
Merging OpenLifeData with SADI services
using Galaxy and Docker
Mikel Egaña Aranguren1

1Functional Genomics Group, Dpt. of Genetics, Physical Anthropology and Animal
Physiology, University of Basque Country (UPV/EHU), Spain

ABSTRACT

Semantic Web technologies have been widely applied in Life Sciences, for example by data providers
like OpenLifeData and Web Services frameworks like SADI. The recent OpenLifeData2SADI project
offers access to the OpenLifeData data store through SADI services. This paper shows how to merge
data from OpenLifeData with other extant SADI services in the Galaxy bioinformatics analysis platform,
making semantic data amenable to complex analyses, as a worked example demonstrates. The whole
setting is reproducible through a Docker image that includes a pre-configured Galaxy server with data
and workflows that constitute the worked example.

Keywords: Semantic Web, Workflow, RDF, SPARQL, OWL, Galaxy, Docker, Web Services, SADI,
OpenLifeData

INTRODUCTION
The idea behind a 3rd generation Semantic Web is to codify information on the Web in a way that
machines can directly access and process it, opening possibilities for automated analysis. Even though
the Semantic Web has not yet been fully implemented, it has been used in the life sciences, in which
Semantic Web technologies are used to integrate data from different resources with disparate schemas
[Good and Wilkinson (2006)]. The Semantic Web is based on a set of standards proposed by the W3C
(WWW Consortium1), including the following elements:

RDF (Resource Description Framework). RDF2 is a machine-readable data representation language
based on the triple, i.e., data is represented in a subject-predicate-object structure (e.g. “Cyclin participates
in Cell cycle”, Figure 1), in which the predicate and object (“participates in Cell cycle”) describe a
property of the subject (“Cyclin”). A collection of connected triples forms a graph. In a graph, there are
entities that are the object in one triple and the subject in another, connecting triples. Graphs are stored in
data bases called triple stores.

Figure 1. RDF triple. The predicate (“participates in”) goes from subject (“Cyclin”) to object (“Cell
cycle”).

SPARQL (SPARQL Protocol and RDF Query Language). SPARQL3 is a query language to extract
data from RDF graphs.

1http://www.w3.org/
2www.w3.org/standards/techs/rdf
3http://www.w3.org/standards/techs/sparql

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2015. ; https://doi.org/10.1101/013615doi: bioRxiv preprint 

https://doi.org/10.1101/013615
http://creativecommons.org/licenses/by-nc/4.0/


OWL (Web Ontology Language). OWL4 is a knowledge representation language for asserting general
ideas about data (e.g. “A protein participates in at least one biological process”), using complex axioms
so that automated reasoning can be applied. Therefore, OWL is used to create ontologies that codify
the consensus of a community about their knowledge area. In an OWL ontology, entities are connected
through logical axioms, and there are different types of entities: individuals are the actual instances of
data (e.g. “Cyclin”, “Mikel”, etc.); properties link individuals (e.g. “Mikel lives in Bilbo”); classes are
sets of individuals that fulfill certain conditions (e.g. “Protein”, “Human”, etc.).

The backbone of the Semantic Web stack is the fact that URIs5 (Uniform Resource Identifiers) are used
to identify entities (OWL classes, instances and properties; RDF subjects, predicates and objects). This
allows one to refer to entities from external resources over the Web, e.g. in an RDF triple, the subject
might be indicated by a URI from one resource and the predicate and object by a URI from a different
resource.

The most widely used implementation of Semantic Web technologies in the life sciences and elsewhere
is the set of principles from Linked Data for publishing data on the Web6:

1. Identify every data item (entity or relation between entities) with a URI.

2. Make those URIs HTTP resolvable (dereferenceable).

3. Provide information in an open standard when an entity is requested by HTTP, preferably in RDF.
The format to provide should be defined by content negotiation between the client and the server
(e.g. RDF for an automatic agent, HTML for a human user), so that the entity and its representations
are decoupled in different URIs.

