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Abstract14

Cancers arise as a result of genetic and epigenetic alterations. These accumulate in cells during the15

processes of tissue development, homeostasis and repair. Many tumor types are hierarchically orga-16

nized and driven by a sub-population of cells often called cancer stem cells. Cancer stem cells are17

uniquely capable of recapitulating the tumor and can be highly resistant to radio- and chemotherapy18

treatment. We investigate tumor growth patterns from a theoretical standpoint and show how signif-19

icant changes in pre- and post-therapy tumor dynamics are tied to the dynamics of cancer stem cells.20

We identify two characteristic growth regimes of a tumor population that can be leveraged to estimate21

cancer stem cell fractions in vivo using simple linear regression. Our method is a mathematically exact22

result, parameter free and does not require any microscopic knowledge of the tumor properties. A23

more accurate quantification of the direct link between the sub-population driving tumor growth and24

treatment response promises new ways to individualize treatment strategies.25
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Significance Statement1

Under the cancer stem cell hypothesis a tumor population is driven by a fraction of self-renewing2

cancer stem cells. Absolute and relative size of this population in human cancers at any stage of the3

disease remains unknown. We formulate a mathematical model that describes the tumor cell4

population’s growth dynamics and response to therapy. This allows to estimate cancer stem cell5

fraction from longitudinal measurements of tumor size (often available from imaging). Such estimates6

are critical because treatment outcome and risk of relapse depend on the tumor’s capacity to7

self-renew. Ideally, by tailoring patient treatment strategies based on the relative abundance of cancer8

stem cells could lead to radically different therapeutic regime and to the successful eradication of the9

disease.10

1 Introduction11

Cancer comprises a group of diseases that involve abnormal and uncontrolled proliferation of cells12

that were once normal. These aberrant properties are induced by alterations in genes that control cell13

regulatory mechanisms, microenvironmental response and cell-cell signaling: a group of functions14

referred to as the ‘Hallmarks of Cancer’ [1]. Although large-scale genomic studies have revealed the15

spectrum of genomic profiles in many cancers [2], recent accumulating evidence shows that cancers16

are characterised by extensive inter-patient [3] and intra-tumor heterogeneity [4] as a consequence of17

tumor evolution [5]. This heterogeneity bridges multiple scales and is not only tied to the tumor but18

also the context within which it grows, its microenvironment [6].19

In addition, tumors are often comprised of cancerous cells in distinct stages of differentiation [7]. This20

”phenotypic” diversity likely is a remainder of the hierarchical organization of the tumors’ tissue of21

origin. In most healthy tissue, stem cells maintain tissue homeostasis and a certain number of cell22

differentiation compartments give rise to the production of phenotypically distinct mature cell types23

[8, 9]. The finding that tissue organization can be maintained in tumors has lead to the postulation of24

the existence of cancer stem cells, termed the cancer stem cell hypothesis. Under this hypothesis a25

fraction of cells are uniquely able to seed, maintain and re-seed tumors [7]. First identified in leukemia26

[8], cancer stem cells have since been shown to drive a number of solid tumors, including colon27

[10, 11, 12], brain [13], breast [14], head and neck [15], lung [16], and melanoma [17], among others.28

These in vivo and in vitro observations are complimented by a rich emerging body of literature using a29

variety of mathematical methods to model the hierarchical organization of tissues in physiological30

and pathological contexts. Tissue-specific models include those focused on the cell hierarchy in31

colonic crypts [18, 19, 20] and leukemias [21, 22]. Other studies have sought to understand the general32

dynamical behavior of tissues organized in a hierarchical way [23, 24, 25, 26].33
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Finding an effective treatment strategy against cancers organized into a hierarchy is thought to1

require the elimination of all cancer stem cells [27, 28]. However, an increase of the cancer stem cell2

fraction during treatment is frequently observed [29, 30]. This increase is potentially due to various3

mechanisms, such as cancer stem cell quiescence [31], specific intrinsic mechanisms of4

radioresistance[32] and chemoresistance [33], or even microenvironmental plasticity of the non-stem5

phenotype [34, 35] promoting the cancer stem cell population.6

Naı̈vely, the specific targeting of cancer stem cells seems a promising and necessary approach to7

improve treatment [5]. Different sizes of cancer stem cell populations between patients could8

potentially influence individualized treatment strategies and improve prognosis [36]. Unfortunately,9

the fraction of tumor-driving stem cells is unknown at diagnosis. Currently, the only method that10

exists that can infer this information for specific patients is from direct biopsy before and after11

treatment. This has major limitations due to marker resolution and sampling frequency and is further12

confounded by location dependence and intrinsic heterogeneity, not to mention risk to the patient.13

