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Abstract—In this paper we discuss data and methodological
challenges for building bacterial communication networks using
two examples: Escherichia coli as a flagellate bacterium and of
Geobacter sulfurreducens as a biofilm forming bacterium. We first
highlight the link between the bacterial network communication
design with respect to metabolic information processing design.
The potentialities of designing routing network schemes described
previously in literature and based on bacteria motility and genetic
message exchanges will depend on the genes coding for the
intracellular and intercellular signalling pathways. In bacteria,
the “mobilome” is related to horizontal gene transfer. Bacteria
trade off the acquisition of new genes which could improve their
survival (and often their communication bandwidth), keeping
their genome enough small to assure quick DNA replication
and increase fast the biomass to speed up cell division. First,
by using a multi-objective optimisation procedure, we search
for the optimal trade off between energy production, which is
a requirement for the motility, and the biomass growth, which
is related to the overall survival and fitness of the bacterium.
We use flux balance analysis of genome-scale biochemical net-
work of Escherichia coli k-13 MG1655. Then, as a second case
study we analyze the electric properties and biomass trade-off
of the bacterium Geobacter sulfurreducens which constructs an
electric biofilm where electrons move across the nanowires. Here
we discuss the potentialities of optimisation methodologies to
design and select bacterial strains with desiderata properties.
The optimisation methodologies establish also a relation between
metabolism, network communication and computing. Moreover,
we point to genetic design and synthetic biology as key areas to
develop bacterial nano communication networks.

INTRODUCTION: COMMUNICATIONS IN BACTERIA

Bacteria colonise every environment; for example the hu-
man intestinal microbiota may contain 10'3 to 10'# bacteria
whose overall gene diversity (“microbiome”) contains at least
100 times as many genes as our own. Our microbiome has a
significantly enriched metabolism of glycans, amino acids, and
pathway-mediated biosynthesis of vitamins and isoprenoids.
The study of metabolism is the key aspect to evaluate the
role of bacteria in the environments, as well as to design
new biotechnologically useful strains. In general, the study of
metabolism can provide key insights into the understanding
of the overall behaviour of bacteria and, importantly, into
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their phenotype-genotype relationships. The experimental in-
vestigation of the metabolic capabilities of a given organism
is highly demanding in terms of both costs and wet-lab
resources. Conversely, an in silico analysis of the overall
metabolic capabilities of the system can help in predicting or
designing phenotypes or, at least, reduce the choice of useful
experiments.

Bacteria could be used to build nano communication net-
works that operate in microfluidic devices, body area networks
or other environments [1]. Bacteria are constrained by an
impermeable membrane. They have a system of surface pro-
teins regulating the exchange of information, and a molecular
system inside the cell that interprets the external information
and acts upon. The fitness of a bacterium is particularly
concentrated on the speed of dividing, but the cell division
time depends on reaching a certain biomass. In order to achieve
a biomass, the bacterium needs energy to locate a source of
food and move towards it. A bacterium typically swims by
alternating straight runs with short periods of tumbles that
randomly reorientate the next run. Motile bacteria suppress
tumbles when they head either up concentration gradients of
attractants or down gradients of repellents. Motile bacteria
synthesise proteins for chemotaxis including flagella formation
when the substrate concentration, i.e. food, becomes low. The
synthesis and function of the flagellar and chemotaxis system
requires the expression of a network of more than 50 genes,
therefore it is genomically and metabolic expensive. Using
the proteins coded by those genes, a bacterium uses receptors
to sense the spatial gradient and compares the instantaneous
concentration of carbon sources. Although existing models
of bacterial chemotaxis do not take into account the tight
coupling with the metabolism, it is known that the metabolism
modulates chemotaxis and motility behaviour. In this paper, we
study the metabolism as a trade -off between energy (required
for motility) and the biomass (required for the growth). A
decrease in biomass due to starvation would require spending
resources towards searching new source of food and therefore
accomplishing chemotaxis specific signal transduction, through
the direct modulation of flagellar rotation.

In the next sections, we describe the methodology for de-
signing strains (Pareto fronts and flux balance analysis (FBA)),
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the additional information from other omics we may use, the
relations between metabolism, computing and communications
(see also [2], [3]).

