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ABSTRACT

In protein evolution, due to functional and biophysical constraints, the rates of amino acid substitution
differ from site to site. Among the best predictors of site-specific rates is packing density. The packing
density measure that best correlates with rates is the weighted contact number (WCN), the sum of
inverse square distances between the site’s Cα and the other Cα . According to a mechanistic stress
model proposed recently, rates are determined by packing because mutating packed sites stresses and
destabilizes the protein’s active conformation. While WCN is a measure of Cα packing, mutations replace
side chains, which prompted us to consider whether a site’s evolutionary divergence is constrained by
main-chain packing or side-chain packing. To address this issue, we extended the stress theory to model
side chains explicitly. The theory predicts that rates should depend solely on side-chain packing. We
tested these predictions on a data set of structurally and functionally diverse monomeric enzymes. We
found that, on average, side-chain contact density (WCNρ ) explains 39.1% of among-sites rate variation,
larger than main-chain contact density (WCNα ) which explains 32.1%. More importantly, the independent
contribution of WCNα is only 0.7%. Thus, as predicted by the stress theory, site-specific evolutionary
rates are determined by side-chain packing.

Keywords: protein evolution, rate variation among sites, structural constraints, packing, contact
density, side chain

INTRODUCTION
Why do some protein sites evolve more slowly than others? Protein evolution is driven by random
mutations and shaped by natural selection (Liberles et al., 2012; Sikosek and Chan, 2014). Mutations
are selected depending on their impact on functional properties, such as the chemical nature of catalytic
residues, active site conformation, and the protein’s ability to fold rapidly and stably. Since changes of
these properties depend on the mutated site, amino acid substitution rates vary from site to site.

We can reformulate the question opening the previous paragraph: What specific properties account for
site-dependent rates of evolution? Substitution rates have been found to correlate with several properties.
Amongst the best predictors are solvent accessibility (Bustamante et al., 2000; Conant and Stadler, 2009;
Franzosa and Xia, 2009; Ramsey et al., 2011; Shahmoradi et al., 2014) and stability changes (Echave
et al., 2014). For a large data set of enzymes, it was found that the main structural determinant is the
weighted contact number WCN (Shih and Hwang, 2012; Yeh et al., 2014a,b). A site’s WCN is the sum of
inverse square distances from its Cα to the Cα s of other sites, therefore, it is a measure of Cα packing
density.

The relationship between WCN and substitution rates can be understood in terms of a mechanistic
stress model of protein evolution (Huang et al., 2014). Given an ancestral wild-type protein, the model
assumes that its native conformation is the active conformation. Mutating a site perturbs (stresses) its
interactions with other sites, destabilizing the active conformation. Such a destabilization determines the
probability of the mutation being accepted or rejected, and therefore the rate of amino acid substitutions.
Using the parameter-free Anisotropic Network Model (Yang et al., 2009), the expected destabilization
was found to be proportional to WCN, and site-specific substitution rates were predicted to decrease
linearly with increasing WCN, in agreement with observations.
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So far, substitution rate vs. WCN studies were based on main chain (Cα ) packing (Shih and Hwang,
2012; Yeh et al., 2014a; Huang et al., 2014). However, mutations replace side chains. Consider a protein
residue, e.g. Thr93 of Human Carbonic Anhidrase II (pdb code 1CA2) (Fig. 1). The environment of
the main chain (panel A) differs from that of the side chain (panel B). When Thr93 is mutated, what
environment would determine whether the mutation is accepted or rejected? More specifically: Do
site-specific substitution rates depend on main-chain packing or on side-chain packing? To address this
issue, we extended the stress model to consider main and side chains explicitly, we derived substitution
rates as a function of packing, and tested the theory on a data set of monomeric enzymes.

METHODS

The stress model
The stress model provides a mechanism for the observed correlation between rates and packing density
(Huang et al., 2014). The model is based on the idea that a mutant is viable to the extent that it spends
time in the active conformation. When a site is mutated, the interactions with its neighbors are perturbed
(stressed), which destabilizes the active conformation by an amount δV ∗, the local mutational stress.
Mutational stress is related to site-specific evolutionary rates:

Ki
∝−〈δV ∗〉i , (1)

i.e. the substitution rate of site i, Ki, decreases linearly with the mean local mutational stress, 〈δV ∗〉i
(δV ∗ averaged over mutations at i). (1) is the main equation of the stress theory.