4. Assure that the information provided contains typed relations to other entities, so that the agent can
browse through those relations and discover new information, analogous to regular Web browsers.

Linked Data has already shown its value as a means for data publication in a machine-readable and
Web resolvable fashion, opening new and interesting possibilities [Aranguren et al. (2014a)]. Hence,
important data providers in the life sciences have implemented Linked Data solutions, such as UniProt7,
EBI RDF8, and OpenLifeData9, contributing to the growth of the Linked Open Data (LOD) cloud10.

On the other hand, in addition to data storage, Semantic Web standards have also been used for
creating Semantic Web Services through the Semantic Automated Discovery and Integration (SADI)
design patterns [Wilkinson et al. (2011)]. Recently, the OpenLifeData2SADI project has used SADI to
wrap the OpenLifeData data store, providing access to the whole data store through several thousand
services [González et al. (2014)]. This paper shows how to combine OpenLifeData2SADI services with
existing SADI services, using off-the-self tools from the popular Galaxy bioinformatics platform [Goecks
et al. (2010)]. Additionally, a worked example is provided as a ready to use Docker image containing a
pre-configured SADI-Galaxy server, data and an appropriate workflow, making the procedure trivially
reproducible. This approach provides multiple advantages and its reproducibility allows the potential to
examine a wide variety of modifications.

TECHNICAL BACKGROUND
SADI services
SADI is a Semantic Web standards-based set of design patterns for providing web services. SADI does
not require any new technology nor scheme for fully functional deployment (not even for the messaging
infrastructure). SADI uses off-the-self, already tested technologies (URI, RDF, and OWL) to provide all
the necessary functionality. In a SADI service, the data the server can consume is defined in an OWL
class: the client uses automated reasoning to infer whether the input RDF is a member of the OWL class,

4http://www.w3.org/standards/techs/owl
5http://tools.ietf.org/html/rfc3986
6Adapted from http://www.w3.org/DesignIssues/LinkedData.html and [González et al. (2014)].
7http://www.uniprot.org/
8http://www.ebi.ac.uk/rdf/
9http://openlifedata.org/

10http://lod-cloud.net/

2/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2015. ; https://doi.org/10.1101/013615doi: bioRxiv preprint 

https://doi.org/10.1101/013615
http://creativecommons.org/licenses/by-nc/4.0/


and if so, it pushes the RDF to the service. Once the service has processed the input, the output is formed
by the initial RDF instance augmented with additional triples. Effectively, SADI services produce chains
of new Linked Data [González et al. (2014)].

OpenLifeData2SADI
The Bio2RDF project captures existing data from different providers and publishes it again with normalised
URIs and Linked Data support [Belleau et al. (2008)]. The OpenLifeData project wraps Bio2RDF and
enhances its content negotiation functionality and axiomatic richness. Additionally, OpenLifeData2SADI
offers access to OpenLifeData through different SADI services [González et al. (2014)]. That means
that the actual data can be retrieved, in RDF, by simply calling the appropriate SADI service, and more
importantly, the output RDF can be integrated with other Linked Data/SADI output.

Galaxy
Galaxy is a Web server that offers an infrastructure in which biologists can analyse data through a
consistent Web interface (Figure 2). A history of the performed tasks is stored so that workflows
with common steps can be extracted from the history and re-run independently. The most common
bioinformatics tools are already included in the Galaxy distribution, whereas new tools can be created
by simply wrapping command line executables in Galaxy-compliant XML files. There are many public
Galaxy servers11 and Galaxy can also be installed privately.

Figure 2. Galaxy main interface (Figure reproduced from [Aranguren et al. (2014b)]). Galaxy is a Web
server with different interfaces: “Analyze data”, “Workflow”, “Shared data”, etc. The main interface,
“Analyze data” (Shown in the Figure), is where data is analysed with different tools (left column), and a
history is recorded (right column), so that workflows can be extracted (they will appear in the “Workflow”
interface). In “Shared data” histories, data, and workflows can be shared between users and/or published.

