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Abstract 

Renewable in vitro cell cultures, such as lymphoblastoid cell lines (LCLs), have facilitated studies that contributed 
to our understanding of genetic influence on human traits. However, the degree to which cell lines faithfully 
maintain differences in donor-specific phenotypes is still debated. We have previously reported that standard cell 
line maintenance practice results in a loss of donor-specific gene expression signatures in LCLs. An alternative to 
the LCL model is the induced pluripotent stem cell (iPSC) system, which carries the potential to model tissue-
specific physiology through the use of differentiation protocols. Still, existing LCL banks represent an important 
source of starting material for iPSC generation, and it is possible that the disruptions in gene regulation associated 
with long-term LCL maintenance could persist through the reprogramming process. To address this concern, we 
studied the effect of reprogramming mature LCLs to iPSCs on the ensuing gene expression patterns within and 
between six unrelated donor individuals. We show that the reprogramming process results in a recovery of donor-
specific gene regulatory signatures. Since environmental contributions are unlikely to be a source of individual 
variation in our system of highly passaged cultured cell lines, our observations suggest that the effect of genotype 
on gene regulation is more pronounced in the iPSCs than in the LCL precursors. Our findings indicate that iPSCs 
can be a powerful model system for studies of phenotypic variation across individuals in general, and the genetic 
association with variation in gene regulation in particular. We further conclude that LCLs are an appropriate 
starting material for iPSC generation.  

 

Introduction 
Renewable cell models are widely recognized as valuable platforms for studies of human genotype-phenotype 
interactions because they are easily manipulated, scalable, and are specific to human physiology (in contrast to 
lab animal models). Epstein-Barr virus (EBV) transformed lymphoblastoid cell lines (LCLs) are one such commonly-
used model. In recent years, LCLs have been used to study genetic influence on disease traits [1], drug response 
[2-5], and gene regulation [6,7]. In particular, much of what we now know about associations of human genetic 
variation with differences in gene regulation is based on studies that used data from LCLs. There is little doubt 
that many fundamental regulatory principles that we have learned by generating and analyzing data from LCLs are 
generally shared with primary tissues. However, a critical property of any in vitro cellular model is the ability to 
faithfully recapitulate the specific regulatory properties of the donor’s primary tissue. In that regard, though LCLs 
have clearly been a convenient and useful model, there is concern that factors related to immortalization and cell 
line maintenance obscure genetic signal in LCLs [8-10].  

A number of studies have characterized differences in gene regulatory phenotypes between LCLs and primary 
tissues [11-14]. These have shown that a large number of genes are differentially expressed between primary cells 
and cell lines, and that thousands of CpG sites are differentially methylated between LCLs and primary blood cells. 
Our group has also demonstrated disruptions in gene regulation in LCLs by studying multiple independent 
replicates of LCLs from isolated primary B cells of six individuals and repeatedly subjecting the cell lines to cycles 
of freeze, thaw, and recovery. We found that newly transformed LCLs (within a few passages after the EBV 
transformation) largely maintained individual differences in gene expression levels. However, LCLs that had been 
frozen and thawed at least once (we referred to these as mature LCLs) exhibited a substantial loss of inter-
individual variation in gene expression levels [14,15].  

On the one hand, it is unlikely that the loss of the donor effect on gene expression would lead to false positive 
findings of genetic influence on gene regulation. Indeed, we reported that genes associated with previously 
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identified eQTLs retain relatively high variation in gene expression levels between individuals even after repeated 
freeze-thaw culturing cycles. Yet on the other hand, because much of the individual variation observed in primary 
tissues is not exhibited by LCLs, studies using the LCL model are limited in their ability to detect donor differences.  

The induced pluripotent stem cell (iPSC) system is another renewable cell model that is increasingly used to study 
individual phenotypic variation because it can ultimately provide access to a wide range of tissue types through 
the use of differentiation protocols. However, the capacity of iPSCs and derived cell types to faithfully recapitulate 
in vivo physiology is also still largely unknown. Previous studies have noted a significant effect of donor on traits in 
iPSCs such as hematopoietic [16], neuronal [17] and hepatic [18] differentiation potential. Importantly, the 
genetic background of iPSCs generated from peripheral blood mononuclear cells and fibroblasts was recently 
demonstrated to account for more of the variation in gene expression between iPSC lines than any other tested 
factor such as cell type of origin or reprogramming method [19]. While these findings indicate that 
reprogramming iPSCs from primary tissues preserves individual variation in gene expression, it is unknown 
whether reprogramming highly manipulated immortalized cell lines, such as LCLs, to iPSCs can recover the 
individual gene expression patterns lost during cell line maintenance.  