I. FLUX BALANCE ANALYSIS

The flux balance analysis (FBA) approach provides the
solutions (reaction fluxes) satisfying the optimisation of the
most efficient use of available resources, such as nutrients
[4]. Organic compounds are converted to carbon skeletons
for the synthesis of various cell components and for the
production of energy. This is possible through the regulation
of the reactions of anabolism and catabolism. We believe
that the bacterium behaviour could be analysed using multi-
optimisation techniques [5]. The result of the multi-objective
optimisation is not a single solution (such as in a single
optimisation problem), but a set of non-dominated points,
which constitutes the Pareto surface. Therefore, we can seek
the best trade-off design for the set of pathways considered,
leading to optimise simultaneously multiple cellular functions
of interest. For each Pareto optimal solution, it will be possible
to compute the robustness, the sensitivity and the identifiability
integrated with all the available data. The information on the
sensitivity (the elements that have a large influence on the
system outputs are considered sensitive) of biological networks
and pathways could be used to suggest where and how much
to modify a metabolic network.

A three-dimensional Pareto front can help reaching the
trade-off among biomass production, genome size and the
metabolism associated with them, and energy for chemotaxis
and movement (Figure 1). For example bacterial needs to
increase the biomass (biomass size influences cell division),
keep low the genome size in order to replicate quickly.
Probably for this reason, genes transitorily useful are kept on
accessory chromosomes which could be replicated in parallel
and be lost or kept. We assume that the energy for the location
of food source is in high demand and has higher priority
than the biomass growth and division. It is noteworthy that
metabolic and genome design could produce bacteria with
different motility and different tumble frequencies to fit ad
hoc network topologies. Furthermore, the capacity to respond
to gradients could be tuned by expressing different types and
amount of receptor proteins or sensor pathways.

DESIGNING PROPERTIES USING PARETO FRONT GUIDANCE

When a system cannot optimise all the tasks it performs,
a trade-off between contrasting objectives can be obtained
using a multi-objective optimisation technique For example,
two communicating organisms can harness the many-objective
Pareto optimality to find a trade-off decision that allows to
define their behaviour. The Pareto front allows to maximise
or minimise two or more target metabolites in an organism,
thus obtaining new optimal strains specialised in many aims
concurrently. By adopting a trade-off strategy, an organism
is able to optimise simultaneously several biotechnological
targets, e.g. the input and the output of the computation it
carries out. Given r objective functions fi,..., f, to optimise,
the problem of optimising in a multi-objective fashion can be
formalised as

max (f1(x), fa(x), .oy fr(0)T,
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Fig. 2. Pareto front of the biomass (y-axis) versus energy (ATP) (x-axis)

in E. coli; a more “energetic” strain would represent a choice towards an
increased motility; the biomass choice would represent a choice towards a
faster replicating strain.

where x is the variable in the search space. Without loss
of generality, in the definition all the functions are maximised
(however, minimising a function f; is equivalent to maximising
—fi). The output of a multi-objective routine is a set of Pareto
optimal points, which constitute the Pareto front. A solution
y* is Pareto optimal if there does not exist a point y such
that f(y) dominates f(y*). Formally, y* is Pareto optimal if
By stfi(y) > fi(y*) Vi=1,...,r, where f is the vector of r
objective functions that have to be maximised in the objective
space.

Bacteria can be genetically modified and the changes
described in the Pareto-front framework to find the best trade-
off between two or more requirements. Since the bacterium
has always more than one functions, the decision whether to
communicate with another bacterium has to take into account
the output of an internal multi-objective optimisation routine.
For instance, an E. coli whose objectives are the production
of acetate and biomass, obtains the Pareto front in Figure 4.
(the model taken into account is the E. coli by Orth et al.
[6].) A Pareto front produced by an organism is the set of
all the phenotypes that overcome all the feasible phenotypes
dominated on all tasks [7]. Communicating with other bacteria
is intended to increase the computational capability of the bac-
terium, and therefore moves the Pareto front towards the best
unfeasible point, which is located at the top right of the acetate-
biomass graph. Nevertheless, this can decrease the capability of
the bacterium to produce a third-objective, and therefore the
decision may require a three-objective optimisation routine.
The communication happens when two bacteria share DNA
fragments (see Figure 6).

