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Abstract 
 
Aerobic exercise capacity can influence many complex traits including obesity and type 
2 diabetes. We established two rat lines by divergent selection of intrinsic aerobic 
capacity. The high capacity runners (HCR) and low capacity runners (LCR) differed by 
~9-fold in aerobic capacity after 32 generations, and diverged in body fat, blood 
glucose, and other health indicators. To study the interplay among genetic 
differentiation, age, and strenuous exercise, we performed microarray-based gene 
expression analyses in skeletal muscle with a 2×2×2 design to compare HCR and LCR, 
old and young animals, and between rest and exhaustion, for a total of eight groups 
(n=6 each). Transcripts for mitochondrial function are expressed higher in HCR than 
LCR at both rest and exhaustion, for both age groups. Extracellular matrix components 
decrease with age in both lines and both rest and exhaustion. Interestingly, age-effects 
in many pathways are more pronounced in LCR, suggesting that HCR’s higher innate 
aerobic capacity underlies both increased lifespan and heathspan. 
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Introduction 
 
Aerobic capacity in humans is strongly associated with longevity and a reduction in a 
variety of traits associated with poor metabolic health.  To study the interplay between 
intrinsic aerobic capacity and metabolic fitness, we selectively bred rats for maximal 
running capacity to generate two strains which also resulted in divergence for a variety 
of metabolic trait [1]. The two lines, termed high capacity runners (HCR) and low 
capacity runners (LCR), originated from a founder population of genetically 
heterogeneous rats originally derived from outcrossing 8 inbred strains (N:NIH stock) 
[2]. The animals were not trained, so the differences in fitness were due to physiological 
differences acquired through the selective breeding. Through this selective breeding, 
there is a divergence for a number of phenotypic traits with the LCR demonstrating 
higher levels of triglyceride, free fatty acids, glucose and insulin levels and a higher 
body weight and adiposity [3, 4]. HCR rats show higher levels of maximal oxygen 
consumption, skeletal muscle oxidative enzyme levels and mitochondrial content [5-7]. 
We have recently shown that an increased capacity for skeletal muscle fatty acid and 
branched chain amino acid oxidation underlies the higher oxidative capacity in these 
animals (Overmyer et al., in revision).   As in humans, the enhanced oxidative capacity 
of the HCR compared to the LCR is paralleled by increases in lifespan, with the median 
age of death increasing from 23.5 months for LCR to 30.1 months for HCR rats, 
representing a 28% difference in life expectancy, with no significant difference for 
maximal lifespan between females and males within lines. 
 
In as early as Generation-7 of selection, HCR displayed significantly greater O2 
utilization in the skeletal muscles [5]. Continued selective breeding up to generation 15 
resulted in further divergence in O2 utilization as well as O2 delivery in the skeletal 
muscle [8]. An initial gene expression analysis of the skeletal muscle from HCR and 
LCR at generation 18 revealed significant differences for genes in the pathways of 
oxidative energy metabolism, including fat metabolism, branched-chain amino acid 
metabolism, Krebs cycle, and oxidative phosphorylation [9]. A subsequent study that 
looked at gene expression in skeletal muscle of HCR and LCR at generation 16 found 
that HCR upregulated genes involved in lipid metabolism and fatty acid elongation 
compared to LCR in exercise-trained rats, while the sedentary rats only showed minor 
differences in gene expression between the two lines [7]. The differences in gene 
expression were found to be consistent with results from proteomic analysis of skeletal 
muscle mitochondria (Overmyer et al., In Revision) which showed similar pathways 
enriched in HCR vs. HCR.   
 
It has long been appreciated that biological regulation, in this case transcript levels, are 
affected by inherited genetic variation, naturally occurring aging process, as well as 
responses to immediate physiological stressors.  These factors often act jointly but have 
not been analyzed simultaneously in a single study.  Here we analyzed the 
transcriptomic profiles of both young and aged female rats from generations 29 and 32, 
and under both resting and exercise conditions with the goal of identifying pathways that 
could explain the divergence in aerobic capacity, longevity, and adaptation to exercise.  
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Results 
 