Ideally, we require a continuous measure of the stem fraction that can easily be obtained from14

relatively non-invasive means.15

We use a multi-compartment approach, which allows an analytical description of cell population16

dynamics in hierarchically organized tumors [37, 38]. It had been noted before that hierarchical17

tumors transition from a fast into a relatively slower phase of tumor growth. During treatment18

response, particularly in targeted treatment of leukemias, a similar effect of strong response followed19

by weaker response is common [39, 40, 41]. Here we show that these transitions are tied to the20

dynamic characteristics of cancer stem cells. Moreover, our analytical results allow us to exploit this21

universal property of hierarchical tumor organization. We show how one can estimate the fraction of22

tumor-driving cancer stem cells from purely macroscopic observables, such as information about23

tumor size gleaned from medical imaging.24

2 Results25

We model hierarchical tumor organization by a multi compartment approach (see Fig. 1). Each26

compartment represents cells at certain differentiation or proliferation stages [21, 37]. We investigate a27

minimal model, where compartment 0 contains stem cells that proliferate at a rate cS and die at a rate28

dS. Transient amplifying cells proliferate at a rate cD and die at rate dD. Self-renewal of cancer stem29

cells occurs with a probability p. Differentiation into transient amplifying cells occurs with probability30

1 � p. The cell lineage can undergo at most m cell doublings before the most differentiated cells enter31

senescence. This resembles a cells’ Hayflick limit, which might be a consequence of critically short32

telomeres, or other cell regulatory mechanisms [42]. Usually, the proliferation rate of transient33

amplifying cells is increased as compared to stem cells, for example we have cS < cD. Modifying the34

death rates allows us to implement a minimal representation of immune-response during tumor35
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Figure 1. Model schematic, showing key parameters governing the mathematical model based on the cancer stem cell

hypothesis. Cancer stem cells, denoted by N0, are exclusively able to maintain the tumor cell population. Transient amplifying
cells (N1, . . . , Nm) undergo m cell division before which they enter cell senescence. Cancer stem cells proliferate with a rate cS,
self renew with probability p and die at a rate cSd. Transient amplifying cells proliferate with rate cD and die at a rate cDd.

growth, as well as different treatment regimens.1

The deterministic dynamics of a cell population that is organized in such a hierarchy can be described2

by a set of coupled linear differential equations. The general analytical solution reduces to a set of3

weighted exponential functions (see Methods for details). If there are a finite number of cell divisions,4

the tumor growth curve decomposes into two regimes. The first regime is driven by cancer cells filling5

up compartments of higher differentiation. The second phase is characterized by a dynamic6

equilibrium, in which this drive from below is balanced by loss of cells due to senescence. In addition,7

and more importantly, we can infer the impact of the fraction of cancer stem cells on possible ’phase8

transitions’ during tumor growth and response to treatment.9

Tumor growth10

We initiate tumor growth with a single (cancer stem) cell in compartment 0. This is in line with the11

cancer stem cell hypothesis [43] and does not necessarily imply that the cell of origin was a stem cell.12

Potentially stem like properties can be acquired at later stages of the hierarchy, as is common in for13

example different acute leukemias [8, 28]. The proliferation parameters of cancer stem cells determine14

the long term behavior of the tumor. A tumor grows continuously (and potentially becomes a15

detectable cancer), if p > (1 + d)/2. The probability of stem cell self renewal p needs to be sufficiently16

large to compensate loss of stem cells by random cell death d. In contrast, the tumor population17

vanishes for insufficient cancer stem cell self renewal. In the following, we assume that p is18

sufficiently large to allow for a growing tumor.19

In this scenario, the population of cancer stem cells expands. In addition, cancer stem cells20

differentiate into transient amplifying cells that comprise the bulk of the tumor. However, after21

sufficient time, loss of differentiated cells due to cell death or cell senescence and gain of22

differentiated cells due to doublings of transient amplifying cells balance one another. When this23

balance is reached, the tumor growth dynamics transition into a second phase. Further tumor growth24

is limited by the expansion rate of the cancer stem cell compartment, see Fig 2 for an example. These25

two distinct growth phases are a generic property of hierarchically organized tumors. WE only26
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assume that proliferation rates of tumor initiating cells and further differentiated cells differ [38].1