THE MOBILOME: CONJUGATION FOR NETWORK
COMMUNICATION

Bacterial conjugation involves DNA transfer between
donor and recipient called lateral gene transfer (LGT), which
has great importance in building the genomes of prokaryotic
organisms. The LGT from bacteria to humans is more likely
to occur in tumour samples than in healthy somatic cells [8],

[9].
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Trade-off among biomass production (which affects the cell duplication time), the minimal size of the genome (which affects the genome replication

time), and energy for chemotaxis, movement and other cell activities. In a first step (a), the bacterium on the left sends a piece of genome to the bacterium on
the right, which engulfs the new piece of code enriching its genome (b). This allows to produce more enrgy for movement and biomass, but at the cost of an

increased genome size.

30
25 Ty
3 **'\\
)
- 20 *
=
S
£
i \
o
§ " \k\\
<
10 \
5
0 2 4 6 8 10 12 14
Succinate [mmolh'lgDW'l]
Fig. 3. E. coli Pareto fronts for the simultaneous maximisation of succinate

and acetate production obtained by GDMO in anaerobic conditions (O; =
10 mmolh~'gDW 1), with glucose feed equal to 10 mmolh~'gDW~!. The
acetate represents sources of energy; the succinate enters the krebs cycle.

In bacteria, horizontal gene transfer is often mediated by
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Fig. 4. Result of the two-objective optimisation routine carried out on the
E. coli model. Since the communication among bacteria allows to share DNA
fragments, ant therefore increases their computational capabilities towards one
or more objectives (e.g., acetate and biomass) in which a bacterium specialises.

conjugative genetic sequences that transfer directly from cell to
cell. Integrative and conjugative sequences are mobile genetic
elements that reside within a host genome but can excise to
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Fig. 5. The tree in (a) describes the duplication events, or LGT. Recent
events are separated by short distance in the x axis, i.e. events with a low
number of mutations occurred. In (b), the LGT events occurring in a network
of three bacteria (B1-3); in green are the sensor or flagellar proteins; in red
the protein interactions. The LGT events generate often similar but not equal
metabolic networks.

form a circle and transfer by conjugation to recipient cells.
The LGT device in the cell is assembled each time there
are conditions for exchange. Gene duplication has long been
recognised as an important mechanism for the creation of
new gene functions [10]. Note that due to LGT half of all
S. aureus infections in the world are resistant to penicillin,
methicillin, tetracycline and erythromycin. Vancomycin re-
sistant bacteria were first identified in Japan in 1996, and
strains have since been found in hospitals in England, France
and the US. LGT facilitates efficient communication among
the cells, and provides them access to a global prokaryote
genome (superorganism), preventing massive extinctions of
genes. Therefore, FBA could be meaningful to provide a
methodological means to integrate superorganism metabolism.
In other words, FBA could model steady state conditions for
both metabolic, single and multiple compartment systems and
ecosystems (natural such as free external environments, gut
and other organs or endosymbiontic environments and artificial
such as microfluidic devices or other devices). The acquisition
of novel useful information comes at the cost of replicat-
ing a larger genome, spending energy content molecules or
intermediate of reactions not always directly related to cell
growth or division, increasing the resources for control. The
competition among bacteria favours efficient resource (number
of genes) management, and therefore redundant or rarely used
information is frequently lost. This results in a maintenance
of the genome size for the majority of bacterial species which
could keep additional information (such as genes coding for
proteins important for survival in antibiotics or metal rich
environment) on plasmids (accessory chromosomes). We may
think that the trade off between genome size and metabolic
richness could be described by a Pareto front representing the
two-objective optimisation.

II. TARGETS FOR DESIGNING BACTERIAL
COMMUNICATION

The surface of the bacteria contains pili, which allows the
bacteria to come together and form contacts. The pili are 1
um long and 6-7 nm diameter; they have extension speed of
400nm/s and 6nm/s. In many cases bacteria form colonies
and biofilms which make the encounters highly probable. Then

gene transfer often happens. The relationship between time and
amount of transferred genetic information is linear (after a
certain delay due to the assembling of the protein machinery)
and accurate enough to be used for identifying the order of
the genes through so called interrupted-mating. The transfer
process takes several minutes to start due to the assembling
of the related structures, but proceeds quickly. For example, a
sequence of one hundred bases could take 5 minutes for the
transfer, while 5 million bases will take approximately 100
minutes. The important property of conjugation is the meeting
distance between the bacteria.

