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SOFTWARE

Software for the analysis and visualization of
deep mutational scanning data

Jesse D. Bloom

Abstract

Background: Deep mutational scanning is a
technique to estimate the impacts of mutations on
a gene by using deep sequencing to count
mutations in a library of variants before and after
imposing a functional selection. The impacts of
mutations must be inferred from changes in their
counts after selection.

Results: | describe a software package,
dms_tools, to infer the impacts of mutations from
deep mutational scanning data using a
likelihood-based treatment of the mutation counts.
| show that dms_tools yields more accurate
inferences on simulated data than the widely used
but statistically biased approach of calculating
ratios of counts pre- and post-selection. Using
dms_tools, one can infer the preference of each
site for each amino acid given a single selection
pressure, or assess the extent to which these
preferences change under different selection
pressures. The preferences and their changes can
be intuitively visualized with sequence-logo-style
plots created using an extension to weblogo.
Conclusions: dms_tools implements a statistically
principled approach for the analysis and subsequent
visualization of deep mutational scanning data.

Keywords: deep mutational scanning; sequence
logo; amino-acid preferences

Background

Deep mutational scanning is a high-throughput experi-
mental technique to assess the impacts of mutations on
a protein-coding gene [1]. Figure 1 shows a schematic
of deep mutational scanning. A gene is mutagenized,
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and the library of resulting variants is introduced into
cells or viruses, which are then subjected to an exper-
imental selection that enriches for functional variants
and depletes non-functional ones. Deep sequencing of
the variants pre- and post-selection provides informa-
tion about the functional impacts of mutations. Since
the original description of deep mutational scanning by
Fowler et al [2], the technique has been applied to a
wide range of genes [3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14],
both to measure mutational tolerance given a sin-
gle selection pressure as in Figure 1A, or to identify
mutations that have different effects under alterna-
tive selections as in Figure 1B. New techniques to
create comprehensive codon-mutant libraries of genes
make it possible to profile all single amino-acid muta-
tions [15, 16, 8, 9, 10], while new techniques for tar-
geted mutagenesis of mammalian genomes enable deep
mutational scanning to be applied across the biological
spectrum from viruses and bacteria to human cells [17].

A key component of deep mutational scanning is
analysis of the data: First, raw reads from the deep
sequencing must be processed to count mutations pre-
and post-selection. Next, the biological effects of mu-
tations must be inferred from these counts. The first
task of processing the reads is idiosyncratic to the spe-
cific sequencing strategy used. But the second task of
inferring mutational effects from sequencing counts is
amenable to more general algorithms. However, only a
few such algorithms have been described [18, 19]. Here
I present user-friendly software, dms_tools, that infers
mutational effects from sequencing counts. Before de-
scribing the algorithms implemented in dms_tools and
illustrating its use on existing and simulated data, I
first discuss issues associated with inferring mutational
effects from sequencing counts.

The nature of deep mutational scanning data.

The data consist of counts of variants pre- and post-
selection. The approach presented here treats each
site in the gene separately, ignoring epistatic cou-
pling among mutations. This aspect of the approach
should not be construed as a suggestion that interac-
tions among mutations are unimportant; indeed, sev-
eral studies have used deep mutational scanning to ex-
amine pairwise epistasis [14, 20, 21], and techniques
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have been described to obtain linkage between distant
sites [22, 23]. However, the exploding combinatorics
of multiple mutations (a 500-residue protein has only
19 x 500 ~ 10* single mutants, but 192 x M &
4 x 107 double mutants and 193 x 49570&!3! ~ 10 triple
mutants) make it currently plausible to comprehen-
sively characterize only single mutations to all but the
shortest genes. Treating sites independently is there-
fore not a major limitation for most current datasets.
Eventually the approach here might be extended to
include coupling among mutations.