SADI-Galaxy
SADI-Galaxy12 is a Galaxy tool generator for SADI services [Aranguren et al. (2014b)]. It includes a
SADI generic client that can invoke SADI services, given the service URL and an input RDF. It also
includes an advanced functionality in that SADI-Galaxy can query a SADI registry13 and generate a
Galaxy tool for each of the retrieved services, so that the user need not know the service URL in order to
invoke it. The service simply appears as another Galaxy tool in the left column.

11https://wiki.galaxyproject.org/PublicGalaxyServers
12http://github.com/mikel-egana-aranguren/SADI-Galaxy
13http://sadiframework.org/registry

3/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2015. ; https://doi.org/10.1101/013615doi: bioRxiv preprint 

https://doi.org/10.1101/013615
http://creativecommons.org/licenses/by-nc/4.0/


Docker
Docker14 is a virtualisation engine and runtime. The key difference with Virtual Machines (VMs) is that a
Docker image does not include the whole Operating System (OS), making images lighter (in the case of
the host being a GNU/Linux system). Containers can be run, with the Docker engine, from pre-defined
images. Docker is also a GitHub-like repository of images, so a developer can build an image with the
desired computational environment (OS, libraries, configuration), software and data, starting from an
already existing image (e.g. Ubuntu 14.04) and ship it to the repository. Then anyone can pull the image
and run it, including the shipped software, without configuration/installation.

WORKED EXAMPLE
Merging OpenLifeData2SADI and SADI services in a single workflow
An example workflow shows how OpenLifeData2SADI and SADI services can be merged15 (Figures
3 and 4). The workflow answers the following question: Given a set of UniProt proteins, which ones
are related to PubMed abstracts containing the term “brain”, and what are the known SNPs from dbSNP
related to those proteins? The workflow starts from a simple list of UniProt IDs, and retrieves different
datasets from a regular SADI service (to obtain SNPs) and a set of 3 OpenLifeData2SADI services (to
obtain PubMed abstracts). The results are then merged and queried to obtain the SNPs of proteins that are
related to PubMed abstracts that contain the term. The workflow involves six steps.

Figure 3. Conceptual representation of example workflow. The workflow starts from a set of UniProt
IDs, and obtains information from OpenLifeData SADI services and regular SADI services. The output is
merged in a single dataset and queried.

0.- Configure Galaxy tools. This step is not really necessary in this case, since the Docker image with
the configured Galaxy instance is provided, but it is included for the sake of completeness. The SADI
services for this workflow are executed with the generic client (OpenLifeData2SADI services) and with
specific Galaxy tools generated from the SADI registry (The SADI service for getting the SNPs). In
the latter case, the service tool was generated by retrieving the services compliant with the OWL class
UniProt record16, retrieved with the following SPARQL query (See [Aranguren et al. (2014b)] for
details on how to generate Galaxy tools with SADI-Galaxy):

PREFIX dc:
<http://protege.stanford.edu/plugins/owl/dc/protege-dc.owl#>

PREFIX sadi: <http://sadiframework.org/ontologies/sadi.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX serv: <http://www.mygrid.org.uk/mygrid-moby-service#>

SELECT ?s

WHERE {
?s rdf:type serv:serviceDescription .
?s rdf:type sadi:Service .

14http://www.docker.com/
15This workflow, albeit new, builds upon workflows already presented in [Aranguren et al. (2014b)] and [González et al. (2014)].
16http://purl.oclc.org/SADI/LSRN/UniProt_Record

4/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2015. ; https://doi.org/10.1101/013615doi: bioRxiv preprint 

https://doi.org/10.1101/013615
http://creativecommons.org/licenses/by-nc/4.0/


?s serv:hasOperation ?op .
?op serv:inputParameter ?input .
?input serv:objectType
<http://purl.oclc.org/SADI/LSRN/UniProt_Record>

}

1.- Obtain a list of UniProt IDs of interest. This can be done, for example, by simply uploading the
list from the computer or importing it directly to Galaxy from Biomart:

Accession
Q03164
Q9UKA4
Q8TDM6
Q9NQT8
Q12830
Q9HCM3
Q8TF72
Q5H8C1
Q9UGU0
B2RWN9
A4UGR9
...