Conjugation is mediated by self-transmissible plasmids
such as F-Plasmids, as well as phage-like sequences that have
been integrated into the bacterial chromosome, such as Integra-
tive and Conjugative Elements (ICEs). Both conjugative plas-
mids and ICEs can mediate the transfer of mobile elements by
sharing their conjugative machinery. An important observation
is that many bacteria grow in chains, i.e. dense communities
of cells, where the presence of conjugative elements in cells
can contribute to the formation of such communities.

When acquired by one cell in a chain, ICEs spread rapidly
from cell to cell within the chain by additional sequential
conjugation events. This intra-chain conjugation is inherently
more efficient than conjugation that is due to chance encoun-
ters between individual cells. Therefore, although the process
is slow because it requires building a protein complex, it
can quickly spread, where a single donor cell can convert
a population of recipient cells to donor cell status via a
process similar to epidemic spreading. Conjugation requires
coupling proteins that links the transferosome (a type IV
secretion system in Gram-negative bacteria) to the relaxosome,
a nucleoprotein complex at the origin of transfer. Although
broadly speaking, the transfer systems appear to be able to
drill a hole through any recipient cell envelope and start the
DNA transfer in a recipient-independent manner, there are
several factors and security check that affect the process. The
transfer potential of these transfer regions depends on the
integration of many signals in response to environmental and
physiological cues. Conjugative elements can be narrow or
broad host range, depending on their ability to be established
and maintained in the new host. Genetic information transfer
could be modulated by repressors and activators, which can
induced via small molecules or peptides, or in response to
excision from the host genome. An intriguing mechanism for
blocking DNA transfer between two related donor cells is
entry exclusion with many conjugative systems encoding Eex
genes as well as associated genes for surface exclusion, which
block cell-to-cell contact. It is noteworthy that bacteria such
as Enterococcus use pheromones to trigger gene expression
prior to conjugative DNA transfer with the pheromone being
released by the recipient cell. Therefore both temperature
and pheromones could be used in a device to modify the
conjugation rate.

COMMUNICATION AND TURING MACHINES

Let us now turn into the relation between computation
and metabolism inspired by Turing [11]. Turing states that
an organism, most of the time, develops from one pattern
into another. Many years later, Bray [12] argued that a single
protein is able to transform one or multiple input signals
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into an output signal, thus it can be viewed as a computa-
tional or information carrying element. Following this line
of thought, we provide a framework to show that bacteria
could have computational capability and act as molecular
machines. This relationship is based on the mapping between
the metabolism and a RM (equivalent to a Turing Machine,
TM). Specifically, we think the reactions in the bacterium as
increment/decrement instructions of the RM, where the RM
registers count the number of molecules of each metabolite.
This approach highlights the mechanical aspect of a bacterium,
which can work backwards and forwards executing reactions
through its metabolites.

It is well known that a von Neumann architecture is
composed of a processing unit, a control unit, a memory to
store both data and instructions, and input-output mechanisms.
We propose an effective formalism to map the von Neumann
architecture to an entire bacterial cell, which becomes a molec-
ular machine. We model the processing unit of the bacterium
as the collection of all its chemical reactions, so as to associate
the chemical reaction network of bacteria with a TM [13]. Here
we use GDMO [5] to obtain Pareto fronts representing multi-
objective optimisations in the metabolism. Each point of the
Pareto front provided by GDMO is a molecular machine to
execute a particular task. Pareto optimality allows to obtain
not only a wide range of Pareto optimal solutions, but also
the best trade-off design. In Figure 3 we show a Pareto front
obtained with GDMO when optimising acetate and succinate.

Optimal genetic interventions in bacteria, framed as op-
timal programs to be run in a molecular machine, can be
exploited to extend and modify the behaviour of bacteria. For
instance, programs can instruct cells to make logic decisions
according to environmental factors, current cell state, or a spe-

cific user-imposed aim, with reliable and reproducible results.