Cancer stem cell fraction2

The fraction of cancer stem cells rg at time t during tumor growth is given by3

rg (t) =
N0 (t)
N (t)

, (1)4

where N0 (t) corresponds to the number of stem cells, and is N (t) the sum of all tumor cells at time t.5

The fraction of tumor stem cells decreases in the first phase of tumor growth. Then it evolves towards6

an equilibrium state for any possible combination of cell proliferation parameters, see Fig. 2.7

The value of the cancer stem cell fraction in dynamic equilibrium depends on the sign of the8

differential flow between the stem and the non-stem compartments. This flow describes the difference9

between the net expected growth of the cancer stem cell compartment and the net loss in any given10

differentiated (non-stem) compartment due to cell differentiation or death.11

If the differential flow is negative, more stem cells are lost by differentiation than gained by self12

renewal. Then the stem cell fraction tends to zero. If the differential flow is exactly zero, cancer stem13

cells furnish half of the tumor population. For positive values of the differential flow, we have a14

surplus in the production of differentiated tumor cells as compared to their losses during further15

differentiation. In this third case, one can show that the time dependent components converge to a16

constant value
�

N (t) /N0 (t) ! const.
�

and the fraction of cancer stem cells take a non trivial value17

between 0 and 1, see Methods for details. Thus, the relative composition of the growing tumor18

remains constant in the second phase of tumor growth and is given by19

r⇤g =
1

1 + const
, (2)20

see Fig. 2 for an example. The value of the constant is calculated analytically in the Method section21

and involves all model parameters. Thus from the model’s perspective, a detailed microscopic22

knowledge of a tumor’s properties seems to be a prerequisite to estimate r⇤g. For example, all23

proliferation parameters of different cancer cell types should play a role. Yet, this detailed knowledge24

is unlikely or even impossible to gain in a clinical setting. In the following we propose an alternative25

method to estimate the constant in the denominator of Equation (2).26

Estimating the cancer stem cell fraction during growth27

An important macroscopic observable of a tumor is its growth curve. Small changes in tumor sizes28

can be visualized and analyzed effectively, for example by high resolution magnetic resonance29
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Figure 2. Inferring the fraction of cancer stem cells from tumor growth curve or treatment response. The estimation method
is an analytical result that follows from our mathematical model. The red line shows one realization of the model for tumor
growth and treatment response. The dashed lines correspond to exponential fits and their offsets that do not require any detailed
knowledge on the tumor cell properties. If the offsets hg and ht can be estimated from the regression during growth (g) and
treatment (t) respectively and the tumor size at the beginning of treatment is N̄, then one can infer the equilibrium fraction
of cancer stem cells during tumor growth and treatment response from purely macroscopic observables without the need of
detailed knowledge of tumor cell properties.

imaging. Thus, tumor growth curves can be assessed reliably within relatively short time intervals,1

and are recorded routinely in modern clinical care. Most importantly, these techniques do not require2

any knowledge of the microscopic tumor properties.3

Our mathematical model provides an analytical description of the tumor growth curves. The first4

phase of tumor growth is a combination of rapid stem and differentiated cell proliferation. However,5

as the tumor reaches an equilibrium state its growth follows a slower exponential expansion rate6

driven by the stem cell pool. In dynamic equilibrium, tumor growth can be captured analytically by a7

single exponential function of the form a ebt. The coefficients a and b involve the parameters of the8

mathematical model.9

Interestingly, one finds that the coefficient a coincides with the constant in the exact expression of r⇤g10

and we can write r⇤g = 1/(1 + a). This observation allows us to estimate r⇤g from tumor growth curves.11

Instead of calculating the parameter a analytically, one can fit an exponential function hgeagt to a12

growth curve of a tumor in equilibrium via linear regression of the logarithmically transformed tumor13

size data. This fit gives two parameters ag and hg, which do not require any detailed microscopic14

knowledge. Moreover, the offset hg of the regression corresponds to the theoretically calculated15

parameter a. This observation allows us to estimate the fraction of tumor driving cancer stem cells via16

the relation17

r⇤g =
1

1 + hg
, (3)18

from an exponential fit hgeagt to the tumor growth curve, see Fig. 2 for an illustrative example.19
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Estimating the cancer stem cell fraction under treatment1