Because LCLs are available in large banks representing disease populations or ethnicities, they are a promising 
source of starting material for iPSC generation if disruptions in gene regulation do not persist through the 
reprogramming process. In the present study, we ask whether reprogramming mature LCLs to iPSCs can result in 
the recovery of individual variation in gene expression that had been lost during the LCL maturation and 
maintenance process. 

 

Results 
To test whether reprogramming LCLs to iPSCs could recover the effect of donor on gene expression profiles, we 
generated iPSCs from three mature LCLs of each of six Caucasian individuals for a total of 17 pairs of cell lines (one 
iPSC line failed to reach the requisite ten passages and was excluded from the study; see methods). We have 
previously collected gene expression data from the LCLs at earlier stages [14,15]. For the current study, we 
quantified whole genome gene expression microarray data from the 17 mature LCLs immediately prior to 
reprogramming and from stable and validated iPSCs. See Fig. 1 for schematic of the study design and S1 Table for 
the processed gene expression data from all samples. 

 

Generation and Validation of the iPSCs 

We reprogrammed mature LCLs, which had previously undergone seven freeze-thaw culturing cycles, to iPSCs 
using an episomal transfection approach [20-22] (see Methods for more details). We reprogrammed the LCLs in 
four batches; scheduling LCLs derived from the same individual to different reprograming batches to ensure that 
no artificial correlation structure was introduced between ‘reprograming batch’ and ‘donor individual’ in the 
process of iPSC generation. All iPSC lines were confirmed to be pluripotent using an embryoid body assay (Fig. 2A 
and S1 Fig.), qPCR for pluripotency-associated transcription factors (Fig. 2B), genomic PCR to confirm the absence 
of reprogramming plasmids (S2 and S3 Figs.), and PluriTest [23] (S2 Table). Three independently established LCLs 
were successfully reprogrammed into validated iPSCs for all but one individual, for which only two iPSC lines were 
obtained.  
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Recovery of the Individual Signature of Gene Regulation 

We collected high quality RNA (RIN score range: 7.6-9.9; S2 Table) from LCLs immediately prior to reprogramming 
and from the stable and validated iPSC lines after at least 10 passages (see S2 Table for specific passage 
information). We quantified gene expression levels for all samples using the Illumina Human HT12v4 microarray 
platform. As a first step of our analysis, we excluded data from probes whose target transcripts did not map to a 
unique Ensembl gene ID and those that were not detected as ‘expressed’ in at least two samples from either cell 
type (we note that our general observations are robust with respect to a wide range of this inclusion criteria). We 
also excluded from the analysis data from probes with a known HapMap SNP with a minor allele frequency > 0.01 
in the CEU population, to eliminate the possibility of an artificial effect of genotype on the hybridization-based 
estimates of gene expression levels. We then quantile-normalized the combined data from the remaining probes 
across all samples. We examined and corrected for array batch using the approach of Johnson et al [24] (see 
Methods). Finally, we obtained normalized expression levels for 15,306 genes detected as expressed in our 
samples (S1 Table). Using a linear model-based Empirical Bayes method (implemented in the ‘limma’ R package 
[25]), we classified 9,746 genes as differentially expressed between iPSCs and LCLs (FDR < 1%; see Methods for 
more details about modeling and hypothesis testing).  

Because the regulation of a large percentage of genes was affected by reprogramming (64% of tested genes), we 
asked whether gene expression patterns specific to the donor individual were recovered in the process. We 
addressed this question using two approaches. First, we evaluated the overall degree of similarity across cell lines 
from the same donor by considering summaries of the gene expression phenotypes using clustering analysis and 
PCA. The rationale for collapsing our gene-specific expression data and considering overall summaries is that 
complex phenotypes can often be the result of a large combination of genotype contributions and we are 
interested to learn whether the overall data from cell lines exhibits a clear signature of the donor. In our second 
approach, we focused on gene specific patterns by partitioning the variance in expression levels for individual 
genes and testing for differences between the entire distributions of gene expression levels across cell lines. In 
this approach we are considering expression patterns of individual genes as independent data points. The 
rationale for the gene-specific approach is that studies of the genetic basis for regulatory variation (such as eQTL 
mapping studies) nearly always consider the expression phenotypes of individual genes and we are interested to 
learn the extent to which the effect of donor genotype on gene expression levels can be studied using a given cell 
model.  