To calculate the mutational stress, we need an energy function. Huang et al. (2014) used the parameter-
free Anisotropic Network Model (pfANM) of (Yang et al., 2009), which models the protein using an
elastic network where each residue is represented by a node placed at its Cα . Pairs of nodes are connected
by springs with force constants ki j = 1/d0

i j
2, where d0

i j is the distance between Cαi and Cα j in the active
conformation. Following (Echave, 2008; Echave and Fernández, 2010), mutations are modeled as random
perturbations of the lengths of the springs connected to the mutated site, which leads to:

Ki
∝−WCNi, (2)

where

WCNi = ∑
j 6=i

1

d0
i j

2 (3)

is the weighted contact number introduced by Lin et al. (2008) and found to be among the best structural
predictors of site-dependent evolutionary rates (Yeh et al., 2014a,b). Thus, according to the stress theory
combined with the Cα -based pfANM, substitution rates should decrease linearly with WCN.

Since point mutations replace side chains, including them explicitly might improve the predictions
of the stress theory. To explore this possibility, we model the protein as an elastic network where each
residue is represented by two nodes, one for the main chain, α , placed at the residue’s Cα , and another
for the side chain, ρ , placed at the side-chain geometric center (only α nodes for Glycines). Mutations
affect only the side chain of the mutated site. We model them adding random perturbations to the lengths
of the springs connected to the mutated site. Assuming, as before, that the force constant of the spring
connecting nodes ni and n j (n is α or ρ) is knin j = 1/d0

nin j

2, it follows that:

Ki
∝−WCNi

ρ , (4)

where

WCNi
ρ = ∑

j 6=i

(
1

d0
ρiα j

2 +
1

d0
ρiρ j

2

)
. (5)

WCNρ , defined here, is the weighted contact number of the side chain. Thus, when using the pfANM
based on main chain nodes α and side-chain nodes ρ , the stress model predicts that site-specific rates will
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depend only on the contact density of the side chain WCNρ . To check this prediction, we also consider
the main chain weighted contact number:

WCNi
α = ∑

j 6=i

(
1

d0
αiα j

2 +
1

d0
αiρ j

2

)
, (6)

According to the stress model, main-chain packing should not contribute independently to substitution
rates.

In this section, we briefly presented the main results of the stress theory. A more detailed derivation
can be found in the Appendix and in (Huang et al., 2014).

Dataset and comparison of empirical and predicted rates
To test our theory, we used the data set of (Echave et al., 2014). The set consists of 209 monomeric enzymes
of known structure covering diverse structural and functional classes. Each structure is accompanied by
up to 300 homologous sequences.

We used the empirical site-specific rates of evolution of (Echave et al., 2014). They were calculated
as follows. First, the homologous sequences for each structure were aligned using MAFFT (Multiple
Alignment using Fast Fourier Transform) (Katoh et al., 2005; Katoh and Standley, 2013). Second, using
the resulting alignments as input, Maximum Likelihood phylogenetic trees were inferred with RAxML
(Randomized Axelerated Maximum Likelyhood), using the LG substitution matrix (named after Le
and Gacuel) and the CAT model of rate heterogeneity (Stamatakis, 2014). Third, the alignment and
phylogenetic tree for each structure was used as input of Rate4Site to obtain the site-specific rates of
substitution using the empirical Bayesian method and the amino-acid Jukes-Cantor mutational model
(aaJC) (Mayrose et al., 2004). Finally, site-specific relative rates were obtained by dividing site-specific
rates by their average over all sites of the protein. We denote the empirical rates by KR4S.

For each protein, we calculated three packing density measures and predicted rates using linear fits.
For brevity, we will use the shorthand y∼ x for one-variable linear fits and y∼ x1 + x2 for two-variable
fits. Using the protein’s pdb structure, we calculated WCN, WCNα , and WCNρ , using (3), (6), and (5),
respectively. Then, we calculated predicted rates by fitting K ∼WCN, K ∼WCNα , and K ∼WCNρ to
the set of empirical rates. We also considered the two-variable fit K ∼WCNα +WCNρ . The goodness
of fit of each model was assessed using R2, the square correlation coefficients between predicted and
empirical rates.