The LGT can be thought of as a process for increasing
and decreasing the computational capability of an organism,
while seeking the trade-off between computation and minimal
genome length. Let y be an array representing the sequence
of the L genes of the organism. During the evolution process,
a gene or a subsequence of genes (e.g. an operon) can be
duplicated and inserted in the sequence. Without loss of
generality, let us assume that the last k genes are duplicated:

y:(y17"'3yL) — y:(yl7-~-a)’L7J’L+17~-~7)’L+k)-

This process is called gene amplification or gene dupli-
cation. It has been estimated that 50% of E. coli genes are
paralogs i.e. have arisen from a gene duplication event, as
opposed to orthologs, which have arisen due to species diver-
gence. The condition of duplication holds at the beginning:
Yi =Yi—k, VI =L+ 1,....L+k, but it is not guaranteed at
later steps, due to the fact that the duplication is a stochastic
process. Then, after mutations occurring on new and existing
genes, the array of genes can be denoted as y = (yi,...,yr/),
where L' = L+ k. Let us suppose that y;, is responsible for the
reaction D; — D;+ H, and for the corresponding instruction
inc(i,r,j) in the Minsky’s register machine (RM, formally
defined in Section II) [14], [15]. After the duplication event,
also yr+x will be responsible for the same reaction, while
after the mutation y;.; will code for another reaction, say
Dy — Djl +H,.

The computational complexity of an organism evolves on
the basis of stochastic processes and natural selection. Indeed,
the mutation process is stochastic, and generates the possi-
bility of adding new instructions to the machine. The natural
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selection can keep or discard each new instruction. If the new
reaction inc(i’,r, j') is included in the RM, its computational
capability increases. We can deduce that each duplication
followed by a mutation shapes the computational capability of
the metabolic machine represented by its metabolism. These
processes permit to increase the range of chemical reactions
available in the organism, increasing also the range of incre-
ment and decrement instructions in the RM representing its
metabolism.

METABOLIC NETWORKS AS VEHICLES FOR
COMMUNICATION

Inspired by Brent and Bruck [16], who studied simi-
larities and differences between biological systems and von
Neumann computers, we propose a correspondence between
the von Neumann architecture and bacteria. Specifically, the
metabolism of a bacterium can be viewed as a Turing Machine.
The bacterium takes as input the substrates required for its
growth and, thanks to its chemical reaction network, produces
desired metabolites as output. The string y acts as a program
stored in the RAM [13]. Let us consider the multiset Y of
the bits of y. A partition IT of the multiset ¥ = {y,y2,...,yr}
is a collection {by,bs,...,b,} of submultisets of Y that are
nonempty, disjoint, and whose union equals Y. The elements
{bs}s=1,..p of a partition are called blocks. We denote by
P(Y;p) the set of all partitions of ¥ with p blocks. P(Y;p) has
a cardinality equal to the Stirling number, namely |P(Y;p)| =
St.p-

In order to formalise the control unit behaviour, let us
define the function:

go:{0,1} — |J P(¥:p),
yE{O,]}L

Fe{0,1}F—TIe P(T:p),

where the partition IT is uniquely determined by the pathway-
based clustering of the chemical reaction network. We can
formalise this clustering as a p-blocks partition @ of the set of
the bit indexes in the string y. In particular, if we denote by [L]
the set of the first L natural numbers, we have ® € P([L]; p)
[13]. The partition P allows the control function g¢ to partition
the multiset Y associated with the string y. Each element of the
partition IT is the submultiset b, of all the gene sets related to
reactions in the sth pathway. The processing unit of the bac-
terium could be modelled as the collection of all its chemical
reactions. Therefore, the chemical reaction network of bacteria
can be associated with a TM [17]. Let us consider the Minsky’s
register machine, i.e. a finite state machine augmented with
a finite number of registers. Formally, a Minsky machine
M = (D,ig,i;, ) is composed of a finite set D of states, a
finite set H = {H,}, of registers, and a multivalued mapping
©:D\{io} — {(H,i),(Hy,j,k) | H- € H, j,k € D}. The set
D has two distinguished elements ip,i; € D representing the
initial state and the halting state respectively. Each register
H, of the RM stores a non-negative integer. The instruction
inc(i,r, j) increments register r by 1 and causes the machine
to move from state i to state j through the mapping @(i) = j.
Conversely, the instruction dec(i,r,j, k), given that H, > 0,
decrements register by 1 and causes the machine to move
from state i to state j (@(i) = j); if H, =0, the machine