To evaluate overall clustering properties in the expression data from the two cell types, we performed hierarchical 
clustering analysis and PCA. As we performed these analyses, we consistently observed that data from the second 
iPSC line of individual 4 (line marked as 4-2 in our figures) accounts for a disproportionate amount of variance 
(S4B Fig.). This individual is a clear outlier and its iPSC is associated with the lowest PluriScore in our study (S2 
Table). We have excluded the data from this individual from subsequent analyses. Importantly, we have 
confirmed (as we show in supplementary figures), that our conclusions our robust with respect to this decision.  

Using data from all 15,306 genes detected as expressed, mature LCLs fail to consistently cluster by the individual 
from whom they were initially derived, in accordance with our previous observations (Fig. 3A, S4A/5A Figs.). Data 
from the corresponding iPSC lines, however, cluster by the individual of origin, indicating a large degree of 
recovery of donor gene expression patterns (Fig. 3B, S4B/5B Figs.). Another method to assess overall clustering 
properties is through the use of principal components analysis. Taking this approach, we found that clustering of 
the expression data by individual of origin is substantially more pronounced in the iPSCs than in the LCLs (Fig 3 
and S4 Fig.). Indeed, the average pairwise Euclidean distances of expression data projections on the first two PCs 
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are significantly smaller within cell lines derived from the same individual than those from different individuals for 
iPSCs (P < 10-12), but not for LCLs (P = 0.10; S3 Table). 

Turning our attention to expression patterns of individual genes, we estimated the magnitude of the donor effect 
on gene expression patterns in LCLs and iPSCs. To do so, we compared the pairwise correlations of expression 
data from cell lines derived from the same donor to pairwise correlations of data from cell lines derived from 
different individuals (S6 Fig.). On average, both within- and between-donor correlation coefficients are 
significantly higher in iPSCs than in the LCLs they were initially derived from (p < 10-4 and p < 10-7 for within- and 
between-donor correlations, respectively). In other words, regardless of the individual of origin, we observed less 
variation in gene expression between iPSCs than LCLs. Yet, though iPSCs harbor less variation overall, the 
proportion of variation in gene expression that is explained by donor is significantly higher in the iPSCs compared 
with the LCLs (P < 10-15). Indeed, using a single factor ANOVA, we estimate that donor explains, on average, 23.4% 
of the variance in gene expression in iPSCs but only 6.6% in LCLs.  

In addition to within-donor correlations, we were specifically interested in identifying genes that were highly 
variable across donors. We thus proceeded by considering the ratio of between- to within-individual variation in 
gene expression levels in the two cell types. On average, we found a significantly higher ratio of between-to-
within individual variance in gene expression levels in iPSCs compared with data from the LCLs (P < 10-15; recall 
that in this analysis we consider expression patterns of individual genes as independent data points), despite 
significantly higher overall variance in LCL gene expression (P < 10-9; Fig. 4, S7 Fig.). We identified 1,831 genes 
whose expression levels were significantly associated with donor in iPSCs (single factor ANOVA FDR < 0.05; see S8 
Fig. for histogram of p-values) but only 104 such genes in LCLs. 

 

Functional Relevance of Highly Variable Genes  

We tested for enrichment of functional annotation related to tissue-expression (using the online database Lynx 
[26]) among genes whose expression levels are significantly associated with donor. While these results do not 
shed much light on the functional importance of these gene sets, we note that different classes of genes exhibit 
high individual variation in the two cell types. For example, genes with a strong donor effect in LCLs are enriched 
with genes expressed in blood and those in iPSCs are enriched in genes expressed in embryonic tissue. The 
complete set of enrichment results is available in S4 and S5 Tables.  