For statistical analysis we used R (R Core Team, 2014). For linear fits we used the built-in func-
tion lm(). Correlation coefficients were calculated using cor(). Binomial tests were performed
binom.test().

RESULTS AND DISCUSSION
According to the stress model, site-specific substitution rates depend only on side-chain packing. Main
chain packing should not be directly related to substitution rates. To test this theory, we compared rate
predictions based on main-chain packing and side-chain packing for a data set of 209 diverse monomeric
enzymes.

Consider, for example, Human Carbonic Anhidrase II (pdb code 1CA2). Empirical rates KR4S were
obtained from the multiple sequence alignment as described in Methods. Using the pdb structure, we
calculated the packing measures WCN, WCNα , and WCNρ , using (3), (6), and (5), respectively. We used
these packing measures to predict rates using linear fits to empirical rates, as described in Methods. As we
mentioned in the Introduction, main chain environments and side-chain environments are different (Fig. 1).
Accordingly, WCNα and WCNρ result in different predicted rates (Fig. 2). The two site-dependent
profiles of predicted rates are similar to the empirical KR4S profile. WCNρ -based predictions look better
(Fig. 2) and are better (Fig. 3): the R2 values are 0.41 for WCNα and 0.56 for WCNρ . R2 increases only
by 0.02 for the two-variable fit K ∼WCNα +WCNρ (R2 = 0.58). Since WCN (Eq. (3)) was, so far,
the best structural predictor of site-specific rates for enzymes (Yeh et al., 2014a,b), we also calculated
R2(KR4S,WCN): it is 0.40. To summarize, for 1CA2, WCNρ > WCNα & WCN; the best predictor of
site-specific rates is WCNρ . Moreover, WCNα has only a small independent effect on substitution rates.

We repeated the previous assessment for each protein of the data set. For each of the 209 enzymes,
we calculated the densities WCN, WCNα , and WCNρ and calculated predicted rates from linear fits to
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empirical rates KR4S. R2 values averaged over all proteins are 0.316, 0.321, and 0.391 for WCN, WCNα ,
and WCNρ , respectively (Fig. 4). Thus, as for 1CA2, the predictive power of single-variable fits follows
WCNρ > WCNα & WCN. When going from K ∼WCNρ to K ∼WCNα +WCNρ , R2 increases from
0.391 to 0.398, only a 0.7% increase in explained variance (Fig. 4). Therefore, on average, WCNρ is the
best predictor of site-specific substitution rates.

Beyond average R2, we performed a protein-by-protein comparison (Fig. 5). We found that WCNρ is
a better predictor than WCNα for 204 of the 209 proteins studied (p� 10−3, binomial test). Similarly,
WCNρ outperforms WCN for 206/209 proteins (p� 10−3, binomial test). Thus, WCNρ is the best rate
predictor for almost all proteins of the data set.

To summarize, side-chain contact density (WCNρ ) is the best predictor of site-specific substitution
rates, accounting, on average, for 39.1% of the rate variation among sites. In contrast, the independent
contribution of main-chain contact density (WCNα ) is negligible (0.7%). These results are consistent with
the predictions of the stress model, extended to include explicitly main chain and side chains. According
to this theory, mutations replace side chains thus changing the parameters of interaction between the
mutated side chain and the rest of the protein. WCNρ is proportional to the destabilization of the protein’s
active conformation, which is why it correlates with rates: mutations are accepted or rejected according to
the degree of destabilization of the active conformation.