moves from state i to state k (¢(i) = k). The Minsky’s RM
has been proven to be equivalent to the TM '. Indeed, a
RM is a multitape TM with the tapes restricted to act like
simple registers (i.e. “counters”). A register is represented by
a left-handed tape that can hold only positive integers by
writing stacks of marks on the tape; a blank tape represents
the count ‘0’. The chemical reaction network of a bacterium
can be mapped to the RM by defining [17]: (i) the set of
state species {D;}, where each D; is associated with the state
i of the RM; (ii) the set of register species {H,}, where each
H, is associated with the register » of the RM, and therefore
represents the molecular count of species r. The instruction
inc(i,r, j) represents the chemical reaction D; — D+ H,, while
the instruction dec(i,r, j, k) represents either D; +H, — D or
D; — Dy depending on whether H, > 0 or H, = 0 respectively.
The molecular machine performs the “test for zero” by execut-
ing the reaction D; — Dy only when H, is over, since the rth
register cannot be decreased and the reaction D; + H, — D;
cannot take place. In the FBA approach coupled with the
metabolic machine, the variables are the fluxes of the chemical
reactions, therefore a high flux corresponds to both a high
rate of reaction and a high mass of products. Hence, given
the increment reaction inc(i,r, j), the value of H, is positively
correlated with the reaction flux; conversely, in the decrement
reaction dec(i,r, j,k), when H, > 0 the value of H, is negatively
correlated with the reaction flux. In a fixed volume V in which
the reactions occur, given two reactions inc and dec with fluxes
vy and v, respectively, the metabolism of the bacterium has a
probability of error per step equal to € =vy/(vi/V +v2).

Since the simulated TM can be universal, the correspon-
dence between metabolism and TM allows to perform any kind
of computation through a set of species and chemical reactions
characterised by their flux. As a result, bacteria can carry out
at least any computation performed by a computer. A program
embedded in a bacterium, whose metabolism works like a TM,
could be able to implement the robust knockout strategy found
by GDMO [5].

It is noteworthy that, in theory, the frequency and species
restrictions of future gene lateral transfer capacity could be
encoded in the genes being transferred to a bacterium. This
could result into changing the size of the mobilome. The
metabolic computing could also generate different partition
of bacteria that could share genetic material and co-evolve
accordingly.

III. GEOBACTER: NETWORK COMMUNICATION THROUGH
BIOFILMS

An anaerobic bacterium, Geobacter found in sediment
under the Potomac River in 1987 has soil bioremediation
capacity due to its ability to respire iron and other metals. In
2002 microbiologists further discovered that it could produce
electricity from the organic matter found in soils, sediments
and wastewater due to electrically conductive pili, sort of
hairs [18], [19], [20]. These conductive protein appendages
that transfer electrons to metal oxides and to other cells
are only 3 to 5 nanometers in diameter and more than a
thousand times longer than they are wide. The pili of a
population of this bacterium form an electro-active biofilm

IM.L. Minsky. Computation. Prentice-Hall, 1967.
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[21] that provides a direct electrochemical connection with the
electrode surface using it as electron exchanger, without the
aid of mediators. Geobacter species produce higher current
densities than any other known organism in microbial fuel
cells (for example Rhodoferax ferrireducens, Shewanella [22])
and are common colonisers of electrodes harvesting electricity
from organic wastes and aquatic sediments. On electrodes, the
bacteria produce thick, electrically conductive biofilms. These
processes can be harnessed for the bioremediation of toxic
metals and the generation of electricity in bioelectrochemical
cells. Key to these applications is a detailed understanding
of how these nanostructures conduct electrons. This discovery
not only represents a paradigm shift in biology but also in
nanotechnology.