The data for each site r is characterized by the se-
quencing depth (total number of counts); let NP'e,
Npest. Nt and N$2 denote the depth at r for
each of the four libraries in Figure 1 (pre-selection,
post-selection, selection s1, and selection s2). Typical
depths for current experiments are N ~ 10°. Denote
the counts of character x (characters might be nu-
cleotides, amino acids, or codons) at r as nP's, nP%",
nil,, and ni?. The values of n,, for characters x
that differ from the wildtype identity wt (r) depend
on both the depth N and the average per-site mu-
tation rate. Typical experiments introduce about one
mutation per gene, so the average mutation rate is
i ~ 1/L where L is the length of the gene. Therefore,
if a 500-codon gene is sequenced at depth N ~ 109,
we expect Nz ~ 2000 counts of non-wildtype codons
at each site. Since there are 63 mutant codons, the
average pre-selection counts for a mutation to a spe-
cific # # wt(r) will be nP’y ~ 30, with counts for
most mutations deviating from this average due to
biases in creation of the mutant library and random-
ness in which molecules are sequenced. Counts in the
post-selection libraries will further deviate from this
average due to selection. Therefore, even at depths
N ~ 106, the actual counts of most mutations will be
quite modest.

The goal: inferring site-specific amino-acid preferences.
The goal is to estimate the effects of mutations from
changes in their counts after selection. Let py 4, frz,

5%, and f52 denote the true frequencies of x at r that
would be observed for the four libraries in Figure 1 if
we sampled at infinite depth in both the actual experi-
ment and the sequencing. If we knew these frequencies,
we could calculate parameters that reflect the effects
of mutations. One parameter that characterizes the ef-
fect of mutating r from wt (r) to x for the experiment
in Figure 1A is the enrichment ratio, which is the rela-
tive frequency of mutations to x after selection versus
before selection:

_ fr,z/fr,wt(r)

Pra :
/’Lr,w/ur,wt(r)

(1)
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Beneficial mutations have ¢, , > 1, while deleterious
ones have ¢, , < 1. A related parameter is the prefer-
ence Ty, of r for z. At each site, the preferences are
simply the enrichment ratios rescaled to sum to one:

. o ¢r,z o fr,x/,ulr,m
rr — - )
Zy Pry Zy froy/ by

(2)

or equivalently

Fro = ra X Hra (3)
Zy Ty X fry
where y is summed over all character identities (all nu-
cleotides, codons, or amino acids). The preferences can
be intuitively visualized (Figure 1A) and interpreted
as the equilibrium frequencies in substitution models
for gene evolution [9, 24] (after accounting for uneven
mutational rates [25, 26]).

The challenge of statistical inference from finite counts.
Equations 1 and 2 are in terms of the true frequencies
trzs fra, etc. But in practice, we only observe the
counts in the finite sample of sequenced molecules. The
computational challenge is to estimate the preferences
(or enrichment ratios) from these counts.

The most naive approach is to simply substitute the
counts for the frequencies, replacing Equation 1 with

npet+P
oSt
n?,wt(r) +P

WP P (4)

¢r,z =

where P (often chosen to be one) is a pseudocount
added to each count to avoid ratios of zero or infinity.

However, Equation 4 involves ratios of counts with
values ~ 10 to 100 — and as originally noted by Karl
Pearson [27, 28], ratios estimated from finite counts
are statistically biased, with the bias increasing as the
magnitude of the counts decrease. This bias can prop-
agate into subsequent analyses, since many statistical
tests assume symmetric errors. The problems caused
by biases in uncorrected ratios have been noted even
in applications such as isotope-ratio mass spectrome-
try [29] and fluorescent imaging [30], where the counts
usually far exceed those in deep mutational scanning.

Taking ratios also abrogates our ability to use the
magnitude of the counts to assess our certainty about
conclusions. For instance, imagine that at a fixed
depth, the counts of a mutation increase from a pre-
selection value of 5 to a post-selection value of 10.
While this doubling suggests that the mutation might
be beneficial, the small counts make us somewhat un-
certain of this conclusion. But if the counts increased
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from 20 to 40 we would be substantially more certain,
and if they increased from 100 to 200 we would be
quite sure. So only by an explicit statistical treatment
of the counts can we fully leverage the data.