Our study adopted a 2×2×2 full factorial design to simultaneously examine the effects of 
three factors: HCR-LCR, aging (Old-Young), exercise (Rest-Exhaustion), and their 
interactions. Here “Young" animals are of age 31.1 ± 2.6 weeks and “Old” are 99.4 ± 2.9 
weeks. Among the young animals, HCRs and LCRs show 8.5-fold difference in their 
maximal running capacity.  Compared to the young, running performance in old animals 
declined by ~50% in both lines, and the HCR-LCR difference remained at 8.9-fold 
(Supplementary Figure 1). Within each age group in either line there was not a 
significant correlation between age and maximal running distance (Supplementary 
Figure 1).  For three factors and two levels each (see Methods), there are eight 
experimental combinations.  In each combination we measured the skeletal muscle 
(extensor digitorum longus, EDL) samples of six animals as biological replicates.  
Tissues from "Exhaust" animals were obtained immediately (<10 mins) after the run-to-
exhaustion test.  In all, we measured 19,607 transcripts in 48 samples in a single batch 
of microarray experiments. 
 
Global patterns 
 
A principal component analysis (PCA) of the 19,607 measured transcripts separates the 
48 samples into eight clusters in the PC1-PC2 space; and they correspond to the eight 
known groups, as marked by the colored ellipsoids (Figure 1).  The eight clusters 
occupy mostly non-overlapping areas in the PC1-PC2 space.  While a few of the 
clusters are close to each other, most are "coherent" and have gaps of varying sizes to 
the nearest cluster.  Thus, at the global level there are observable transcriptional effects 
for all three factors. PC1 is mainly driven by the Old-Young differences, while both PC2 
and PC3 are driven by HCR-LCR and exercise effects (Figure 1).  PC3 is driven by the 
difference between the HCR-Rest animals (for both Old and Young) and the other six 
groups (Supplementary Figure 2).  
 
As a 2×2×2 design can be naturally displayed as a cube, we overlaid a hexahedron, i.e., 
an irregular, "stretched" cube, in Figure 1 to connect the median expression patterns of 
the eight groups.  Note that this hexahedron is not a quantitative representation of the 
high-dimension gene expression profiles, nor the between-cluster distances in their 
reduced two-dimensional view, but only a geographic illustration of the relationships 
among the experiment groups.  This representation has six quadrilateral faces (or 
planes) forming three opposing pairs, each representing the two levels of a given factor.  
For example, the left and right faces represent the Old and Young animals, respectively, 
whereas the top and bottom faces represent Exhaust and Rest groups, respectively.  
The stretched cube has eight vertices, representing the centroid of the eight 
experimental groups; and its twelve edges represent the twelve two-way contrasts, each 
representing the main effect of a given factor in one of the four strata formed by the 
other two factors.  In Figure 2, we used a three-letter shorthand to indicate the eight 
vertices, where "H" and "L" denote "HCR" and "LCR", respectively, "O" and "Y" denote 
"Old" and "Young", respectively, and "R" and "E" denote "Rest" and "Exhaust", 
respectively.  For example, the upper left vertex of the front face, "L-O-E", is for the Old, 
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LCR animals measured at Exhaustion.  The set of four quasiparallel edges connecting a 
pair of opposing faces are shown as arrows of the same color: red for HCR-LCR, purple 
for Old-Young, and black for Rest-Exhaust.  The twelve edges were also numbered 1-
12 for ease of description.  For example, Edge-2, from L-O-E to H-O-E, is the HCR-to-
LCR difference for Old and Exhausted animals.  This contrast is also written as (HCR-
LCR|Old, Exhausted) in Figure 3, where "|" is the mathematical notation of "conditional 
on", indicating the specific strata in which the contrast in defined. 
 
Globally, the eight clusters form a well-proportioned convex cube, indicating that each of 
the three factors has a main effect, that the effects are comparable among the line, age, 
and exercise factors, and that they jointly determine the observed gene expression 
pattern.  Further, the effects are not strictly additive (or independent).  If they were, i.e., 
if there was no interaction among the factors, all six faces would be parallelograms, i.e., 
formed by parallel edges of equal lengths, and the opposing faces would form parallel 
pairs of planes.  This this were the case, with suitable rotation of the PC axes the six 
faces could all be transformed to rectangles.  However, the observed hexahedron is not 
a cuboid: it contains unparalleled faces and unparalleled edges; and in most faces, the 
opposing edges are of unequal length, indicating that the effect of any one factor 
depends on the specific combination of the levels of the other factors: the classic 
definition of statistical interaction.  Our simultaneous analyses of the three factors thus 
revealed both main effects and their interactions, as examined in more details below. 
 