Finally, we considered the relevance of our findings with respect to previously published eQTL studies in LCLs. Our 
sample of 6 individuals is too small to allow identification of eQTLs. As an alternative, we compared individual 
variation in expression levels between genes previously associated with an eQTL in LCLs [6], and genes for which 
an eQTL was not identified. To do so, we randomly selected data from one biological replicate (one LCL and its 
corresponding iPSC) from each individual.  

In both LCLs and iPSCs, the average coefficients of expression variation were significantly higher in genes 
previously associated with eQTLs than in genes for which eQTLs were not identified (P < 10-10 and P = 0.002, for 
LCLs and iPSCs, respectively; Fig. 5, S9 Fig.). As expected (given that these eQTLs were originally observed in LCLs, 
and that LCLs have greater overall variation), the coefficients of variation are significantly higher in eQTL-
associated genes in LCLs than iPSCs (P < 10-8).  
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Discussion 
The most useful renewable cell line models would retain a strong influence of individual of origin on their 
phenotypes, including molecular properties such as gene regulatory patterns. In previous work, we reported that 
freeze-thaw cycling of LCLs, a standard and required practice in long-term cell line maintenance, reduces the 
effect of donor on the cell line’s gene expression profile. In fact, we have found that whole-genome gene 
expression profiles from LCLs that were generated from different individuals are often as similar to each other as 
data from independently established replicates of LCLs from the same individual. We suggested that mature LCLs 
(those that have experienced one or more freeze-thaw cycle) may be clonally selected for, resulting in a 
convergent “LCL regulatory phenotype”, which has an advantage growing in culture but masks many of the 
original gene expression differences between the donor individuals.  We noted that a subset of genes retained a 
high level of between-individual variation in their LCL gene expression profiles. Perhaps not surprisingly, these 
were enriched with genes for which eQTLs were identified in previous studies that considered gene expression 
data from mature LCLs.  

Apart from the concern regarding the loss of much of the variation between donors, an intrinsic limitation of the 
LCL model system is that it theoretically represents the biology of only one primary cell type, B cells. In fact, 
existing collections of human population samples of renewable cell lines only include easily accessible primary 
tissues such as blood cells, adipocytes, and skin fibroblasts. Many cell types affected by disease, for example, 
cannot be directly studied using existing human cell line panels. In order to study variation in the most relevant 
phenotypes and disease processes, we need access to population samples that model additional cellular contexts.  

The advent of iPSC technology may have provided the answer. It is now possible to establish renewable iPSC lines 
from population samples and differentiate them to multiple different cell types for which large collections are 
currently unavailable. One can establish iPSCs from fibroblast or fresh blood samples, but a most attractive 
possibility is to generate iPSC panels from the already available extensive collections of human LCLs. We thus 
asked whether individual variation in gene expression levels can be restored by reprograming LCLs into iPSC lines.  

 

Recovery of Individual Variation.  

We have shown that not only does the iPSC model exhibit a strong effect of donor on overall gene expression, but 
in fact the process of reprogramming highly manipulated immortalized cell lines to iPSCs recovers the inter-
individual variation in gene expression lost during long term cell line maintenance.  

The stronger clustering properties of expression data from iPSCs compared to LCLs suggest that iPSCs are better 
able to capture donor differences in gene regulation than LCLs. We could detect no significant difference between 
Euclidean distances within- and across- individuals in the projections of gene expression data from LCLs on the 
first two principal components of variation, indicating that donor is not a significant global source of gene 
expression variation in the LCL model. This observation is consistent with our previous findings [15]. In contrast, 
we observed a dramatic increase in the number of genes whose expression was significantly associated with 
donor in iPSCs, and a higher average variance in expression explained by individual of origin in the iPSCs compared 
with LCLs.  These findings indicate that iPSCs reprogrammed from LCLs are a suitable model for studies of donor 
differences in gene regulation and genotype-phenotype interactions. 