Here I describe a software package, dms_tools, that
infers mutational effects in a Bayesian framework us-
ing a likelihood-based treatment of the counts. This
software can be used to infer and visualize site-specific
preferences from experiments like Figure 1A, and to
infer and visualize differences in preferences under al-
ternative selections from experiments like Figure 1B.

Implementation and Results
Algorithm to infer site-specific preferences.
dms_tools uses a Bayesian approach to infer site-
specific preferences from experiments like those in Fig-
ure 1A. The algorithm calculates the likelihoods of the
counts given the unknown preferences and mutation
/ error rates, placing plausible priors over these un-
known parameters. The priors correspond to the as-
sumption that all possible identities (e.g. amino acids)
have equal preferences, and that the mutation and er-
ror rates for each site are equal to the overall average
for the gene. MCMC is used to calculate the posterior
probability of the preferences given the counts.

This algorithm is a slight modification of that in the
Methods of [9]; here the algorithm is described anew
to explain the implementation in dms_tools.

Optional controls to quantify error rates.

Some sequencing reads that report a mutation may
actually reflect an error introduced during sequenc-
ing or PCR rather than an actual mutation that ex-
perienced selection. Errors can be quantified by se-
quencing an unmutated gene, so that any counts at
r of & # wt () for this control reflect errors. In some
cases (e.g. sequencing an RNA virus where the post-
selection libraries must be reverse-transcribed), error
rates for the pre- and post-selection libraries may differ
and so be described by different controls. Let NS"Pre
and NP be the depth and ng;P* and ne”f"’bt be
the counts of z in the pre- selection and post- selection
error controls, respectively. Define €, , and p;, to be
the true frequencies of errors at r from wt (r) to x in
the pre- and post-selection controls, respectively.

Likelihoods of observing specific mutational counts.
Define vectors of the counts and frequencies for all

characters at each site r, i.e. nP™® = ( cymPT ~-),
nrl-)OSt: Y E,O:tf")a“r:("'7MT,I5"'); fr:
(---, frazs ), etc. Also define 7wy = (--+ ,7p g, --) of

the preferences for each r, noting that Equation 3 im-

plies f, = % where o is the Hadamard product.
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The likelihoods of some specific set of counts are:

Pr (nﬁrrpre I N:rrprc’ er) —
Multl (nﬁrrpre; N:rrpre7 er)
Pr (nﬁrrpost | N:rrpOSt,pr) —_
Multi (nﬁrrpost; N:rrpost’pr)
Pr(nP™® | NP, pir, &) =
Multi (nB"®; NP, py + €, — 8y)
Pr (nrp?ost | NEOStaHraﬂ'raPr) —
o 7Tr

Multl (npost Npo%t IJ’I‘
Hr - Ty

+pr — 6!‘) ®)

where Multi is the multinomial distribution, 6, =
(~ 5 O wt(r)s ) is a vector with the element corre-
sponding to wt () equal to one and all other elements
zero (0, is the Kronecker delta), and we have assumed
that the probability that a site experiences both a mu-
tation and an error is negligibly small.

Priors over the unknown parameters.
We specify Dirichlet priors over the parameter vectors:

Pr (7,) = Dirichlet (mry; ar X 1) (9)
Pr (p,) = Dirichlet (py; o) X Ny X ap ;) (10)
Pr (&) = Dirichlet (€;; e X Ny X ap,c) (11)
Pr (p,) = Dirichlet (py; ap X Ny X ayp) (12)

where 1 is a vector of ones, N, is the number of char-
acters (64 for codons, 20 for amino acids, 4 for nu-
cleotides), the a’s are scalar concentration parameters
> 0 (by default dms_tools sets the a’s to one). For
codons, the error rate depends on the number of nu-
cleotides being changed. The average error rates €,
and p,, for codon mutations with m nucleotide changes
are estimated as

€m = L Z Nerrpre Z nerrpre X 5m »Da w(r) (13)

E § crrpost
Pm L Nerrpost 7’L X 67’” Dz,wt('r)

(14)

where D, y(r) is the number of nucleotide differences
between z and wt (r). Given these definitions,

Em
Ar,e = ( Ci X Om,D, wt(r)”“) (15)

Ar,p = ( Zi X 57n , D, Wt(,)a"'> (16)
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where C,,, is the number of mutant characters with m
changes relative to wildtype (for nucleotides Cy = 1
and C; = 3; for codons Cp =1, C; =9, C2 = C3 = 27).