We calculated the genomic distance along the twelve edges using all 19,607 transcripts, 
and in the cube display, varied the line widths to be proportional to the genomic 
distance (Figure 2).  This way, a thicker line indicates a larger contrast (or distance), 
thus providing a different, but analogous, visual representation as the stretched cube 
shown in Figure 1, where it was the line lengths that represent the effect size along 
individual edges.  Figure 2 used the Euclidean distance as line width; the numeric 
values were shown in Figures 3.  Alternative distance measures, such as the median 
absolute difference (MAD) between pairs of group centroids, yield similar results: the 
Pearson's correlation coefficient (r) between MAD and Euclidean values is 0.91 across 
the 12 conditions.  In the following we will describe the analysis of the three factors, one 
at a time, before describing the analysis of two-factor interactions. 
 
Between-line differences (HCR vs. LCR) 
 
For each gene we assessed the HCR-LCR main effect overall, corresponding to the 
transcriptomic differences between the two genetic lines, averaged over Old-Young and 
Rest-Exhaust conditions.  In the geographic representation this corresponds to the 
distance between the center of the HCR face (the back plane of the cube) to the center 
of the LCR face (front plane). The effect size reflects the transcriptomic consequence 
after divergent selection for aerobic running capacity. In all, 2,838 transcripts are 
significantly difference at Benjamini-Hochberg False Discovery Rate (BH-FDR) < 0.05 
(Supplementary Table 1).  The pathway analysis of these genes will be described in a 
later section.  
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We next analyzed the HCR-LCR difference separately for each of the four age-exercise 
combinations.  Across the four strata, Old-Rest has the largest line contrasts, while 
Young-Rest has the smallest.  This can be interpreted from two perspectives.  First, the 
HCR-LCR effect at Rest is age-dependent: the lengths of Edge-6 and Edge-8, defined 
as Euclidean distance over all measured genes, are 36.6 and 29.2, respectively, 
indicating a stronger between-line difference in the Old animals (Figure 3a). In contrast 
to Rest, this age dependence of line effect is much reduced at Exhaustion: the lengths 
of Edge-4 and Edge-2 are 32.9 and 33.4, respectively, nearly the same between the Old 
and Young animals.  From the second but equivalent perspective, the HCR-LCR 
difference for Young animals depends on the exercise state: it is greater at Exhaustion 
(Edge-4 vs. Edge-8; 32.9 vs. 29.2), but conversely, for Old animals the HCR-LCR 
difference is greater at Rest (Edge-2 vs. Edge-6; 33.4 vs. 36.6).   

Exercise effects (Exhaustion vs. Rest) 
 
Next, we assessed the Exhausted-Rest main effect averaged over the HCR-LCR and 
Old-Young conditions.  This corresponds to the distance between the center of the 
Exhausted face (top of the cube) to the center of the Rest face (bottom of the cube). 
The effect size reflects the transcriptomic adaptation after an endurance run. In all, 
1,715 transcripts are significantly difference at BH-FDR < 0.05 (Supplementary Table 
1).  The pathway analysis of these genes will be described below.  

We then analyzed the Exhausted-Rest difference separately for each of the four line-
age combinations.  Across the four strata, HCR-Young has the largest line contrasts 
whereas LCR-Young has the smallest.  At Young age, the Exhausted-Rest effect is line-
dependent: the lengths of Edge-10 and Edge-12 are 38.0 and 28.4, respectively, 
indicating a stronger exercise difference in the HCR animals (Figure 3b), which may 
reflect the longer exercise-related stimulus in the HCR due to the enhanced running 
capacity in the HCRs compared to LCRs. This line-dependence of exercise effect is 
much reduced when measured in Old animals: the lengths of Edge-9 and Edge-11 are 
33.1 and 32.5, respectively.  In an alternative view, the age-dependence of exercise 
effect varies by line: in HCR it is greater for Young animals (Edge-10 vs. Edge-9; 38.0 
vs. 33.1); but conversely, in LCR the exercise difference is greater for Old animals 
(Edge-11 vs. Edge-12; 32.5 vs. 28.4).   

