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Controlling E. coli gene expression noise
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Abstract

Intracellular protein copy numbers show significant cell-to-cell variability within an isogenic population due to the random
nature of biological reactions. Here we show how the variability in copy number can be controlled by perturbing gene expression.
Depending on the genetic network and host, different perturbations can be applied to control variability. To understand more fully how
noise propagates and behaves in biochemical networks we developed stochastic control analysis (SCA) which is a sensitivity-based
analysis framework for the study of noise control. Here we apply SCA to synthetic gene expression systems encoded on plasmids
that are transformed into Escherichia coli. The objective of the study was to show that we could differentially control the noise
and mean levels of molecular concentrations in biological networks. We show that (1) dual control of transcription and translation
efficiencies provides the most efficient way of noise-vs.-mean control. (2) The expressed proteins follow the gamma distribution
function as found in chromosomal proteins. (3) Bursting size and frequency are strongly correlated, implying that transcription
efficiency can affect transcript lifetimes and/or translation efficiency. (4) Lastly, genetic encoding in plasmids amplifies intrinsic
noise of gene expression, showing that the two-promoter state model, commonly used to describe chromosomal gene expression,
may need to be modified.
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Controlling E. coli gene expression noise

I. INTRODUCTION

ELL-TO-CELL variability in protein copy numbers

within isogenic populations are typically observed in
various types of cells due to underlying random biochemical
reaction processes [1], [2], [3]. The variability can lead to
noise-induced cellular phenotypes such as cellular differen-
tiation [3], multiple stability [4], and either sensitivity en-
hancement or suppression [5], [6]. Here we investigate the
ability to differentially control the noise and mean levels of
gene expression in E. coli. The approach we use is based on
stochastic control analysis (SCA)[8], [7], a body of theory we
developed and reported in previously publications.

SCA is a sensitivity analysis framework, that is a direct
extension of metabolic control analysis [9], [10] to the stochas-
tic regime [8]. This approach is based on a local sensitivity
analysis that can be applied to study first-order effects of
finite-size perturbations. SCA can identify which parameters
in stochastic systems — here, gene regulatory circuits — need
to be varied by how much to achieve a desired control
aim. This includes orthogonal control of noise levels with
respect to mean levels, and simultaneous changes in noise
and mean levels in the same or opposite directions for the
same or different protein species. SCA can provide control
efficiency and strength to identify the most effective control
schemes that are experimentally relevant [7]. Here, we apply
SCA experimentally to E. coli genetic systems and achieve
differential noise control in vivo.

In this paper, gene circuits are encoded on plasmid back-
bones, which are inserted into E. coli MG1655. We show
that encoding circuits in plasmids amplifies intrinsic circuit
dynamics. In the E. coli transcriptome study [11], the extrinsic
noise was found in many cases to completely suppress the
intrinsic noise when transcription factor copy numbers were
larger than 10 (refer to Fig. 2B in [11]). This means that all
dynamics faster than cell doubling time such as transcription-
translation processes is significantly averaged out. Therefore,
to study these processes, it is necessary to use fast-responsive
probes [13] or to come up with methods that amplify the
intrinsic processes. Encoding genetic systems of interest in
plasmids will be shown to amplify the intrinsic processes and
this allows us to investigate E. coli gene expression with flow
cytometry and fluorescence microscopy without resorting to
single-molecule fluorescence microscopy [11], [12].

II. STOCHASTIC CONTROL ANALYSIS: REVIEW

SCA [7], [8] is a local sensitivity analysis based on control
coefficients, which are defined approximately as percentage
change in a response signal (y) divided by the percentage
change in a system parameter (p):

pdy  dlogy

cY = = .
ydp dlogp

p

We note that the slope in the log-log plot of p vs. y corresponds
to C. The response signal can be the mean or noise levels of
mRNAs or proteins. The parameters can include transcription
and translation efficiencies, degradation rates of mRNAs and
proteins, dilution rate due to cell growth, and reaction rates
of transcription-factor binding and unbinding from promoter
regions, etc. Another important quantity in SCA, is the con-
trol vector, each element of which corresponds to a control
coefficient for a given response signal (y):
Ch = (CY,.Cyo,CL),

p1? 7 p2?
where N defines the number of parameters (dimension of the
parameter space) that will be varied to control the value of
y. In this paper, we are mostly interested in dual control of
transcription and translation efficiencies, i.e., N = 2. One of
the important properties of the control vector is that its inner-
product with a parameter perturbation vector §p becomes the
amount of change in the response signal dy,

op _ %y
Py

We can quantify which parameter value, and by how much
it should be controlled to achieve specific control aims. For
example, consider a case where the noise level of a protein
needs to be reduced by 9%, while its mean level should remain
the same. Here, the noise level (n) is defined by the variance
divided by the squared mean value, i.e., squared coefficient
of variation. Two control vectors for the noise and mean
levels, C’I’; and ng, need to be computed based on a given
mathematical model. System parameters need to be perturbed
while satisfying

cy
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n P p m p
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The perturbation vector dp/p satisfying these two equations
can be solved, but the solutions can be infinite. In that case, it
is important to select the optimal control scheme (perturbation
vector) among the possible solutions. For this, the control
efficiency and strength were introduced [7]. Based on these
two quantities, one can choose desired control schemes that are
appropriate to systems of interest with the maximum control
strength and/or efficiency.