Figure 4. Screenshot of the actual Galaxy workflow that implements the general idea described in
Figure 3. The workflow executes two groups of SADI services, and therefore the input UniProt IDs must
be converted into two RDF datasets, but the first steps of the process are shared (from “Input Dataset” to
“Cut”). Then the appropriate RDF triple is added to each UniProt ID (from “Add column” to “RDF
Format”) and SADI services are called (“SADI services generic caller”). The output of the SADI services
and the input RDF is merged in a single graph and then queried, producing the results in TSV format and
HTML format.

2.- Convert the input to RDF. In order for the data to be consumed by the SADI services, it needs
to be converted to RDF. Additionally, an rdf:type triple must be added to each ID asserting the
OWL input class for each set of services, producing two different inputs from the same UniProt IDs list:

5/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2015. ; https://doi.org/10.1101/013615doi: bioRxiv preprint 

https://doi.org/10.1101/013615
http://creativecommons.org/licenses/by-nc/4.0/


rdf:type http://openlifedata.org/uniprot vocabulary:Resource for OpenLife-
Data2SADI services and rdf:type http://purl.oclc.org/SADI/LSRN/UniProt Record
for the service to retrieve SNPs (getdbSNPRecordByUniprotID). For example:

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="http://openlifedata.org/uniprot:Q03164">
<rdf:type rdf:resource="http://openlifedata.org/

uniprot_vocabulary:Resource"/>
</rdf:Description>
<rdf:Description rdf:about="http://openlifedata.org/uniprot:Q9UKA4">
<rdf:type rdf:resource="http://openlifedata.org/

uniprot_vocabulary:Resource"/>
</rdf:Description>

...

3.- Send the appropriate input to services. Each of the RDF inputs is send to OpenLifeData2SADI
services (3 services in a row) and getdbSNPRecordByUniprotID.

4.- Merge the outputs and the inputs in a single RDF graph. Since SADI services keep track of the
inputs by way of the URIs (The predicates are simply added to the input URIs and the input URIs are
maintained in the output), the outputs of the services are merged with the inputs in a single graph.

5.- Query the merged graph with SPARQL. In this case, the UniProt entries from the input set that
are mentioned in a PubMed abstract with the term “brain” and their respective SNPs from dbSNP are
retrieved with the following query (Figure 5):

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX sio_resource: <http://semanticscience.org/resource/>
SELECT ?protein ?label ?SNP
WHERE {

?protein rdf:type
<http://openlifedata.org/uniprot_vocabulary:Resource> .

?protein sio_resource:SIO_000272 ?SNP .
?protein ?prot2hgnc ?hgnc .
?hgnc ?hgnc2omim ?omim .
?omim ?omim2pubmed ?pubmed .
?pubmed rdfs:label ?label .
FILTER (regex (?label, ’brain’))

}

Reproducing the workflow through Galaxy and Docker
The workflow can be reproduced17 through the following Docker image18:

FROM ubuntu:14.04
MAINTAINER Mikel Egaña Aranguren <fake@fake.com>
RUN apt-get update && apt-get install -y git wget vim python
python-setuptools raptor2-utils libraptor2-0
RUN easy_install rdflib
RUN wget http://www.duinsoft.nl/pkg/pool/all/update-sun-jre.bin
RUN sh update-sun-jre.bin
RUN git clone
http://github.com/mikel-egana-aranguren/SADI-Galaxy-Docker.git
CMD /SADI-Galaxy-Docker/galaxy-dist/./run.sh

17In fact a user can simply create a new image pasting this instructions in a Docker file, since the appropriate Galaxy instance,
configured and including data, is downloaded when cloning the GitHub repository (RUN git clone ...).