We note that despite their diminished ability to reflect donor differences, attempts to identify instances of 
genetic regulation of LCL gene expression in mature cell lines have been considered largely successful. Indeed, 
here we report that genes previously identified as associated with an eQTL in LCLs exhibit higher variance in 
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mature LCLs than those without one. However, our observations suggest that, for future eQTL mapping studies, 
iPSCs may be a better system than LCLs. While 24% of genes with a significant donor effect in LCLs are associated 
with a previously identified eQTL in LCLs, only 5.6% of genes with a significant donor effect in iPSCs are associated 
with such an eQTL. Although expressed in LCLs, often at appreciable levels (S10 Fig.), the majority (>95%) of genes 
with a strong donor effect in iPSCs do not show such an effect in LCLs. Put together, these observations support 
our assertion that iPSC can be a better model than LCLs for detecting eQTLs, and more generally, for studies of 
inter-individual differences in gene regulation.  

 

Technical Noise Associated With Reprogramming. 

In any cell model, it is important to consider the magnitude of noise introduced by cell culture relative to 
biological signal.  We note a substantial decrease in within-individual expression correlations for a cell line with a 
low PluriScore, indicating that we should perhaps reconsider acceptable scores for studies of individual 
phenotypic variation. However, other technical considerations do not seem to have a marked effect on overall 
clustering properties. For example, data from the single iPSC line that retained EBV (individual 3, replicate 2; S3 
Fig.) clustered with the other iPSC lines derived from that individual. Additionally, we reprogrammed iPSCs in four 
groups and collected expression data at varying passages (between passage 11 and 13, S2 Table) without 
apparent batch effects. Because it is currently unclear which factors significantly affect our ability to detect donor 
differences, potential sources of noise need to be more systematically studied and appropriately controlled for.  

Much of the excitement surrounding iPSCs is based on their ability to differentiate into terminal cell types, 
providing a renewable substitute for previously inaccessible tissues. Our study does not provide direct evidence 
that iPSC-derived differentiated cells will also reflect donor differences, however because the pluripotent state is 
relatively well-conserved compared to terminal cell types [27,28], we expect that tissues derived from iPSCs will 
demonstrate an even stronger donor effect on gene expression. That said, we suggest that this expectation needs 
to be independently confirmed in each differentiated cell type before they are carried into further studies. 

 

Conclusion 

Because LCLs are available in large banks that represent panels of ethnic groups and disease populations, they are 
a popular cell model for genetic research and have been extensively studied. Recent advances in iPSC 
reprogramming protocols [21,22] have also positioned LCLs as a promising source of starting material for iPSC 
generation. Here, we have presented the recovery of donor gene expression patterns through the process of 
reprogramming highly manipulated LCLs to iPSCs, both validating the choice of iPSCs to study donor differences in 
physiology and the use of LCLs as an appropriate starting material for iPSC generation. 

 

Materials and Methods 

Sample Acquisition 

Whole blood was collected from six healthy Caucasian donors by Research Blood Components LLC (Brighton, MA) 
with IRB consent between 2009 and 2010. B-Cell isolation and LCL generation were performed at the University of 
Chicago as described previously [14]. Between February 2011 and October 2012, each line was thawed, cultured, 
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and re-frozen every three months, for a total of six freeze-thaw cycles prior to use in our study [15]. LCLs were 
cultured in RPMI with 20% FBS and frozen in Recovery Cell Culture Freezing Media (Life Technologies) 

iPSC Generation and Validation 

All cell culture was performed at 37°C, 5% CO2, and atmospheric O2. From each individual, three biological 
replicates of LCLs were reprogrammed to iPSCs using a similar method to that described previously [21,22]. LCLs 
were transfected in four batches between August 2013 and January 2014 (S2 Table). One million cells were 
transfected with 2 µg of each episomal plasmid encoding OCT3/4, shP53, Lin28, SOX2, L-MYC, KLF4, and 
GFP(Addgene plasmids 27077, 27078, 27080, 27082 [20]) using the Amaxa transfection program X-005.   For more 
details see: http://giladlab.uchicago.edu/data/LCL_Reprogramming.pdf. Transfected cells were grown in 
suspension for a week in hESC media (DMEM/F12 supplemented with 20% KOSR, 0.1mM NEAA, 2mM GlutaMAX, 
1% Pen/Strep, 0.1 mM BME, and 12.5 ng/mL human bFGF) supplemented with 0.5mM sodium butyrate between 
days 2-12 post-nucleofection. After seven days, cells were plated on gelatin-coated plates with CF-1 irradiated 
mouse embryonic fibroblasts and manually passaged as colonies for at least 10 passages. After day 12, cells were 
grown in hESC media without sodium butyrate. Media was changed every 48 hours. Cell pellets were collected 
and stored at -80° C until extraction. One biological replicate from individual five failed to reach passage ten and 
was excluded from all analyses. 