0.

III. SCA FOR A SINGLE GENE EXPRESSION CASSETTE

We constructed plasmid systems that express green fluores-
cent protein (GFP) under lac-promoters in E. coli (Fig. 1A).
The plasmid copy number in a single cell fluctuates in time
because the a set of plasmids are randomly partitioned during
cell division and are synthesized in a stochastic fashion. Thus,
the copy number of lac-promoters per cell fluctuates, which
will be discussed later in the two-state model. For simplicity,
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Fig. 1. GFP expression system: (A) GFP is expressed under the lac-promoter

(BioBrick part BBa_R0010) with a ribosome binding site (BBa_B0034).
This expression cassette was placed in a low-medium copy number plasmid
backbone (pGA3K3; origin of replication p1SA). The T’ symbol represents a
terminator (double terminator used here to ensure transcription termination).
(B) Two-promoter-state model. When the promoter is active, mRNA is
transcribed with a rate constant ou,,. From the transcript, GFP is translated
with a rate constant cp. mRNA and GFP degrade or are diluted with net
rate constants 7y, and -y,, respectively. (C) Control coefficients for noise and
mean levels are listed. All control coefficients in the same row add up to
zero, satisfying summation theorems in SCA [8]. Parameters (unit: hr—1):
kon = 10, ko y = 0.01, an = 10, ym = 30, ap = 300, and vy, = 1.

we will assume that the plasmid copy number is tightly
controlled, i.e., constant at the first level of approximation. The
total number of plac will be the sum of the number of inactive
and active lac-promoters (Fig. 1B), which will be set to a
constant, N,,. We call this the two-state model. The plasmid
backbone that we used is pGA3K3 with the replication origin,
pl15A (N, = 10 — 30). Based on this two-state model, we
computed control vectors for the mean and noise levels of
GFP fluorescence as shown in Fig. 1C (refer to [7] for the
control vector computation).

The computed control coefficients show that noise can be
controlled efﬁciently by varying both «,, and Tp> cy, =
—1.00 and C7 = 0.97, indicating that with an increase in
ay, for example by 10%, n will reduce by 10% (this is
a first-order approximation, because control coefficients are
defined locally). Similarly, with an increase in v, by 10%,
n will increase by 9.7%. With similar change in o, or v,
the mean level can also be efficiently controlled; C7! = 1
and C7" = —1, indicating that the mean level increases and
decreases by 10% in respect to 10% increase of «,, and ~,,,
respectively.

IV. MEAN LEVEL CONTROL

From the computed control coefficients, the mean protein
levels can be controlled without changing the noise level (with
a minor change, ~10 folds less than the change in the mean
levels) by varying either o, and yy,,. To confirm this theoretical
prediction, we changed the translation efficiency «,, by using
a library of both ribosome binding sites (RBSs) and spacer
sequences as shown in Fig. 2. Among them, four different
spacers — TACTAG, AAAAAA=(A)g, (A)10, and (A)13 — that
are placed between B0034 and the start codon showed distinct
GFP expression levels when plac is fully active ([IPTG] =
ImM). Here, the introduced spacer sequences are presumed
to change ribosome binding affinity, in particular, translation
initiation — the limiting step for a translation rate [14], [15].

Based on our flow cytometry data, the mean level was
successfully varied by using different spacer sequences as

Lacl
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RBS: Ribosome Binding
B0032 Site; related to
BOO033 | translation efficiency
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AAAAAAAAAAA

Fig. 2. Perturbations in the GFP expression systems: The GFP expression
cassette is placed in the plasmid backbone pGA3K3 in E.coli MG1655Z1 that
constitutively expresses Lacl. IPTG concentrations were varied for a given
complex of ribosome binding site and spacer. 9-16 fold increase in the GFP
noise level can be achieved without changing its mean level.

shown in Fig. 3 and Fig. 4A and C. We compared two different
cases: Points A and B, and Points C and D in Fig. 3. As shown
in Fig. 4A and C, the rescaled probability density functions
(pdfs) were overlapped with excellent accuracy. This scale
invariance confirms that the noise levels of both points are
the same.