Aging effects (Old vs. Young) 
 
The Old-Young main effect, averaged over HCR-LCR and Exhausted-Rest conditions, 
corresponds to the distance between the center of the Old face (left plane of the cube) 
to the center of the Young face (right plane). The effect size reflects the transcriptomic 
changes during the aging process. In all, 2,561 genes are significantly difference at BH-
FDR < 0.05 (Supplementary Table 1).  The pathway analysis of these genes will be 
described below.  
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Again we analyzed the Old-Young difference separately for each of the four line-
exercise combinations.  Across the four strata, LCR-Rest has the largest line contrasts 
whereas HCR-Rest has the smallest.  At Rest, the Old-Young effect is line-dependent: 
the lengths of Edge-5 and Edge-7 are 31.0 and 39.1, respectively, indicating a stronger 
age difference in the LCR animals (Figure 3c). This line dependence of age effect is 
much reduced when measured at Exhaustion: the lengths of Edge-1 and Edge-3 are 
32.4 and 33.8, respectively. In an alternative view, the Old-Young difference for HCR is 
slightly greater for Exhausted animals (Edge-1 vs. Edge-5; 32.4 vs. 31.0), but 
conversely, for LCR the age difference is greater for Rest animals (Edge-3 vs. Edge-7; 
33.8 vs. 39.1).   

Pathway analyses of the three factors 
 
The three overall comparisons, for the main effects of line, age, and exercise, 
respectively, implicated many biological pathways (Supplementary Table 2), of which 
we focus on five most strongly affected.  These non-overlapping Gene Ontology 
pathways are: Mitochondria Part, Extracellular Matrix, Collagen Fibril Organization, 
Focal Adhesion, and Sequence-Specific DNA Binding Transcription Factor Activity 
(Table 1). Stratified analysis of each of the three effects in the four combinations of the 
other two factors, as shown by the twelve edges in Figure 1, showed largely consistent 
patterns as the overall effects (Table 2 and Figure 4).  

For the line effect, HCR consistently shows up-regulated Mitochondria Part pathway 
compared to LCR (Edges-2, 4, 6 and 8) (Figure 3a).   

For the age effect, old rats consistently show down-regulation in Extracellular Matrix, 
Collagen Fibril Organization, and Focal Adhesion pathways compared to young (Edges-
1, 3, 5, 7) (Figure 3b). Further, aging in LCR (sides 3 and 7) results in more significant 
enrichment for all three pathways compared to HCR (sides 1 and 5) (Table 2).   

For the exercise effect, exhausted rats consistently show up-regulated Sequence-
Specific DNA Binding Transcription Factor Activity pathway compared to rats at rest 
(Edges-9, 10, 11, 12) (Figure 3c).   

Interaction effects 
 
For each face of the cube, we assessed the interaction between two factors while 
keeping one factor constant (front=LCR; back=HCR; top=Exhausted; bottom=Rest; 
left=Old; right=Young), for a total of six analyses. We focused on the three faces with 
the most significant interactions (bottom: line-age for Rest; left: line-exercise for Old; 
right: line-exercise for Young) given the results from the main effect analysis.  

For the bottom face, we assessed the interaction between line and age for only rats at 
Rest. The most significantly enriched pathway from our unidirectional LRpath analysis 
was Muscle Structure Development (p-value=1.1x10-8), which includes 248 total genes, 
out of which we found 47 to be below the nominal significance threshold (p<0.05). We 
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analyzed these genes using Database for Annotation, Visualization and Integrated 
Discovery (DAVID) and found that these significant genes were most enriched for the 
Muscle Cell Differentiation pathway (8.4x10-25) [10]. The expression of these 47 genes 
formed three distinct clusters based on unsupervised hierarchical clustering for the 24 
Rest samples (Figure 4a). We determined the pathway enrichment of each gene cluster 
using DAVID, and found that cluster 1 (15 genes) is most enriched for Muscle Tissue 
Development (p-value=3.5x10-11), cluster 2 (16 genes) is most enriched for Muscle Cell 
Differentiation (p-value=1.2x10-9), and cluster 3 (16 genes) is most enriched for Muscle 
Organ Development (p-value=1.9x10-8). Thus, we can see that the interaction effect 
between line and age for rats at Rest are largely due to muscle development pathways. 