Embryoid body assays were performed following the protocol used by Romero et al [29].  Briefly, embryoid bodies 
were generated by manual colony detachment and were grown in suspension for seven days on low adherent 
plates in bFGF-free hESC media. They were then plated on 12 well gelatin-coated plates and grown for another 
seven days in DMEM-based media. Cells were fixed and stained using antibodies against nestin (1:250 SC-71665, 
Santa Cruz Biotech), α-smooth muscle actin (1:1500, CBL171, Millipore), alpha-Fetoprotein (1:100, SC-130302, 
Santa Cruz Biotech), and HNF3β (1:100 SC-6554, Santa Cruz Biotech) to detect ectoderm, mesoderm, and 
endoderm lineages respectively. 

DNA was extracted using ZR-Duet DNA/RNA MiniPrep (Zymo) kits according to the manufacturer’s instructions. To 
assess for the presence of plasmid or EBV genome in iPSCs, PCR was performed using the genomic DNA collected 
from the iPSCs as template (collected at the same time as expression measurements) with primers designed to 
amplify the 3’ end of the EBNA-1 gene (present in both the EBV genome and all reprogramming plasmids) and 
NEBNext High-Fidelity 2X PCR Master Mix. For the sample with detectable EBNA-1, we also performed genomic 
PCR using primers to amplify a region common to all PXCLE reprogramming plasmids, and primers that amplify the 
BBRF1/LMP2 gene found only in the EBV genome to determine the source of foreign DNA. Primer sequences are 
available in S6 Table. Fibroblast DNA containing reprogramming plasmids at 0.02 pg/µL was used as a positive 
control for the PXCLE and EBNA-1 primer sets. LCL DNA (from YRI lines 18508 and 19238) were used as positive 
controls for the EBV and EBNA-1 primer sets. Fibroblast DNA was used as a negative control for all primer sets. 

RNA was extracted using ZR-Duet DNA/RNA MiniPrep kits according to the manufacturer’s instructions with the 
addition of a DNAse treatment step prior to RNA extraction. cDNA was then synthesized using Maxima First 
Strand cDNA Synthesis Kit (Thermo-Scientific.) RT-PCR for endogenous transcripts of three pluripotency-related 
transcription factors was performed for all iPSC lines using SYBR Select master mix (Life Technologies.) Primers 
sequences are available in S6 Table. Data were analyzed using Viia7 software (Life Technologies). All expression 
levels were normalized to GAPDH.  Expression was measured relative to a randomly selected iPSC line.  

Gene Expression Quantification 
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Cell pellets were obtained from LCLs immediately before transfection and from stable iPSCs after at least ten 
passages. RNA concentration and quality was estimated using the Agilent 2100 Bioanalyzer. Donor expression 
profiles were quantified using Illumina HumanHT-12 v4 Expression BeadChip Microarrays by the Functional 
Genomics Core at University of Chicago. Samples were hybridized across three array batches. Biological replicates 
from an individual were assigned to different batches to exclude a relationship between batch and individual. The 
array data were also used for the PluriTest assay as described previously [23]. 

Data Processing and Analysis 

Raw probe data were filtered for probes whose target transcripts were detected as expressed (P < 0.05) in at least 
two samples. Probes targeting expressed transcripts were then mapped to the hg19 reference genome and those 
that did not map uniquely to an Ensembl gene ID, or contained a HapMap SNP with MAF < 0.01 in CEU 
populations were excluded as described previously [15]. After filtering, probe intensities from all samples were 
background corrected, quantile-normalized, and log-2-transformed using the R package ‘lumi’ [30]. For genes 
represented by multiple probes, only the 3’ most probe was included in subsequent analyses to represent the 
most complete transcript. Finally, array batch was corrected for using an empirical Bayes method implemented in 
the R package ‘sva’[24,31] This data is available in S1 Table.  