Scale invariance in the gamma distribution: Furthermore,
the observed invariance implies a special property that we need
to consider carefully. This invariance property is satisfied by
the gamma distribution function as shown in the Materials
and Method section when the bursting size is rescaled to-
gether. This implies that the difference between the system
parameters of Points A and B is only the bursting size,
which is consistent to our perturbation experiment. This result
supports that the observed distribution function is the gamma
distributions (confer to [16], [17] about claims for other types
of distribution functions). To confirm this, we fit the GFP pdfs
to the gamma distribution functions as shown in Fig. S5A. For
the cases that the background fluorescence is well separated
from GFP signals, we confirmed that the pdfs follow the
gamma distributions well.

V. NOISE LEVEL CONTROL

As discussed above, the noise level can be efficiently con-
trolled by varying o, and 7,. However, when these parameters
are changed, the mean level also changes with the same
fold difference but in the opposite direction; for example in
Fig. 1C, C§ and C7' are —1.00 and 1.00, meaning that
when ., is 1ncreased by x%, the noise level decreases by
x%, while the mean level increases by x%. Thus, to change the
noise level without changing the mean level, we must vary at
least two different parameters simultaneously. Since the mean
level can be controlled almost independently of the noise level
by changing «,, we will vary both o, and a,, to compensate
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Fig. 3. Scaling relationship between noise and mean levels: Four different

cases of spacer sequences between the ribosome binding site BBa_B0034
and the start codon are shown. The same symbol represents the same spacer
with different [IPTG]. The noise levels (squared coefficient of variation) are
inversely proportional to the mean level. For comparison, a line with a slope
—1 is drawn. The contribution to the noise level by background fluorescence
signals was taken out (Materials and Methods).
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Fig. 4.  Probability density functions (pdfs) of GFP fluorescence signals
measured from a flow cytometer: (A) Orthogonal mean level control: Points
A and B in Fig. 3. In the inset plot, both the pdfs were re-scaled by the mean
values of their respective GFP fluorescence signals, so that the transformed
pdfs are centered around one. (B) Orthogonal noise level control: Points B
and C. Both the [IPTG] and the spacer sequences were varied. (C) Orthogonal
mean level control: Points C and D. The inset plot shows the re-scaled pdfs.
In this figure, background noise was not taken out.

for the change. The reason that we did not choose to vary -,
is that this parameter is highly dependent on cell growth rate,
rather than protein degradation in E. coli; GFP lifetime is much
longer than the cell doubling time ~ 1 hr in M9 media. As
shown in Fig. 3, the noise level can be controlled by varying
both the parameters and 9 — 16 fold change in the noise level
can be achieved without changing the mean level.

The reason that noise levels could be changed by varying
the translation efficiency is that translation events occur in a
bursting fashion. This is beause multiple ribosomes can bind
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Fig. 5. Gamma distribution function: Bursting size b and bursting frequency a
were estimated. (A) (A)1o cases for different [[PTG]. The gamma distribution
function fits well to the observed pdfs with a minor deviation when [IPTG]
is low. (B and C) Ideal case that varying IPTG does not change translation
efficiency and different spacer sequences do not affect transcription efficiency.
(D and E) Estimated a and b from our flow cytometry data. In this figure,
background fluorescence was not taken out.

to single mRNAs before the mRNAs degrade. This allows
multiple proteins can be synthesized from a single transcript.
These bursting events lead to long-tail histograms. Figure 4B
shows that a longer tail in the GFP pdf can be generated by
using stronger translation efficiency (Point B — Point C).

VI. SCALING RELATIONSHIP BETWEEN THE NOISE AND
MEAN LEVELS

Figure 3 shows that the noise level is inversely proportional
to the mean level:

n=—,

m
where ¢ is a constant. It is known that the two-state model
satisfies this inverse relationship [18], [11], [19]. With the
plasmid copy number fixed at any positive integer values,
the constant c¢ is shown to be independent of N, (refer
to its derivation in the Supplementary Note of [18]). This
indicates that the plasmid copy number N, should not shift
the plot for the noise vs. mean levels. However, we observed
this shift to the right, indicating the value of c is somehow
increased. Thus, the observed shift implies that the two-state
model may need to be modified by taking into account the
stochastic fluctuations in N,,. Alternatively, the observed shift
could be due to increased bursting size; ribonuclease activity
may be saturated, leading to increased lifetime of transcript.
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We need to further investigate whether the proposed model
is incomplete or whether there is any non-trivial biological
correlation between parameter values such as N, and b.