Our general approach allows us to implement treatment strategies by altering the death rates d (or2

other parameters of the model) of cancer cells. A hierarchically organized tumor shrinks continuously3

under treatment if the death rate d of cancer cells exceeds the self renewal capability p of stem cells by4

d > 2p � 1, and no treatment resistant clone is present [44]. Under continuous treatment, like5

unperturbed growth, we observe a bi-phasic response. The tumor cell population shrinks fast initially,6

and transitions into a slower decrease after a characteristic time.7

The first phase is dominated by the death of differentiated cells. In this phase, treatment selects for8

cancer stem cells, see Fig. 2. Then the tumor reaches a dynamic equilibrium stage, in which the9

relative flux of cell renewal and cell loss balance. The relative composition of the tumor remains10

constant, despite a continuous decrease in tumor size. This causes the transition into a second phase11

of tumor shrinking, where the initial treatment effect starts to diminish.12

The stem cell fraction that is active during treatment response can be estimated by an exponential fit13

hteatt to the tumor shrinkage curve. Under treatment, the tumor’s initial condition is not a single14

seeding cancer stem cell. We have to take all cancer cells into account. This changes our estimates and15

introduces additional complexity. In the Methods section we show that ht, the offset of the16

exponential fit under treatment, hg, the offset of the exponential fit during growth and N (T), the total17

tumor size at treatment initiation T suffice to accurately estimate the fraction of cancer stem cells18

under treatment, which is then given by the relation19

r⇤t =
1

1 + hght

N(T)

. (4)20

This is an exact result of our model and its structure is very similar to the case of untreated tumor21

growth, see Fig. 2. However, we require additional information to estimate the fraction of cancer stem22

cells under treatment, but this information can be gained from macroscopic observations with no23

need for detailed knowledge about the microscopic tumor properties.24

3 Discussion25

The cancer stem cell hypothesis was formulated almost two decades ago and has attracted much26

attention and research but also many critics and much skepticism ever since [45]. While the existence27

of cancer stem cells in some tumors is well established, the situation in other cancers remains28

somewhat unclear [9, 43]. However, its impact on the understanding and treatment of cancers is29

undoubted. Of equivalent importance is the theoretical work on clinical implications of cancer stem30

cells. Numerous models have shed light on clinical phenomena from a theoretical perspective and31
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helped to explain patterns of treatment response and evolution of resistance [39, 46, 44, 30, 28].1

Unfortunately, many models require involved parameterization which is implicitly difficult to obtain2

in a clinical setting. Their contribution to individualized treatment strategies thus remain unclear. In3

this work, we presented a very simple but general method to estimate the fraction of tumor driving4

cancer stem cells. This estimate can be made exclusively from the shape of a tumor’s growth curve. It5

only consists of a single exponential fit (linear regression) in the case of tumor growth, and two such6

regressions of longitudinal tumor size data during treatment.7

The idea to estimate treatment prognosis and treatment response from biphasic tumor growth in8

leukemias is not novel. Different methods were suggested, yet they focus on the slope of the growth9

curve [41, 47]. Here, we show instead that the offset of the cancer growth regression, not the slope,10

allows for estimation of cancer stem cell fractions. Furthermore, we do not provide a method to11

estimate model parameters by fitting procedures, but show a direct functional link between two12

tumor properties, namely tumor growth and growth driving fraction of cancer stem cells.13

Our method is parameter free. It requires no knowledge about microscopic properties of the tumor. It14

only utilizes techniques, for example high resolution images, which are already used routinely in15

clinical care. Thus, our method could readily complement current treatment protocols and inform16

about the relative size of the active pool of cancer stem cells.17

Here, we neglect the potential emergence of treatment resistant sub-populations. However, the risk of18

the evolution of resistance depends critically on the size of the cancer driving stem cell pool size and19

the pre-existence of treatment resistant cells is much more likely than their spontaneous emergence20

during treatment [48]. Thus our method provides a tool to estimate the risk of a pre-existing21

treatment resistant sub population and might help to adjust treatment accordingly, for example a22

different combination of drugs.23

Further, our model neglects a spatial component of tumor growth. This assumption leads to24

exponential growth in equilibrium, a situation well met in most leukemias [49, 50, 28], but also found25

in some solid tumors [51]. However, in some cases, the spatial component might be of importance and26

tumor growth becomes polynomial rather then exponential and our method provides only an27