For the left face, we assessed the interaction between line and exercise for only Old 
rats. The most significantly enriched pathway from our unidirectional LRpath analysis 
was Mitochondrial Part (p-value=2.3x10-6), which includes 524 total genes, out of which 
we found 92 to be below the nominal significance threshold (p<0.05). When we 
analyzed these using DAVID, we found that these significant genes were still most 
enriched for the Mitchondrial Part pathway (4.6x10-74). As before, we determined the 
pathway enrichment of each gene cluster, and found that clusters 1 (12 genes) and 2 (9 
genes) are both most enriched for Mitchondrial Part (p-value=1.1x10-9 and 1.4x10-6, 
respectively), and cluster 3 (71 genes) is most enriched for Mitochondrion (p-
value=1.4x10-57), with Mitochondrial Part as a close second (p-value=6.1x10-57) (Figure 
4b). Thus, we can see that the interaction effect between line and exercise for Old rats 
are largely due to mitochondrial pathways. 

For the right face, we assessed the interaction between line and exercise for only 
Young rats. Given that the top two most significantly enriched pathways did not include 
large enough number of genes, we focused on the third most significantly enriched 
pathway, Response to Biotic Stimulus (p-value=4.4x10-6), which includes 342 total 
genes, out of which we found 43 to be below the nominal significance threshold 
(p<0.05).  Using DAVID, we found that these significant genes were most enriched for 
the Response to Bacterium pathway (2.1x10-11). Cluster 1 (24 genes) is most enriched 
for Response to Bacterium pathway (p-value=1.5x10-5), cluster 2 (4 genes) is most 
enriched for Response to Organic Substance (p-value=5.9x10-3), and cluster 3 (15 
genes) is most enriched for Lymphocyte Proliferation (p-value=1.4x10-5) (Figure 4c). 
We can see no clear primary driving pathway for the interaction effect between line and 
exercise for Young rats. 

Discussion 
 
The ability to study three main effects (genetic background, exercise, aging) jointly and 
uncover interactions between them in a rat model is novel to our study. For all rats, the 
HCR-LCR difference is driven by mitochondrial pathways during both exercise and rest 
(Table 1). GO Biological Processes and KEGG Pathways show that genes associated 
with mitochondria are associated with substrate metabolism and oxidative metabolism, 
including Branched Chain Amino Acid metabolism, Fatty Acid metabolism, Oxidative 
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Phosphorylation and Tricarboxylic Acid cycle (TCA) metabolism, are significantly higher 
in HCR muscle, as has previously been described [11].  We have recently found that the 
up-regulation of these pathways increases the capacity for non-glucose fuel utilization, 
delaying the ‘lactate threshold’ associated with glycolysis-mediated ATP production 
(Overmyer et al., in revision).    

When the rats are at rest, the HCR-LCR gene expression difference is far greater for 
the old rats compared to the young (Fig. 3a), which could reflect a slowing of aging in 
HCR and the resulting longevity differences between HCR and LCR [12]. Interesting, 
this age-dependent difference disappears for the exhausted rats. This difference may 
be driven by genes in the mitochondria pathway; the difference between HCR-LCR is 
the strongest for young rats at rest, perhaps being driven by their intrinsic expression 
differences for mitochondrial genes (Table 1). The weaker HCR-LCR difference at 
exhaustion may be due to the up-regulation of the same exercise-related gene sets for 
both genetic backgrounds. The exhausted-rest difference is driven by the transcription 
activity pathway; with exhausted animals showing up-regulated transcription activity.  

When we analyze the exhaustion-rest rats, we see that the difference is greatest for the 
young HCRs, and weakest for young LCRs (Fig. 3b). The associated genes are largely 
transcription factors and cofactors that are associated with muscle development or 
known to be responses to exercise which we have previously observed in trained 
human muscles [15].   These gene expression differences in HCR and LCR may simply 
be attributable to exercise duration, as HCRs run 9-fold longer distance that LCRs [13]. 
The old-young difference is driven by the ECM, collagen, and adhesion (aging indicator) 
pathways in both HCRs and LCRs during both exercise and rest (Table 1). When the 
rats are at rest, the old-young difference is far more prominent for LCRs compared to 
HCRs, showing that LCRs show greater magnitude of differential expression due to 
aging (Fig. 3c). In addition, age-effects in the aging indicator pathways are more 
pronounced in the LCRs compared to the HCRs. Both of these findings suggest that 
LCR's lower innate aerobic capacity underlies faster aging. 