Our prior assumption is that the mutagenesis intro-
duces all mutant characters at equal frequency (this
assumption is only plausible for codons if the muta-
genesis is at the codon level as in [15, 16, 8, 9, 10]; if
mutations are made at the nucleotide level such as by
error-prone PCR then characters should be defined as
nucleotides). The average per-site mutagenesis rate is
estimated as

m>1

1 1
B= ZZW >

" zAwt(r)

I ~
ar, = ( am+51,wt(7) X[]‘Iu’]?) (18)

Character types: nucleotides, amino acids, or codons.
dms_tools allows four possibilities for the type of char-
acter for the counts and preferences. The first three
possibilities are simple: the counts and preferences can
both be for any of nucleotides, amino acids, or codons.

The fourth possibility is that the counts are for
codons, but the preferences for amino acids. In this
case, define a function mapping codons to amino acids,

(19)

A(W): < 725G,A(.’I)) me"')

where w is a 64-element vector of codons z, A (w)
is a 20- or 2l-element (depending on the treatment
of stop codons) vector of amino acids a, and A (z)
is the amino acid encoded by x. The prior over the
preferences m, is still a symmetric Dirichlet (now
only of length 20 or 21), but the priors for p,, €,
and p, are now Dirichlets parameterized by A (ar,,),
A (ar,e) and A (a,, ) rather than ay ,, ar,e, and ay .
The likelihoods are computed in terms of these trans-
formed vectors after similarly transforming the counts
to A (nl}?re)’ A (HEOSt), A (n;)rrpre)7 and A (nﬁrrpost).

Implementation.

The program dms_inferprefs in the dms_tools pack-
age infers the preferences by using pystan [31] to per-
form MCMC over the posterior defined by the product
of the likelihoods and priors in Equations 5, 6, 7, 8, 9,
10, 11, and 12. The program runs four chains from dif-
ferent initial values, and checks for convergence by en-
suring that the Gelman-Rubin statistic R [32] is < 1.1
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and the effective sample size is > 100; the number
of MCMC iterations is increased until these conver-
gence is achieved. The program dms_logoplot in the
dms_tools package visualizes the posterior mean pref-
erences via an extension to weblogo [33].

Inferring preferences with dms_tools.

Application to actual datasets.

Figures 2 and 3 illustrate application of dms_tools to
two existing datasets [10, 11]. The programs require as
input only simple text files listing the counts of each
character identity at each site. As the figures show, the
dms_inferprefs and dms_logoplot programs can pro-
cess these input files to infer and visualize the prefer-
ences with a few simple commands. Error controls can
be included when available (they are not for Figure 2,
but are for Figure 3). The runtime for the MCMC de-
pends on the gene length and character type (codons
are slowest, nucleotides fastest) — but if the inference is
parallelized across multiple CPUs (using the --ncpus
option of dms_inferprefs), the inference should take
no more than a few hours. As shown in Figures 2 and 3,
the visualizations can overlay information about pro-
tein structure onto the preferences.

Figures 2 and 3 also illustrate use of dms_correlate
to assess the correlation between preferences inferred
from different biological replicates [34] of the exper-
iment. The inclusion and analysis of such replicates
provide the only sure way to fully assess the sources of
noise associated with deep mutational scanning.

Testing on simulated data.

To test the accuracy of preference-inference by dms_tools,

I simulated deep mutational scanning counts using
the preferences in Figure 2, both with and with-
out errors quantified by appropriate controls. I then
used dms_tools to infer preferences from the sim-
ulated data, and also made similar inferences using
simple ratio estimation (Equation 4). Figure 4 shows
the inferred preferences versus the actual values used
to simulate the data. For simulations with mutation
counts (quantified by the product N7 of the depth
and average per-site mutation rate) ~ 1000 to 2000,
the inferences are quite accurate. Inferences made by
dms_tools are always more accurate than those ob-
tained by simply taking ratios of mutation counts.