From a practical point of view, regardless of the validity of the stress theory, WCNρ outperforms
WCN, that was, so far, the best structural predictor of site-specific substitution rates (Yeh et al., 2014a,b).
Therefore, at least for the data set of monomeric enzymes used, WCNρ is the new best predictor of
site-specific substitution rates. WCNρ could be used to improve structure-based empirical models of
protein evolution and phylogenetic inference (see e.g. (Kleinman et al., 2010)).
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FIGURES

A B

Figure 1. The two environments of a protein residue. Images of the environments of Thr93 of
Human Carbonic Anhidrase II (pdb code 1CA2). (A) Environment of the main chain Cα : the size and
colors of protein atoms increase with the inverse square distance to Thr93 Cα (gold ball). (B)
Environment of the side chain: size and colors of atoms increase with the inverse square distance to the
geometric center of Thr93 side chain (gold wireframe).
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Figure 2. Profiles of site-specific evolutionary rates for 1CA2. (Top) empirical rates KR4S inferred
by Rate4Site. (Middle) Rates predicted from the side-chain contact density WCNρ . (Bottom) Rates
predicted from the main-chain contact density WCNα . The profile of WCNρ -predicted rates looks more
similar to the KR4S profile

6/10

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 30, 2014. ; https://doi.org/10.1101/013359doi: bioRxiv preprint 

https://doi.org/10.1101/013359
http://creativecommons.org/licenses/by-nc-nd/4.0/


●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

predicted rate ( WCNα )

em
pi

ric
al

 r
at

e 
( 

K
R

4S
 )

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5A

R2 = 0.41

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

predicted rate ( WCNρ )

em
pi

ric
al

 r
at

e 
( 

K
R

4S
 )

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5B

R2 = 0.56

Figure 3. Empirical vs. predicted rates for 1CA2. (A) Empirical rates inferred using Rate4Site vs.
rates predicted from the main-chain contact densities WCNα . (B) Empirical rates vs. rates predicted from
side-chain contact densities WCNρ . The ”x=y” line corresponding to a perfect fit is shown. WCNα

explains R2 = 41% of the variation of site-specific empirical rates, WCNρ explains 56%.
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Figure 4. Side chain packing is the sole determinant of site-specific substitution rates. Linear
regression of empirical rates (KR4S) using three one-variable fits (WCN, WCNα , and WCNρ ) and a two
variable fit KR4S ∼WCNα +WCNρ . WCN and WCNα are measures of the contact density of main
chain Cα s. WCNρ is the contact density of side chains, modeled by their geometric centers. The models
are fit for each protein, and R2 is the average R2 over the 209 proteins of the data set. WCNρ is the best
predictor. The independent contribution of WCNα is very small (0.7%).

7/10

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 30, 2014. ; https://doi.org/10.1101/013359doi: bioRxiv preprint 

https://doi.org/10.1101/013359
http://creativecommons.org/licenses/by-nc-nd/4.0/


●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

R2, WCNα

R
2 , W

C
N

ρ

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 5. Side chain packing is the best predictor of substitution rates for most proteins. R2 is
the square correlation between empirical rates (KR4S) and either side-chain contact density WCNρ (y
axis) or main-chain contact density WCNα (x axis). Each point corresponds to one protein. Empirical
rates correlate better with WCNρ for 204 out of 209 proteins.
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APPENDIX
The stress model
The stress model is based on the idea that a mutant is viable to the extent that it spends time in the active
conformation. The fixation probability is modeled as

pfix ∝
CF

mutantρmutant(ractive)

CF
wtρwt(ractive)

(A-1)

where CF is the concentration of folded protein and ρ(ractive) is the probability of it adopting the active
conformation. Assuming that Cmutant/Cwt is equal to the ratio of partition functions, from basic statistical
physics it follows that:

pfix ∝ e−βδV ∗ , (A-2)

where β can be thought of representing selection pressure rather than temperature and

δV ∗ =Vmutant(ractive)−Vwt(ractive) (A-3)

is the energy difference between mutant and wild-type in the active conformation. Finally, assuming that
βδV ∗� 1 (weak selection), from (A-2) we find:

Ki
∝−〈δV ∗〉i , (A-4)

i.e. the rate of substitution of site i, Ki, is proportional to (minus) the destabilization energy averaged over
mutations at i, 〈δV ∗〉i. This is the basic equation of the stress theory.