Differential expression was estimated using a linear model based empirical bayes method implemented in the R 
package ‘limma [25]’. Dendrograms were generated for matrices of pairwise Pearson product-moment correlation 
coefficients. For principal component analysis, expression data was mean-centered by gene across all individuals. 
The outlier individual 4-2 was omitted prior to hierarchical clustering analysis and PCA. All analyses, figures, and 
tables presented in the supplement include data from all individuals. Proportion of variance due to donor was 
estimated as the adjusted R2 value from a linear model including a term for each individual. Genes with FDR-
adjusted p-values < 0.05 from a one-way ANOVA across individuals were classified as significantly associated with 
donor. eQTL data were downloaded from the Pritchard group eQTL browser:  http://eqtl.uchicago.edu. Functional 
group enrichment was assessed using the web-based gene annotation database Lynx: http://lynx.ci.uchicago.edu 
using all expressed genes subjected to our filtering criteria as background. 
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Figures 

 

 

Figure 1. Study design. Three independent lymphoblastoid cell lines (LCLs) were generated for each of six 
unrelated Caucasian individuals. LCLs were frozen and thawed seven times. After the seventh thaw, the LCLs were 
reprogrammed to iPSCs. Gene expression data was collected from LCLs immediately before reprogramming and 
from stable iPSC lines.  

  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2015. ; https://doi.org/10.1101/013631doi: bioRxiv preprint 

https://doi.org/10.1101/013631
http://creativecommons.org/licenses/by-nd/4.0/


 13 

 

Figure 2. iPSC generation and validation. A. Representative embryoid body staining for iPSC line 5-2 
demonstrating differentiation potential for endoderm, mesoderm, and ectoderm lineages. See S1 Fig. for results 
from all lines. Scale bars represent 200 µm B. Results from qPCR for three endogenous pluripotency-related 
transcription factors, normalized to GAPDH. iPSC 5-1 was randomly chosen as a reference sample. 
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Figure 3. Improved clustering properties after reprogramming to iPSCs.  A. Results from hierarchical clustering 
analysis of microarray gene expression and expression data projections on principal components axes 1 and 2 
from cycle 7 LCLs and B. iPSCs.  
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Figure 4.  Comparison of ability to detect inter-individual gene expression variation. Density plot of between 
donor variance to within donor variance in gene expression for all expressed genes in iPSCs and LCLs. The dotted 
line indicates the threshold ratio corresponding with significant association between gene expression and donor. 
X-axis was truncated at 8.0; 0.77% of the data are not shown. B. Density plot of total variance in LCLs and iPSCs. X-
axis was truncated at 0.1; 3.4% of the data are not shown. 
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Figure 5. Genes with eQTLs are highly variable in both cell types. Boxplot of coefficients of variation of gene 
expression in genes with and without eQTLs previously identified in LCLs [6], plotted for LCLs and iPSCs. 
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Supporting Information Legends 
S. Figure 1: Embryoid body assay: Immunocytochemistry approach to test for a cell line’s ability to spontaneously 
differentiate through endoderm: HNF3β and α-fetoprotein(AFP), mesoderm: smooth muscle actin (SMA), and 
ectoderm: nestin lineages. Scale bar: 200 μm. Individual channel levels, brightness, and contrast were adjusted 
using Adobe Photoshop CS6. 

S. Figure 2: PCR for EBNA-1: Reprogramming vectors and Epstein-Barr virus are absent in all iPSC lines except 3-2 
(see Figure S3) 

1.4-1 iPSC, 2. 6-3 iPSC, 3. 5-2 iPSC, 4. 3-3 iPSC, 5. 3-2 iPSC, 6. 6-2 iPSC, 7. 2-3 iPSC, 8. 5-1 iPSC, 9. 1-2 iPSC, 
10. 1-1 iPSC, 11. 3-1 iPSC, 12. 3-3 iPSC, 13. 2-2 iPSC, 14. 2-1 iPSC, 15. 4-2 iPSC, 16. 1-3 iPSC, 17. 6-1 iPSC, 
18. Reprogramming plasmids (positive control) 19. LCL DNA (YRI lines 18508 and 19238, positive control). 
20. Fibroblast DNA (negative control), 21. Water 

S. Figure 3: PCR for PCXLE (plasmid) and EBV genome for iPSC line 3-2: iPSC 3-2 exhibits presence of EBV and 
absence of reprogramming plasmids. 

