range(len(listfiles[i])):

binnumbers.append(int(round(binsize[j]/ maxbin*binno)))

histf , bin_edgesf = np.histogram(data[j], bins=int(round(binsize[j]/ maxbin*

binno)), density=True)

numzeros = binno - binnumbers[j]

print "binsize: " + str(np.diff(bin_edgesf)[0])

if numzeros != 0.:

zeros = np.zeros(int(numzeros))

histf = np.append(histf , zeros)

bintemp = np.linspace(bin_edgesf [-1] + np.diff(bin_edgesf)[0],

bin_edgesf [-1] + (( numzeros) * np.diff(bin_edgesf)[0])

, numzeros)

bin_edgesf = np.append(bin_edgesf , bintemp)

histdata.append(histf)

binedgesdata.append(bin_edgesf)

#%% Iterations over M

M = []

histdata_f = np.copy(histdata)

def CSint(gfp , auto , raw , a, maxbin): # Integration of CS - T

tempint2 = np.multiply(maxbin , np.convolve(auto , gfp)[:a])

return np.sum(np.square(np.subtract(tempint2 , raw)))

def Sint(gfp , g0 , g1): #Regularization

return np.multiply(g0 , np.square(gfp [:-1])) + np.multiply(g1 , np.square(np.diff(

gfp)))

2
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def m_alpha(gfp , auto , raw , a, g0 , g1 , alpha , maxbin):

return CSint(gfp , auto , raw , a, maxbin) + np.multiply(alpha , scipy.integrate.simps

(Sint(gfp , g0, g1)[:a]))

for i in range(len(listfiles [0])):

alpha = alphalist[i]

maxbin = np.diff(binedgesdata[i])[0]

if i == 0: # Pass autofluoresence

M.append ([0])

else:

M.append ([ m_alpha(histdata_f[i], histdata [0], histdata[i], a, g0, g1, alpha ,

maxbin)]) #Initial M calculation

for j in range(repeat):

ind = int(np.random.uniform(0, binnumbers[i])) #Picking Random number

ind2 = int(np.random.uniform(0, binnumbers[i]))

if ind >= a or ind2 >= a:

pass

elif ind >= binnumbers[i] or ind2 >= binnumbers[i]:

pass

else:

histdata_temp = np.copy(histdata_f[i])

#Addtion subtraction

if histdata_f[i][ind] - ds < 0:

histdata_f[i][ind2] = histdata_f[i][ind2] + histdata_f[i][ind]

histdata_f[i][ind] = 0.

else:

histdata_f[i][ind] = histdata_f[i][ind] - ds

histdata_f[i][ind2] = histdata_f[i][ind2] + ds

integral_t = m_alpha(histdata_f[i], histdata [0], histdata[i], a, g0,

g1 , alpha , maxbin) #M recalculation

#Accept change

if integral_t < M[i][ -1]:

M[i]. append(integral_t)

#Reject change

else:

histdata_f[i] = np.copy(histdata_temp)

M[i]. append(M[i][ -1])

#%% Calculate Convolution and Plot against Raw Data

well=7

multfactor = np.diff(binedgesdata[well])[0]

conv1 = np.multiply(multfactor , np.convolve(histdata [0], histdata_f[well])) #

convolution term

binedgesdatax = binedgesdata[well ][:-1] + np.diff(binedgesdata[well])/2

fig = plt.figure(figsize =(12 ,8))

ax = fig.add_subplot (1,1,1)

plt.plot(binedgesdatax , multfactor*histdata[well], "bo")

plt.plot(binedgesdatax , multfactor*histdata_f[well], "r", lw=4)

plt.plot(binedgesdatax , multfactor*histdata [0], "go")

plt.plot(binedgesdatax , multfactor*conv1[: binno], "k", lw=4)

ax.tick_params(’both’, length =10, width=3, which=’major’)

ax.tick_params(’both’, length =10, width=3, which=’minor’)

ax.spines[’top’]. set_linewidth (3)

ax.spines[’right’]. set_linewidth (3)

ax.spines[’left’]. set_linewidth (3)

ax.spines[’bottom ’]. set_linewidth (3)

ax.tick_params(axis=’x’, pad =10)
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ax.tick_params(axis=’y’, pad =10)

plt.axis([0, 15000, 0, .005])

ax.set_xlabel("Index")

ax.set_ylabel("Normalized Frequency")

plt.xticks(fontsize = 30)

plt.yticks(fontsize = 30)

plt.show()

#%% Plot M Values

fig = plt.figure(figsize =(12 ,8))

ax = fig.add_subplot (1,1,1)

plt.plot(M[well], lw=4)

plt.rc(’font’, size =30)

ax.tick_params(’both’, length =10, width=3, which=’major’)

ax.tick_params(’both’, length =10, width=3, which=’minor’)

ax.spines[’top’]. set_linewidth (3)

ax.spines[’right’]. set_linewidth (3)

ax.spines[’left’]. set_linewidth (3)

ax.spines[’bottom ’]. set_linewidth (3)

ax.tick_params(axis=’x’, pad =10)

ax.tick_params(axis=’y’, pad =10)

ax.set_xlabel("Iterations")

ax.set_ylabel(r’$\mathregular{M^{\ alpha}}$’)

plt.xticks(fontsize = 30)

plt.yticks(fontsize = 30)

plt.show()
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Figure 1: Autofluorescence compensation: The green dots correspond to autofluorescence (IPTG=0 case), the
blue dots to the measured GFP signals, and the red dots to the optimized solution S, i.e., the true GFP signal
probability mass function (normalized frequency). The black line is to verify the optimized solution S can generate
T via convolution (refer to the Materials and Methods in the main manuscript).
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Figure 2: This figure is exactly the same as Figure 3 in the main manuscript. IPTG concentrations are included
in the unit of mM. For (A)6 and (A)10, two biological replicates were used.
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