18http://github.com/mikel-egana-aranguren/SADI-Galaxy-Docker

6/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2015. ; https://doi.org/10.1101/013615doi: bioRxiv preprint 

https://doi.org/10.1101/013615
http://creativecommons.org/licenses/by-nc/4.0/


Figure 5. The result of the workflow is a list of PubMed abstracts with the term “Brain”, with related
proteins and SNPs. The result can be displayed as HTML, for browsing the actual resources in their
Webs, or TSV (Tab Separated Values), for downstream analysis in Galaxy.

The image can be obtained from the Docker central registry19 by pulling it (Assuming a GNU/Linux
system with the Docker engine installed):

$ docker pull mikeleganaaranguren/sadi-galaxy

The container is run by:

$ docker run -d -p 8080:8080 mikeleganaaranguren/sadi-galaxy

The command will start a container with Ubuntu 14.04, install and configure Galaxy20 and the
appropriate libraries and tools, and will run Galaxy as a daemon on the port 808021 (Figure 6). When
the user logs in (a fake user has been defined, user: “user@user.com”, password: “useruser”), a history
will appear, with the actual data and workflow (Figure 7). The workflow can be run again in order to
reproduce the result (Figure 8).

DISCUSSION
Data integration and manipulation through RDF and SADI
The data model behind RDF, the triple, is very simple, yet many different types of data can be modelled
with it. Additionally, RDF uses URIs to identify the modelled entities. Therefore, the procedure described
herein, i.e. accessing data from different resources and integrating it with SADI, is straight-forward and
easily extendable, since it is based on moving RDF from one tool to the next. We can import only the
RDF triples we need for our analysis from OpenLifeData, and integrate them with other datasets.

Also, the RDF data model makes input preparation for SADI a naive process, since TSV data can be
easily mapped to RDF, and then mapped again to TSV for further processing, with standard Galaxy tools
for text manipulation.

Finally, many URIs from the datasets described in this process are also URLs, i.e. they not only
identify, they also locate entities on the Web. That means that, for example, many results of the final
dataset are clickable (e.g. e.g. OpenLifeData URLs, see Figure 5).

19http://registry.hub.docker.com/u/mikeleganaaranguren/sadi-galaxy/
20The Galaxy instance is very simple, with only SADI-Galaxy, other necessary tools, and no PostgreSQL data base, since it is

meant only as a demonstration. It should not be used for production and/or with big datasets.
21The port 8080 of the host is forwarded to the port 8080 in the Docker container.

7/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2015. ; https://doi.org/10.1101/013615doi: bioRxiv preprint 

https://doi.org/10.1101/013615
http://creativecommons.org/licenses/by-nc/4.0/


Figure 6. Galaxy server running as part of the Docker container. This Galaxy instance contains only the
necessary tools to reproduce the use case (left column).

Figure 7. After logging in, a history with the use case appears (right column).

Reproducibility with Galaxy and Docker
Computational reproducibility is becoming an important area in life sciences [Garijo et al. (2013); Sandve
et al. (2013)]. This use case demonstrates a procedure by which SADI services and OpenLifeData services
can be merged in a completely reproducible fashion, by implementing reproducibility in two levels:

1.- Virtualisation of computational environment (Operating System) through Docker. Docker al-
lows encapsulation of a complex environment with all the necessary data and software [Boettiger (2014)].
In this case, a Ubuntu 14.04 image is shipped, with SADI (and needed dependencies) and Galaxy com-
pletely configured, which means that the user need only log in into the Galaxy instance. The user does not
have to deal with installing and configuring Galaxy and SADI-Galaxy.