approximation of the actual stem cell fraction. Yet, this divergence might be small compared to28

unavoidable errors induced by measurement related noise.29

The ability to infer cancer stem cell fractions at diagnosis and during treatment can influence30

treatment strategies. Aggressiveness and duration of treatment might critically depend on the31

number of tumor driving cancer stem cells. In addition the risk of the evolution of resistance increases32

dramatically with an increasing stem cell pool [44]. Furthermore the composition of drug cocktails, as33

well as timing and scheduling could be adjusted according to knowledge gained about the tumor34

stem cell population. This potentially allows an opportunity to move away from the paradigm of35

maximum tolerated dose. Instead, it would provide a rational method to adaptively and a maximal36
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effective dose for individualized treatment.1

4 Methods2

Here we lay out the deterministic dynamics of a hierarchically organized population. All cell
divisions are symmetric. Stem cells divide at a rate cS and either self renew (producing two stem
cells) with probability p or differentiate (producing two differentiated cells) with probability 1 � p. In
addition stem cells might die at a rate d. Differentiated cells proliferate at a rate cD and die at a rate d.
Further, differentiated cells can undergo a maximum of m cell doublings before they enter cell
senescence. The system takes the form of a hierarchically coupled set of ordinary differential
equations. The stem cell population obeys

∂

∂t
N0(t) = p cS N0(t)� (1 + d�p)cS N0(t) (5)

and the first compartment follows

∂

∂t
N1(t) = 2(1�p)cS N0(t)� (1 + d)cD N1(t). (6)

The function N1 corresponds to the number of differentiated cells that have not undergone further
proliferations and thus have m cell cycles left before they enter cell cycle arrest. For all higher
compartments (2  i  m) we then have

∂

∂t
Ni(t) = 2cDNi�1(t)� (1 + d)cD Ni(t), (7)

where Nm is the number of differentiated cells that only have a single cell cycle left after which they3

enter cell cycle arrest and are removed.4

The equations (5)–(7) can be solved recursively for general initial conditions. If we set Ni (0) to be the
initial number of cells at time t = 0 in compartment i, we find

N0(t) = N0 (0) e�at (8)

for the time dependence of cancer stem cells and a = (1 + d � 2p)cS is the net growth of cancer stem
cells. The higher compartments (i > 0) evolve according to

Ni(t) = N0 (0)
2i(1 � p)cSci�1

D
gi

"
e�at � e�bt

i�1

Â
j=0

gj

j!
tj

#
+ e�bt

i�1

Â
j=0

Ni�j (0)
j!

(2cD)
j tj. (9)

The outflow of each differentiated compartment is b = (1 + d)cD and g = b � a corresponds to the5

differential outflow of stem and non stem cell compartments. The tumor transition from fast into6
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slower growth is determined by the signs of a and b. Both cD and d are strictly positive and1

consequently all terms in (9) that contain exp (�bt) vanish in the long run. If we have p > (1 + d)/2,2

a has a positive sign and determines tumor growth in the long run. Therefore, if we start from a3

single cell, N0 (0) = 1, and the initial conditions become negligible, the total number of differentiated4

cells grows by5

m

Â
i=1

Ni (t) = e�agt
m

Â
i=1

2i(1 � p)cSci�1
D

gi
g

= (1 � p)
2cS

2cD � gg

✓
2cD
gg

◆m
� 1

�

| {z }
ag

e�agt (10)6

and follows a single exponential function age�agt, with an offset ag that involves all model parameters.7

The fraction of cancer stem cells can be written generally as

r(t) =
N0(t)

N0(t) +
m
Â

i=1
Ni(t)

, (11)

and is given in the slower growth phase by

r⇤g =
1

1 + (1 � p)
2cS

2cD � gg

✓
2cD
gg

◆m
� 1

�

| {z }
ag

=
1

1 + ag
. (12)

Similarly, during treatment, tumor growth in equilibrium can be written as N̄t = ate�att. However, in
contrast to the tumor growth phase we get an additional term due to changed initial conditions.
Instead of a single seeding cancer stem cell, we have eagT cancer stem cells at time of diagnosis T.
Consequently, the fraction of stem cells becomes

r⇤t =
1

1 + at eagT . (13)

By re-substituting the age of the tumor via8

T =
1

ag
ln


ag

N (T)

�
, (14)9

we find for the fraction of cancer stem cells under treatment

r⇤t =
1

1 + at ag

N(T)

. (15)
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