One-bead-per-site elastic network
To derive substitution rates, we need an energy function. Let us model the protein as an elastic network of
nodes placed at Cα s connected by elastic springs. The energy of a conformation r is given by:

V (r) =
1
2 ∑

i
∑
j>i

ki j(di j−d0
i j)

2, (A-5)

where di j = ||r j− ri|| is the distance between Cαi and Cα j , ki j is the force constant of spring i− j and d0
i j

its equilibrium length.
The wild-type protein is modeled by using springs that are relaxed at the native conformation:

d0
i j = ||r0

j − r0
i ||. To model a mutation at site i, we add random perturbations to the spring lengths

connecting i other sites: d0
i j→ d0

i j +δi j. Using (A-5) and (A-3), we find:

δV ∗ =
1
2 ∑

j 6=i
ki jδ

2
i j, (A-6)

where we have assumed that the active conformation is the native conformation of the wild type, ractive =
r0

wt , which is a reasonable assumption for purifying selection. Assuming that δi j for the different contacts
are drawn independently from the same distribution, averaging (A-6) over mutations at site i we find

〈δV ∗〉i ∝ ∑
j!=i

ki j (A-7)

Thus, the mutational destabilization averaged over mutations at a given site (the mean local mutational
stress) is proportional to the sum of the force constants of the springs connected to the mutated site.

To obtain the site-specific rates, we use the parameter-free Anisotropic Network Model (pfANM):

ki j =
1

d0
i j

2 . (A-8)

Replacing (A-8) into (A-7), and the result into (A-4), we obtain:

Ki
∝−WCNi, (A-9)
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where

WCNi = ∑
j 6=i

1

d0
i j

2 (A-10)

is the weighted contact number. Thus, when using the pfANM based on Cα , the stress model predicts that
site-specific rates are proportional to (minus) WCN.

Two beads-per-site elastic network
The elastic network of the previous section uses one node per site, thus modeling side chains only
implicitly. Since mutations replace side chains, including them explicitly might improve the predictions
of the stress theory.

Let us represent each site using two nodes: one for the main chain, α , placed at the residue’s Cα as
before, and another for the side chain, ρ , placed at the side-chain geometric center (Gly’s are represented
using only one node at Cα ). The elastic energy is:

V (r) =
1
2 ∑

i
∑
j>i

kαiα j(dαiα j −d0
αiα j

)2 +
1
2 ∑

i
∑
j>i

kαiρ j(dαiρ j −d0
αiρ j

)2 (A-11)

+
1
2 ∑

i
∑
j>i

kρiα j(dρiα j −d0
ρiα j

)2 +
1
2 ∑

i
∑
j>i

kρiρ j(dρiρ j −d0
ρiρ j

)2, (A-12)

(A-13)

where dni,n j is the distance between nodes ni and n j (n is α or ρ), knin j is the force constant of the spring
connecting these nodes, and d0

nin j
the equilibrium spring length.

A mutation at site i will replace ρi, affecting only the parameters of the energy function related to this
node. Modeling a mutation at i by adding random perturbations to the springs of ρi: d0

ρiρ j
→ d0

ρiρ j
+δρiρ j

and d0
ρiα j
→ d0

ρiα j
+δρiα j , we find:

δV ∗ =
1
2 ∑

j!=i
(kρiα j δ

2
ρiα j

+ kρiρ j δ
2
ρiρ j

). (A-14)

where δV ∗ is defined in (A-3). Assuming perturbations are drawn independently from the same distribu-
tion, averaging (A-14) over mutations at i we find:

〈δV ∗〉i ∝ ∑
j 6=i

(kρiα j + kρiρ j). (A-15)

Finally, assuming that knin j =
1

d0
nin j

2 , from (A-4) and (A-15) we obtain:

Ki
∝−WCNi

ρ , (A-16)

where

WCNi
ρ = ∑

j 6=i

(
1

d0
ρiα j

2 +
1

d0
ρiρ j

2

)
. (A-17)

WCNρ , defined here, is the side-chain weighted contact number. Thus, when using the pfANM based on
main chain nodes α and side-chain nodes ρ , the stress model predicts that site-specific rates will depend
on the contact density of the side chain WCNρ .

For the sake of the present study, we also consider whether main-chain packing has any independent
effect on rates. For this purpose, we calculate

WCNi
α = ∑

j 6=i

(
1

d0
αiα j

2 +
1

d0
αiρ j

2

)
, (A-18)

which is the main chain weighted contact number for the two-beads-per-site network model.
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