The observed shift indicates that the intrinsic gene expres-
sion processes were amplified and their dynamics can be
observed out of the sea of strong extrinsic noise. Otherwise, the
intrinsic noise would have been buried by the extrinsic noise
as observed for typical E. coli transcription factors with their
copy numbers higher than ~10 [11], [20] (confer to the study
on yeast transcriptome [18], where intrinsic noise is strong
enough to be observed for most transcription factors because
the extrinsic noise level is lower than E. coli due to its longer
doubling time). The minimum noise level that we observed in
the GFP signals is slightly larger than 0.1, which is consistent
with the E. coli transcriptome study [11].

Bursting frequency a and bursting size b were estimated
from our flow cytometry data by fitting the gamma distri-
butions to the observed GFP pdfs (Materials and Methods).
Figures 5B and C show the ideal case that varying IPTG
does not change translation efficiency and different spacer
sequences do not affect transcription efficiency. Our observed
a and b values show the similar trend, however, with strong
correlation between the two (compare the blue dotted lines in
Fig. 5B and D, and C and E).

VII. CONCLUSIONS

We showed that encoding gene circuits in plasmids amplifies
intrinsic circuit dynamics, so that intrinsic gene expression in
E. coli can be observed with flow cytometry without resorting
to single-molecule microscopy. In addition, stochastic control
analysis was applied to identify efficient ways to control noise
and mean levels of gene expression, showing that SCA can
be applied to gene regulatory networks and other stochastic
biological systems.

MATERIALS AND METHODS

A. GFP expression circuits and strains

All genetic components used in this manuscript are BioBrick
parts, from which genetic circuits were constructed by using
the Gibson assembly method [21]. The constructed circuits
were integrated into a low-to-medium copy number plasmid
pGA3K3 with a Kanamycin resistance gene and Escherichia
coli MG1655 Z1 was transformed with the plasmids. The strain
(lacl9) constitutively overexpresses Lacl from its chromosome.

B. Cell Growth and Flow Cytometry Measurements

E. coli strains were grown to OD600~0.2 in 2mL Luria-
Bertani (LB) media (Becton Dickinson) with kanamycin
50pg/mL at 37°C and 300rpm in a shaker. The cultures
were diluted 1:200 into 200 pL prewarmed fresh M9 me-
dia (Teknova 2M1990) in 96-well plates (Costar 3904)
with kananmycin 50ug/mL. 12 different IPTG concentrations
(OmM, 0.02~1mM) were used for each well and grown
to OD600=0.3-0.4 in a shaker (37°C, 300rpm). For the

flow cytometry measuremnts, the grown cultures were di-
Iuted 1:4 in 1xPBS. A Sony Biotechnology ec800 flow cy-
tometer was used with a 525nm filter and a 488nm ex-
citation laser for GFP fluorescence. 100,000 events were
collected for each sample and gated by using a 2-D nor-
mal distribution (Bioconductor flowCore norm2filter function
with scale.factor=1) [22] within the R software environment
as well as by using python package FlowCytometryTools
(http://gorelab.bitbucket.org/flowcytometrytools/#). To prevent
well-well contamination we executed a Medium Flush cycle
after each sample well. When computing the mean and noise
levels of GFP signals, background fluorescence was taken care
of by using the mean and noise levels for the case without
IPTG for each different gene circuit.

C. Noise Level Correction

The mean level was corrected with a simple subtraction.
The noise level was corrected by using the property that the
observed variance (Variance,) is the sum of the GFP variance
(Variance,) and the background signal variance (Variancey)
under the assumption that the GFP signals are statistically
independent of the background signals. More precisely, the
noise level of GFP signals, defined by the square coefficient
of variation, can be obtained by

cV? Variance, — Variance,
(Mean, — Meany)?

where the subscripts o and b denote observed and background
signals, respectively.

D. Nonlinear Regression

The gamma distribution function was used to fit our flow
cytometry data. Protein copy number N, can be converted to
fluorescence signal intensity x: N, = csx with ¢, a scaling
constant. The gamma distribution function can be rescaled:

)a—l —csz/b

(csx)*te

p(Npr;a7b) = ]_"(a) be

ples;a,b) =
. xa—le—w/(b/cs)

Cs TN (B Na

['(a) (b/cs)
= cs_lp(x;mb/cs).
Here, I' is a gamma function,

a= Qm o [Active Promoter Copy Number]

Tp

is the number of mRNA produced per cell doubling time,
called bursting frequency, and

p= 22

Tm

is the number of proteins produced during the mRNA life-
time, called bursting size. Therefore, the fluorescence intensity
should also follow the gamma distribution if its corresponding
copy number follows the gamma distribution, with the burst-
ing size rescaled with cs;. Nonlinear regression was carried
by using the Scipy curve_fit function (http://www.scipy.org/),
which employs the Levenberg-Marquardt algorithm for the
least squares fitting to estimate a and b.
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