As mammals age, the amount of collagen in our muscle increases, which results in 
muscle stiffness and reduced whole muscle function [14]. The interrelated pathways are 
responsible for the structural organization of muscle/matrix interactions.  Collagen 
isotypes and other extracellular matrix components interact with Focal Adhesion 
Complexes containing integrin transduces signals associated with contractile forces in 
adult skeletal muscle [15, 16].  Focal Adhesion Kinase phosphorylation is activated by 
muscle contraction-induced association with integrins and transduces hypertrophy-
related signaling [16] and can increase proteins associated with mitochondrial oxidation 
[17].  In addition to a greater decline in these pathways in the LCR with aging, The  
Extracellular Matrix, Collagen Fibril Organization and Focal Adhesion pathways also are 
significantly higher in HCR compared to LCR in Line-Effect, suggesting an interaction 
between the signaling pathways and alterations in muscle oxidation.   Our analysis is 
interesting in that the collagen-related pathways are down-regulated in the old rats 
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compared to the young rats. This finding is similar to those from a previous meta-
analysis across humans and rodents for gene expression data among aging groups, in 
which the researchers also found collagen gene sets to be under-expressed with age, 
and explain it by reduced collagen deposition with aging [18]. 

  
The ability to study the effects of exercise to exhaustion is novel to our study. Physical 
exercise is a stressful event for all higher organisms; during which the host must recruit 
a series of physiological and morphological adaptations in order to achieve, one of the 
most important being muscle contraction. To sustain muscle contraction during 
exercise, the demand for adenosine triphosphate (ATP) can increase 1,000-fold 
compared to the resting state [19]. In our study, we found that exercise-induced 
expression difference (exhausted vs rest) for both old and young rats is greater in HCR 
(sides 9 and 10) than in LCR (sides 11 and 12). Our analysis of metabolite changes in 
HCR and LCR suggests a similar pathway to exhaustions, that is a depletion of 
glycogen which corresponds to the ‘lactate threshold’.  This delay in exhaustion in the 
HCR would provide a more sustained signal to alter gene expression.   
 
The broad premise that oxidative energy metabolism is mechanistically connected with 
longevity is attractive because it has the power to shape the multiplicity of biological 
networks that influence essentially every phenotype across a lifespan [20]. Additionally, 
endurance capacity fulfills the fundamental criteria for service as a biomarker of aging 
as suggested by The American Federation for Aging Research. That is, endurance 
capacity predicts the rate of aging accurately, represents a basic underlying process, 
can be tested repeatedly without harm, and can be evaluated in animals [21].  
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Materials and Methods 
 
 
Ethics statement 
 
This study was approved by the University Committee on Use and Care of Animals, Ann 
Arbor, Michigan (Approval Numbers: #08905 and #03797). The proposed animal use 
procedures are in compliance with University guidelines, and State and Federal 
regulations. 
 
Animals 
 
We used old (~84-93 weeks of age) and young (~12-20 weeks of age) rats from HCR 
and LCR generations 29 and 32, respectively (Supplementary Figure 2). The study 
included eight groups; HCR-Old-Exhausted (H-O-E, n=6), HCR-Old-Rest (H-O-R, n=6), 
HCR-Young-Exhausted (H-Y-E, n=6), HCR- Young -Rest (H-Y-R, n=6), LCR-Old-
Exhausted (L-O-E, n=6), LCR-Old-Rest (L-O-R, n=6), LCR-Young-Exhausted (L-Y-E, 
n=6), and LCR- Young -Rest (L-Y-R, n=6). For the exhausted rats, dissections were 
performed within 10 min after the maximal running distance was reached. 
 