USEFUL GEOBACTER PROPERTIES FOR COMMUNICATION
APPLICATIONS

Our studies of Pareto fronts highlight the potentialities
of choosing different strains according to the biomass -
electronic properties. A larger biomass may turn into more
dense biofilms, while optimising in a different way could
allow to obtain better electronic properties of the biofilm.
Geobacter has been shown to produce biofilms containing
exopolysaccharides [23] as well as proteinaceous structures
(pili). The biofilm matrix or extracellular polymeric substance
(EPS) or xap (extracellular anchoring polysaccharide) is a
perfect medium for entrapment of redox proteins for short-
and long-range electron transfer, in particular localisation of
essential cytochromes beyond the Geobacter outer membrane.

The biofilm, i.e. a cohesive aggregate of billions of cells,
can conduct electrons. Specifically, networks of microbial
nanowires that are able to conduct electrons, course through the
biofilm and can move charges over significant distances, e.g.
thousands of times the bacterium’s length. Since these protein
filaments can conduct electrons along their length, the biofilm
is turned into a sort of a metal that can conduct electrons as far
as the biofilm can be extended. The problem of electrical iso-
lation of a group of redox-active organisms can be associated
with the problem often found in human cities. Namely, the
electrical isolation can cause local variations in potential, thus
resulting in damage to individuals and potentially to the whole
group of organisms. Therefore, the group can benefit from
a link to a common ground [24]. The redox-active enzymes
can be spatially distributed on a biofilm, which provides a
structural matrix for enzymes, metal and mineral substrates.

Cultivation and analysis of individual bacterial species has
been at the core of experimental microbiology for more than a
century. Microbial communities rather than individual species
generally control process rates and drive key biogeochemical
cycles. Recently a community of several bacteria has been
investigated. Cellobiose served as the carbon and energy source
for C. cellulolyticum, whereas D. vulgaris and G. sulfurre-
ducens derived carbon and energy from the metabolic products
of cellobiose fermentation and were provided with sulfate
and fumarate respectively as electron acceptors [25]. Recent
experiments have shown that Geobacter’s electric nanowire
has still large evolutionary potential, which we believe can be
explored using optimisation algorithms. Lovley was able to
evolve a new strain that dramatically increases power output
per cell and overall bulk power [26]. The concentrations

needed on the electrode to produce electricity are reached
faster, due to the biofilm being thinner than earlier strains.
In this experiments, he added a tiny pushback current in the
electrode in order to select those Geobacter species able to
press harder to get rid of the electrons given by the additional
current. As a result, with respect to the original strain, he
obtained the evolution of a microorganism able to press at least
eight times more electric current across the electrode [27].

CONCLUSIONS

In this paper we have highlighted the links between bac-
terium communication, gene duplication, lateral gene transfer
events and metabolic complexity. The methodology we pro-
pose allows to optimise simultaneously several objectives, i.e.
the output of the metabolic “computation” versus communi-
cation carried out by bacteria. Population effects (a group of
same cells) and community effects (a group of different cells)
can be also investigated with optimisation techniques.

A Pareto front can help investigate the trade-off between
computation and communication. This is equivalent to identify
the optimal size of the “communication” part of the metabolic
network, namely the set of reactions responsible for move-
ment aimed at seeking food. For instance, while the whole
metabolic network of the Geobacter is responsible for the
bacterial computation, the subset of reactions responsible for
communication is involved in the production of biofilm. This
approach highlights the complex behaviour that may arise in
molecular machines; although nano communication networks
and synthetic biology are still in their infancy, we foresee
the potentialities to build and optimise synthetic organisms
that could be designed for optimising specific communication
performances and networks.

In groups of multiple interacting microbial populations,
also called microbial consortia, the recent work by Ji et al.
[28] showed that when the consortium of bacteria is thought
of as consisting of logic operating cells, it can compute
Boolean functions. In a group of interacting bacteria, the
balance of the intra-cellular amount of energy depends on the
properties of the genes and their codon usage, whereas the
global production of energy may depend on the topology of the
network [29]. These recent findings, if coupled with our work,
lead to speculate that colonies of bacteria can compute both
the optimal intra-cellular configuration for energy production
and the optimal design for the energy production of the whole
consortium.
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