Algorithm to infer differential preferences.

As shown in Figure 1B, a useful extension to the ex-
periment in Figure 1A is to subject the functional
variants to two different selection pressures to iden-
tify mutations favored by one pressure versus the
other. While this experiment could in principle by
analyzed by simply comparing the initial unselected
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mutants to the final variants after the two alter-
native selections, this approach is non-ideal. In ex-
periments like Figure 1A, many mutations are en-
riched or depleted to some extent by selection, since
a large fraction of random mutations affect protein
function [35, 36, 37, 38, 39]. Therefore, the assump-
tion that all mutations are equally tolerated (i.e. the
preferences for a site are all equal, or the enrichment
ratios are all one) is not a plausible null hypothesis for
Figure 1A. For this reason, dms_tools simply infers
the preferences given a uniform Dirichlet prior rather
than trying to pinpoint some subset of sites with un-
equal preferences.

But in Figure 1B, the assumption that most muta-
tions will be similarly selected is a plausible null hy-
pothesis, since we expect to alternative selections to
have markedly different effects on only a small sub-
set of mutations (typically, major constraints related
to protein folding and stability will be relatively con-
served across different selections on the same protein).
Therefore, dms_tools uses a different algorithm to in-
fer the differential preferences under the two selections.
This algorithm combines a prior that mildly favors
differential preferences of zero with a likelihood-based
analysis of the mutation counts to estimate posterior
probabilities over the differential preferences.

Definition of the differential preferences.

Given an experiment like Figure 1B, let f3'%2'* be the
true frequency of character z at site r in the start-
ing library (equivalent to the frequency f,?,‘ft in the
figure), and let f3! and f32 be the frequencies after
selections s1 and s2, respectively. The differential pref-
erence A, , for x at r in s2 versus sl is defined by:

fstart X 71-91

sl
=== 20
UL, 20
start X + A’/Trz
s2 7,T ( ) (21)

T T Z fstart X (ﬂ—sl +A7rry)

where 75!, is the “control preference” and is treated as
a nuisance parameter, and we have the constraints

0= Z ATy

0< T + A, < 1.

(22)
(23)

If there is no difference in the effect of x at r between
selections s1 and s2, then Am, , = 0. If = at r is more
preferred by s2 than sl, then Am, ; > 0; conversely if
x at r is more preferred by s1 than s2, then Am,, <0
(see Figure 5A).
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Likelihoods of observing specific mutational counts.

Define vectors of the counts as ntar® = (... psfart ...}
for the post-selection functional variants that are
subjected to the further selections, and as n$! =
(- ,ni}z,---) and n$? = (- ,nﬁ?m,-- ) for selec-
tions sl and s2. We again allow an error control,
but now assume that the same control applies to
all three libraries (since they are all sequenced after
a selection), and define the counts for this control
as ng™ = (---,n&%,---); the true error frequencies
are denoted by &, .. Define vectors of the frequen-

cies, errors, control preferences, and differential prefer-

ences: f:tart = ( ﬁtmart’” )’ ffl = ( , 7‘?,117...),
f:2 — ( TI’...) & = (... ’grm..,)’ ﬂ.fl —
(-~-,7r;”1m,-~-), and Ay, = (- ,Am g, -+ ). Equa-
. . 1 fstarat 51 2
tions 20 and 21 imply f3* = W and f3* =
ffta"o(‘lrfl—i-A‘lrr)

£ (rsl A
The likelihoods of the counts will be multinomially
distributed around the “true” frequencies, so

PI‘( err | Nfrr;ér) Multl( err, Nfrr;ér) (24)
Pr start Nstart fstart, L) =
( | tart, E )t (25)
Multi ( star Nstart fs ar 61‘ _ 61‘)
Pr (ngh | N2 £ st g, =
fstart sl 26
Multi( st Nf%ﬁJ&r— ) (26)
Pr ( s2 | N:Q’f:tart s aAﬂ-raEr) —

fstart

s2, p7s2 r (Aﬂ-" + ﬂ-il) _
N’I’ 9 fstart (AT{I, + 71'15‘1) + £I' 61‘

Multi <

where we have assumed that the probability that a
site experiences a mutation and an error in the same
molecule is negligibly small.