Tissue and RNA extraction 
 
We extracted skeletal muscle RNA from a total of 48 female animals (n=6 in each of the 
8 group). Skeletal muscle tissue was obtained from the Extensor digitorum 
longus (EDL). All rats were dissected immediately after sacrificing, and all tissue 
samples were immediately weighed and snap frozen in liquid nitrogen, and stored at -
80C. Total RNA was extracted from frozen tissue with a Trizol reagent (Invitrogen) and 
purified with an RNAse kit (Ambion). 
 
Gene expression microarray  
 
We ran the skeletal muscle RNA on the Affymetrix Rat Gene ST 2.1 array. The 
microarray hybridizations were performed by the DNA sequencing core at the University 
of Michigan according to the manufacturer’s instructions. We used the Affymetrix 
Expression ConsoleTM software to generate gene expression values from individual 
probe intensity (CEL) files. The microarray yielded a total of 19,607 transcript 
expressions.  
 
Gene expression data analysis 
 
Data analysis were performed with an R software environment for statistical computing 
[22]. The data were normalized with quantiles normalization. Principal component 
analysis was performed using the prcomp function. The Euclidean distance between 
clusters was calculated with the dist function using the median expression values of 
each gene. Statistically significant differences in gene expression between test groups 
were tested using multiple regression with the lm function.  
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For the main effect analyses, we implemented the regression models: 
 
exp ~ line + age + exercise 
exp ~ line (for old and exhausted; edge 2) 
exp ~ line (for young and exhausted; edge 4) 
exp ~ line (for old and rest; edge 6) 
exp ~ line (for young and rest; edge 8) 
exp ~ age (for HCR and exhausted; edge 1) 
exp ~ age (for LCR and exhausted; edge 3) 
exp ~ age (for HCR and rest; edge 5) 
exp ~ age (for LCR and rest; edge 7) 
exp ~ exercise (for HCR and old; edge 9) 
exp ~ exercise (for HCR and young; edge10) 
exp ~ exercise (for LCR and old; edge 11) 
exp ~ exercise (for LCR and young; edge 12) 
 
For the interaction effect analysis, we implemented the regression models: 
 
exp ~ line + age + line*age (for exhausted; top) 
exp ~ line + age + line*age (for rest; bottom) 
exp ~ line + exercise + line*exercise (for old; left) 
exp ~ line + exercise + line*exercise (for young; right) 
exp ~ age + exercise + age*exercise (for HCR; back) 
exp ~ age + exercise + age*exercise (for LCR; front) 
 
Pathway analysis 
 
Pathway enrichment was performed using LRpath [23] for all ~20K genes, p-values, and 
fold-change for each of the 12 comparisons. We tested for enrichment of Gene 
Ontology (GO) terms and Kyoto Encyclopaedia of Gens and Genomes (KEGG) 
pathways for the rat. LRpath allows us to perform both unidirectional and directional 
analyses; for unidirectional analysis, LRpath tests for gene sets that have significantly 
higher significance values than expected at random given a set of genes and p-values; 
for directional analysis, LRpath tests up- and down-regulated genes simultaneously 
given a set of genes, p-values, and fold-change between test groups to distinguish 
between up and down regulated gene groups. 
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Legends 
 
Figure 1 – shown is a principal component analysis (PCA) plot (PC1 vs PC2) for 48 rats 
across the expression of ~20K transcripts. The samples are divided across 8 different 
groups in a  2×2×2  design to compare HCR and LCR, aged and young, and between 
rest and exhaustion (n=6 each). Groups are highlighted using different colored ovals to 
show clustering, and HCR-LCR are shown as squares and triangles, respectively. All of 
the exhausted animals are red, and animals at rest are blue. Old animals are shown as 
dark red/blue, and young animals are shown as light red/blue. Arrows are drawn from 
each cluster to show the direction of each group variable; purple arrows show direction 
of old-young animals; orange arrows show direction of HCR-LCR; black arrows show 
direction of exhaust-rest. 
 
Figure 2 – shown is a cube depiction of the PCA plot in Figure 1. Each group is 
represented by their abbreviated names (HCR/LCR = H/L, old/young = O/Y, 
exhaust/rest = E/R). The arrow color scheme is the same as Figure 1. (A) The numbers 
beside each arrow represents the Euclidean distance calculated using all ~20K 
transcripts, with larger numbers representing more distant groups in terms of skeletal 
muscle transcriptome. (B) The numbers on each arrow represent the denotation of the 
analysis (between 1-12) that will be referred to in the manuscript, and the thickness of 
each arrow represents the Euclidean distance for each side. 
 