2.- Reproducibility of performed analyses through Galaxy. Galaxy is a suitable environment for
executing SADI services in a reproducible manner, since it provides an infrastructure in which workflow
management, history and provenance, and data storage are pre-established22. That means that any SADI-
Galaxy based analysis, if performed in a Galaxy instance, is easily reproducible. For example, the same
workflow can be repeated every time OpenLifeData is updated and the workflow can be modified and/or
fused with other workflows (Even if the workflows are not based on RDF/SADI).

CONCLUSION
With this setup (SADI-Galaxy on top of Docker to call OpenLifeData2SADI and SADI services) one can
simplify the calling of services and the integration of information in a completely reproducible manner.
This facilitates the distribution of example workflows, which then can be modified in new contexts,

22http://www.gigasciencejournal.com/series/Galaxy

8/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2015. ; https://doi.org/10.1101/013615doi: bioRxiv preprint 

https://doi.org/10.1101/013615
http://creativecommons.org/licenses/by-nc/4.0/


Figure 8. The workflow can be executed in the same history, using the first dataset as input. The
workflow can be modified in any way, once it is run in the current history.

providing a tool for distribution of case implementations in multi-platform environments. The use of the
Galaxy interface additionally provides a single foundation for integration of services, the construction of
RDF graphs and their subsequent querying. Here, the worked example provides a tangible illustration of
the use of Semantic Web constructs and standards for the extraction of new information from disparate
and independent services.

ACKNOWLEDGEMENTS
Peter B. Pearman from the University of Basque Country corrected the writing and provided valuable
comments about the content.

REFERENCES
Aranguren, M. E., Breis, J. T. F., and Dumontier, M. (2014a). Special issue on Linked Data for Health

Care and the Life Sciences. Semantic Web Journal, 5(2):99–100.
Aranguren, M. E., González, A. R., and Wilkinson, M. D. (2014b). Executing SADI services in Galaxy.

Journal of Biomedical Semantics, 5(1):42+.
Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., and Morissette, J. (2008). Bio2RDF: Towards a

mashup to build bioinformatics knowledge systems. Journal of Biomedical Informatics, 41(5):706–716.
Boettiger, C. (2014). An introduction to Docker for reproducible research, with examples from the R

environment. CoRR, abs/1410.0846.
Garijo, D., Kinnings, S., Xie, L., Xie, L., Zhang, Y., Bourne, P. E., and Gil, Y. (2013). Quantify-

ing reproducibility in computational biology: The case of the tuberculosis drugome. PLoS ONE,
8(11):e80278.

Goecks, J., Nekrutenko, A., Taylor, J., and Galaxy Team (2010). Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent computational research in the life sciences.
Genome biology, 11(8):R86+.

González, A. R., Callahan, A., Toledo, J. C., Garcı́a, A., Aranguren, M. E., Dumontier, M., and Wilkinson,
M. D. (2014). Automatically exposing OpenLifeData via SADI semantic Web Services. Journal of
Biomedical Semantics, 5(1):46+.

9/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2015. ; https://doi.org/10.1101/013615doi: bioRxiv preprint 

https://doi.org/10.1101/013615
http://creativecommons.org/licenses/by-nc/4.0/


Good, B. M. and Wilkinson, M. D. (2006). The Life Sciences Semantic Web is Full of Creeps! Brief
Bioinform, 7(3):275–286.

Sandve, G. K., Nekrutenko, A., Taylor, J., and Hovig, E. (2013). Ten simple rules for reproducible
computational research. PLoS Comput Biol, 9(10):e1003285.

Wilkinson, M., Vandervalk, B., and McCarthy, L. (2011). The Semantic Automated Discovery and
Integration (SADI) web service Design-Pattern, API and Reference Implementation. Journal of
Biomedical Semantics, 2(1):8+.

10/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2015. ; https://doi.org/10.1101/013615doi: bioRxiv preprint 

https://doi.org/10.1101/013615
http://creativecommons.org/licenses/by-nc/4.0/