(27)

Priors over the unknown parameters.
We specify Dirichlet priors over the parameter vectors:

Pr (m3') = Dirichlet (73" o1 x 1) (28)
Pr (&) = Dirichlet (&; ag X Ny X ar¢) (29)
Pr fstart —
- .
Dirichlet (ff A dgtart X Ny X ar,start)
Pr (Amw, | w5t) =
( r | r ) (31)

Dirichlet (Aﬂ'r; aar X Ny x ﬂjl) — ﬂ'ffl

where dms_tools by default sets all the scalar concen-
tration parameters (a’s) to one except aar, which is
set to two corresponding to a weak expectation that
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the A7 values are close to zero. The average error rate
&m for mutations with m nucleotide changes is

err
Z Nerr Zn x 6”” Do wi(r)?

(32)

and so

a"’ﬁ: ( ZXészwt(r)’...>' (33)

Our prior assumption is that all mutations are at equal
frequency in the starting library (this assumption is
unlikely to be true if the starting library has already
been subjected to some selection, but we lack a ratio-
nale for a more informative prior). The average muta-
tion frequency in the starting library is

W = % Z Nﬁltart Z Start Z gm; 34

wF#w(r) m>1
and so
ftart
N ( i x [1- 7 )
(35)
Implementation.

The program dms_inferdiffprefs in the dms_tools
package infers the differential preferences by perform-
ing MCMC over the posterior defined by the product
of the likelihoods and priors in Equations 24, 25, 26,
27, 28, 29, 30, and 31. The MCMC is performed as de-
scribed for the preferences, and characters can again
be any of nucleotides, amino acids, or codons. The pro-
gram dms_logoplot visualizes the posterior mean dif-
ferential preferences via an extension to weblogo [33].
In addition, dms_inferdiffprefs also creates text
files that give the posterior probability that Am,. , > 0
or < 0 (in other words, the probability that there is
differential selection).

Inferring differential preference with dms_tools.

To test the accuracy of differential preference infer-
ence by dms_tools, I simulated an experiment like
that in Figure 1B with the starting counts based
on Melnikov et al’s actual deep mutational scanning
data of a Tn5 transposon [10]. As show by Figure 5,
dms_inferdiffprefs accurately infers the differential
preferences at typical experimental depths. The results
are easily visualized with dms_logoplot. To provide a
second illustration of differential preferences, Figure 6
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shows an analysis of the data obtained by Wu et al
when they performed an experiment like that in Fig-
ure 1B on nucleotide mutants of the influenza NS gene
in the presence or absence of interferon treatment.

Conclusions

dms_tools is a freely available software package that
uses a statistically principled approach to analyze
deep mutational scanning data. This paper shows that
dms_tools accurately infers preferences and differen-
tial preferences from data simulated under realistic pa-
rameters. As the figures illustrate, dms_tools can also
be applied to actual data with a few simple commands.
The intuitive visualizations created by dms_tools as-
sist in interpreting the results. As deep mutational
scanning continues to proliferate as an experimental
technique [1], dms_tools can be applied to analyze the
data for purposes such as guiding protein engineer-
ing [3, 10], understanding sequence-structure-function
relationships [4, 5, 7, 14, 20], informing the develop-
ment of better evolutionary models for sequence anal-
ysis [9, 24], and probing the biology of viruses and
cells [6, 8, 11, 12, 13, 17].