Figure 3 – (A) shown are the cube depiction and Euclidean distances focused on the 
effects of genetic background: differences between HCR and LCR (sides 2, 4, 6, and 8); 
(B) shown are the cube depiction and Euclidean distances focused on the effects of 
exercise: differences between exhaustion and rest (sides 9, 10, 11, and 12); (C) shown 
are the cube depiction and Euclidean distances focused on the effects of aging: old vs 
young (sides 1, 3, 5, and 7). 

Figure 4 – (A) shown is the heatmap of the 47 significant genes in the Muscle Structure 
Development pathway for the line-age interaction analysis for animals at Rest (bottom 
face). Each row shows the expression of a single gene across all samples, and the 24 
samples at Rest are ordered by group (shown at the bottom) across the columns. The 
genes are grouped into clusters based on hierarchical cluster (shown on the right). The 
heatmap is colored in a blue-red spectrum, with low expression shown in dark blue and 
high expression shown in dark red. (B) shown is the heatmap of the 92 significant genes 
in the Mitochondrial Part pathway for the line-exercise interaction analysis for Old 
animals (left face). (C) shown is the heatmap of the 43 significant genes in Response to 
Biotic Stimulus pathway for the line-exercise interaction analysis for Young animals 
(right face). 

Table 1 – shown are the -log(p-values) for the major pathway groups in the overall main 
effects of the three factors. A heatmap is used to show the difference in significance 
levels; with green denoting greater significance and red denoting less significance. 
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Table 2 – shown are the -log(p-values) for the major pathway groups in each main 
effect analysis. A heatmap is used to show the difference in significance levels; with 
green denoting greater significance and red denoting less significance. 
 
Table 3 – shown are the directions of the major pathway groups in our analysis. Green 
arrows denote that the pathway was up-regulated for the control group compared to the 
test group in each analysis, and vice versa for red arrows (control groups are HCR, old, 
and exhaust; test groups are LCR, young, and rest). The thickness of the arrow 
indicates the significance of the pathway for the respective analysis; with a thicker arrow 
representing smaller p-value. 
 
Supplementary Figure 1 – The scatterplot of age at dissection versus runner distance 
for the four groups. The samples are separated into four clusters corresponding to each 
group. 
 
Supplementary Figure 2 – shown is the PC1 vs PC3 plot for 48 rats across the 
expression of ~20K transcripts. The samples are divided across 8 different groups in a  
2×2×2  design to compare HCR and LCR, aged and young, and between rest and 
exhaustion (n=6 each). Groups are highlighted using different colored ovals to show 
clustering, and HCR-LCR are shown as squares and triangles, respectively. All of the 
exhausted animals are red, and animals at rest are blue. Old animals are shown as dark 
red/blue, and young animals are shown as light red/blue. Arrows are drawn from each 
cluster to show the direction of each group variable; purple arrows show direction of old-
young animals; orange arrows show direction of HCR-LCR; black arrows show direction 
of exhaust-rest. 
 
Supplementary Table 1 – Tab-delimited spreadsheet with 19,607 rows (genes) and 31 
columns for the collective regression results of the 15 main effect analyses (line, age, 
exercise, and edges 1-12). Column 1 is gene symbol, followed by 2 columns for each 
analysis (p-value, fold-change). 
 
Supplementary Table 2 – Tab-delimited spreadsheet with 4,146 rows (concepts) and 
67 columns for the collective LRpath results of the 15 main effect analyses (line, age, 
exercise, and edges 1-12). Column 1 is concept name, column 2 is concept type, 
column 3 is number of genes in concept, followed by 4 columns for each analysis (odds 
ratio, p-value, FDR, and direction). 
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Figure 2 
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Figure 3 
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Figure 4a 
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Figure 4b 
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Figure 4c 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2015. ; https://doi.org/10.1101/013706doi: bioRxiv preprint 

https://doi.org/10.1101/013706
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Table 1 
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Supplementary Figure 1 
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Supplementary Figure 2 
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