1.3-2 iPSC/EBNA-1 primer set, 2. 3-2 iPSC/PXCLE primer set, 3. 3-2 iPSC/EBV primer set, 4. Reprogramming 
plasmid template/EBNA-1 primer set, 5.Reprogramming plasmid template/PXCLE primer set, 6. 
Reprogramming plasmid template/EBV primer set, 7. LCL DNA/EBNA-1 primer set, 8. LCL DNA/PCXLE 
primer set, 9. LCL DNA/EBV primer set. 10. Fibroblast DNA/EBNA-1 primer set 11. Fibroblast DNA/PCXLE 
primer set 12. Fibroblast DNA/EBV primer set. 

S. Figure 4: Clustering Analysis: A. Results from hierarchical clustering analysis of microarray gene expression and 
expression data projections on principal components axes 1 and 2 from cycle 7 LCLs and B. iPSCs. Includes data 
from all lines. 

S. Figure 5: Correlation Heatmaps: Heatmap generated from pairwise correlation matrix (pearson product-
moment correlation coefficients) for A. LCLs and B. iPSCs. Includes data from all lines. 

S. Figure 6: Within and between individual expression correlation:  Pairwise Pearson correlation coefficients for 
gene expression data from lines derived from the same individual and across different individuals for both cell 
types. iPSCs demonstrate increased correlation both within and across individuals compared with LCLs. Includes 
data from all lines. 

S. Figure 7: Density plots of gene expression variance: A. Density plot of between donor variance to within donor 
variance in gene expression for all expressed genes in iPSCs and LCLs including data from all lines. The dotted line 
indicates the threshold corresponding with significant association between gene expression and individual of 
origin. X-axis was truncated at 8.0; 0.67% of the data are not shown.  B. Density plot of total variance in LCLs and 
iPSCs including data from all lines. X-axis was truncated at 0.1; 3.7% of the data are not shown. 

S. Figure 8: Unadjusted p-values for donor effect: Histogram of unadjusted p-values from ANOVA F-test across 
the factor individual of origin for A. iPSCs and B. LCLs. Includes data from all lines. 

S. Figure 9: Coefficient of variation in genes with and without eQTLs: Boxplot of coefficients of variation of gene 
expression in genes with and without eQTLs previously identified in LCLs plotted for LCLs (P < 10-10) and iPSCs (P = 
0.01). Includes data from all lines.   
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S. Figure 10: Expression in genes with a donor effect in iPSCs: Mean gene expression levels for genes for which a 
donor effect was detected in iPSCs compared to all genes. Genes with a strong iPSC donor effect are expressed in 
LCLs, in fact with a higher mean expression value than the genome-wide average (P < 10-15). These genes exhibit 
significantly higher expression than the genome-wide average in iPSCs as well (P < 10-15) 

S. Table 1: Expression data and analysis results for all 15,306 expressed genes. Columns 1:34: processed 
expression levels (see methods) for each sample, 35: p-value from test for differential expression between LCLs 
and iPSCs (limma) 36: FDR-adjusted p-value for differential expression between LCLs and iPSCs (limma). 37: FDR- 
adjusted F-test p-values from test for donor effect in iPSCs. 38: FDR- adjusted F-test p-values from test for donor 
effect in LCLs. 

S. Table 2: Sample information: Includes the following information for all lines: sample ID, gender, 
reprogramming, extraction, and array batch assignments and dates, RIN scores, passage of RNA collection for 
iPSCs, and PluriTest scores for all samples.  

S. Table 3: Euclidean distances between clusters in principal components analysis: Euclidean distances of sample 
projections on the first two principle component axes within and between individuals averaged over all samples 
for each cell type, demonstrating significantly lower within-individual distances compared to between-individual 
distances in iPSCs but not LCLs, regardless of outlier inclusion status.  

S. Table 4: Lynx enrichment analysis in LCLs: Tissue and disease enrichment results for genes with a significant 
donor effect in LCLs at an FDR-cutoff of 0.05. Data downloaded from the online database Lynx. 

S. Table 5: Lynx enrichment analysis in iPSCs: Tissue and disease enrichment results for genes with a significant 
donor effect in iPSCs at an FDR-cutoff of 0.05. Data downloaded from the online database Lynx. 

S. Table 6: PCR primer information: Sequence, use, and source of primers used for PCR and qPCR. 
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