Availability and requirements
e Project name: dms_tools
e Project home page:
— Documentation and installation instructions:
http://jbloom.github.io/dms_tools/
— Source code: https://github. com/jbloom/
dms_tools
Operating system(s): Linux
Programming language: Python
Other requirements: pystan, weblogo
License: GNU GPLv3
Restrictions to use by non-academics: None

Data and code for figures in this paper.
The data and computer code used to generate the fig-
ures are in the tagged version of the dms_tools source
code at https://github.com/jbloom/dms_tools in
examples subdirectory. The LaTex source for this pa-
per is in the paper subdirectory.
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Figure 1 A deep mutational scanning experiment. (A) A gene is mutagenized to create a library that contains all single codon
mutations. The mutant library is introduced into cells or viruses and subjected to a functional selection that enriches beneficial
mutations and depletes deleterious ones. Deep sequencing is used to count mutations in a sample of the variants present pre- and
post-selection. Using dms_tools, the data can be analyzed to infer the “preference” of each site for each amino acid; in the
visualization, letter heights are proportional to the preference for that amino acid. (B) The experiment can be extended by
subjecting the library of functional variants to two different selection pressures, and using deep sequencing to assess which variants
are favored in one condition versus the other. Using dms_tools, the data can be analyzed to infer the “differential preference” of
each site for each amino acid in the alternative selection s2 versus the control selection sl1; in the visualization, letter heights above
or below the line are proportional to the differential preference for or against that amino acid.
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Figure 2 Site-specific preferences from deep mutational scanning of a Tnb transposon. Melnikov et al [10] performed deep
mutational scanning on a Tn5 transposon using kanamycin selection, and reported the counts of amino-acid mutations for two
biological replicates of the experiment. Here | have used dms_tools to infer the preferences. (A) Visualization of the preferences
averaged across the two replicates. (B) Correlation between the preferences inferred from each of the two replicates. Given files
containing the mutation counts, the plots can be generated as logoplot.pdf and corr.pdf with the following commands:

dms_inferprefs pre_counts_1.txt post_counts_1.txt prefs_1.txt --excludestop --ncpus -1 --chartype aa
dms_inferprefs pre_counts_2.txt post_counts_2.txt prefs_2.txt --excludestop --ncpus -1 --chartype aa
dms_correlate prefs_1.txt prefs_2.txt corr --namel "replicate 1" --name2 "replicate 2" --corr_on_plot
dms_merge prefs.txt average prefs_1.txt prefs_2.txt

dms_logoplot prefs.txt logoplot.pdf --nperline 53 --overlayl RSAs.txt RSA "relative solvent accessibility"
--overlay2 SSs.txt SS "secondary structure"
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Figure 3 Site-specific preferences from deep mutational scanning of influenza hemagglutinin. Thyagarajan and Bloom [11]
performed deep mutational scanning on influenza hemagglutinin, and reported the counts of codon mutations for three biological
replicates of the experiment. Here | have used dms_tools to infer the preferences. (A) Visualization of the preferences averaged
across the three replicates. (B) Correlations between the preferences from each pair of replicates. Given files containing the mutation
counts, the plots can be generated as logoplot.pdf, corr_1_2.pdf, corr_1_3.pdf, and corr_2_3.pdf with the following commands:
dms_inferprefs mutDNA_1.txt mutvirus_1.txt prefs_1.txt --errpre DNA_1.txt --errpost virus_1.txt --ncpus -1
dms_inferprefs mutDNA_2.txt mutvirus_2.txt prefs_2.txt --errpre DNA_2.txt --errpost virus_2.txt --ncpus -1
dms_inferprefs mutDNA_3.txt mutvirus_3.txt prefs_3.txt --errpre DNA_3.txt --errpost virus_3.txt --ncpus -1

dms_correlate prefs_1.txt prefs_2.txt corr_1_2 --namel "replicate 1" --name2 "replicate 2" --corr_on_plot
dms_correlate prefs_1.txt prefs_3.txt corr_1_3 --namel "replicate 1" --name2 "replicate 3" --corr_on_plot
dms_correlate prefs_2.txt prefs_3.txt corr_2_3 --namel "replicate 2" --name2 "replicate 3" --corr_on_plot

dms_merge prefs.txt average prefs_1.txt prefs_2.txt prefs_3.txt
dms_logoplot prefs.txt logoplot.pdf --nperline 71 --overlayl RSAs.txt RSA "relative solvent accessibility"
--overlay2 SSs.txt SS "secondary structure" --excludestop

Note that unlike in Figure 2, no --chartype option is specified since the dms_inferprefs default is already codon_to_aa.
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Figure 4 Accuracy of preference inference on simulated data. Deep mutational scanning counts were simulated using the
preferences in Figure 2A and realistic parameters for mutation and error rates. The simulations were done (A) without or (B) with
sequencing errors quantified by control libraries. Plots show the correlation between the actual and inferred preferences as a function
of the product of the sequencing depth N and the average per-site mutation rate 1; real experiments typically have N ~ 1000 to
2000 depending on the sequencing depth and gene length. Preferences are inferred using the full algorithm in dms_tools (top panels)
or by simply calculating ratios of counts (bottom panels) using Equation 4 and its logical extension to include errors, both with a
pseudocount of one. The dms_tools inferences are more accurate than the simple ratio estimation, with both methods converging to
the actual values with increasing Nfi. Given files with the mutation counts, the plots in this figure can be generated as
prefs_corr.pdf and ratio_corr.pdf with commands such as:
dms_inferprefs pre.txt post.txt inferred_prefs.txt --ncpus -1
dms_inferprefs pre.text post.text ratio_prefs.txt --ratio_estimation 1
dms_correlate actual_prefs.txt inferred_prefs.txt prefs_corr --namel "actual" --name2 "inferred"
--corr_on_plot --r2
dms_correlate actual_prefs.txt ratio_prefs.txt ratio_corr --namel "actual" --name2 "inferred" --corr_on_plot
--r2
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Figure 5 Inference of differential preferences on simulated data. To illustrate and test the inference of differential preferences, the
experiment in Figure 1B was simulated at the codon level starting with the post-selection library that yielded the preferences in
Figure 2. In the simulations, 20% of sites had different preferences between the control and alternative selection. (A), dms_tools
was used to infer the differential preferences from the data simulated at N = 107, and the resulting inferences were visualized. The
overlay bars indicate which sites had non-zero differential preferences in the simulation. (B) The correlations between the inferred
and actual differential preferences as a function of N7z show that the inferred values converge to the true ones. Given files with the
mutation counts, the plots in this figure can be generated as logoplot.pdf and corr.pdf with the following commands:
dms_inferdiffprefs start.txt sl.txt s2.txt diffprefs.txt --ncpus -1
dms_logoplot diffprefs.txt logoplot.pdf --nperline 53 --overlayl actually_nonzero.txt "$\ne 0$?" "Is actual
differential preference non-zero?" --diffprefheight 0.45
dms_correlate actual_diffprefs.txt diffprefs.txt corr --namel "actual" --name2 "inferred" --corr_on_plot --r2

Note that no --chartype option is specified because the default for dms_inferdiffprefs is already codon_to_aa.
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Figure 6 Differential preferences following selection of influenza NS1 in the presence or absence of interferon. Wu et al [13]
generated libraries of influenza viruses carrying nucleotide mutations in the NS segment. They passaged these viruses in the presence
or absence of interferon pre-treatment. Here, dms_tools was used to analyze and visualize the data to identify sites where different
nucleotides are preferred in the presence versus the absence of interferon. Because the mutations were made at the nucleotide level,
the data must also be analyzed at that level (unlike in Figures 2, 3, and 5, where codon mutagenesis means that the data can be
analyzed at the amino-acid level). The plot can be generated as logoplot.pdf with the following commands:

dms_inferdiffprefs input.txt control.txt interferon.txt diffprefs.txt --ncpus -1 --chartype DNA
dms_logoplot diffprefs.txt logoplot.pdf --nperline 68 --diffprefheight 0.4



https://doi.org/10.1101/013623
http://creativecommons.org/licenses/by/4.0/

	Abstract

