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Standard game theory cannot describe microbial interactions mediated by diffusible

molecules. Nevertheless, we show that one can still model microbial dynamics us-

ing game theory with parameters renormalized by diffusion. Contrary to expecta-

tions, greater sharing of metabolites reduces the strength of cooperation and leads to

species extinction via a nonequilibrium phase transition. We report analytic results

for the critical diffusivity and the length scale of species intermixing. We also show

that fitness nonlinearities suppress mutualism and favor the species producing slower

nutrients.

PACS numbers: 87.23.Cc, 87.23.Kg, 87.15.Zg, 64.60.ah

Complex microbial communities are essential for the environment and human health. Micro-

bial functions range from the production of biofuels and the release of powerful greenhouse

gasses to the production of cheese and the digestion of food inside our guts. Most of these

functions are orchestrated by complex microbial consortia rather than single species [13, 19].

To create and control such multispecies ecosystems, we need to understand the mechanisms

that govern microbial coexistence and cooperation.

Heterotrophic cooperation is a common and perhaps the simplest element of complex micro-

bial communities [13–15, 17]. In this two-way cross feeding, each species produces an amino

acid or other metabolite necessary for the other species. Heterotrophic cooperation has been

previously described by the evolutionary game theory [3, 11], which assumes that microbes

interact only with their closest neighbors. However, unlike human societies or bee colonies,
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microbial communities rarely rely on direct contact. Instead, microbes primarily communi-

cate though diffusible molecules, which rapidly spread in the environment [2, 6, 12, 18, 22].

Because of this diffusive sharing within or between species, such molecules are often termed

public goods. The broad understanding of how public good diffusion affects heterotrophic

cooperation is still lacking.

Here we explicitly account for the production, consumption, and diffusion of public goods in

a model of heterotrophic cooperation. We find that unequal diffusivities of the public goods

can significantly favor one of the species and even destroy their cooperation. More impor-

tantly, the diffusion of public goods has the opposite effect compared to species migration.

Higher migration improves mutualism and stabilizes species coexistence. In contrast, coop-

eration is lost above a critical diffusivity of public goods, for which we obtain an analytical

expression. We also describe the effect of public good diffusion on the spatial distribution

of species that is often used to quantify microbial experiments [9, 14, 15, 17]. Our analyti-

cal approach is based on computing how public good diffusion renormalizes the strength of

selection and thus should be applicable to a variety of more complex models.

Motivated by the experiments on cross-feeding mutualists [14, 15, 17], we consider two species

(or strains) A and B producing public goods of type A and B respectively and consuming

public goods of the opposite type. These species live in a one-dimensional habitat, which

corresponds to the quasi-one-dimensional edge of microbial colonies, where cells actively

divide [10]. In simulations, the habitat is an array of islands populated by N cells each.

This finite carrying capacity sets the magnitude of demographic fluctuations typically termed

genetic drift [10]. Nearest-neighbor islands exchange migrants at a rate m, which specifies

the degree of movement within a microbial colony. In the continuum limit, the evolutionary

dynamics of species A and B is described by

∂fA

∂t
=
m

2

∂2fA

∂x2
+ (wA − wB)fAfB +

√
fAfB

N
η(t, x), (1)

where t and x are time and position measured in such units that generation time and

island spacing are set to 1; fA(t, x) and fB(t, x) = 1−fA(t, x) are the relative abundances of

species A and B; wA and wB are the fitnesses of species A and B respectively that depend on
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the local concentration of the public goods; and η(t, x) is a delta-correlated Gaussian white

noise. Equation (1) represents the classical stepping-stone model of population genetics [7,

10] and accurately describes population dynamics in microbial colonies [9].

Standard game-theory treatments of microbial interactions assume that the fitnesses wA

and wB depend on the local abundances of the species rather than the public goods them-

selves [11]. Here, we relax this restrictive and often unjustified assumption and consider

wA = 1 +
nB

1 + nB/KB

,

wB = 1 +
nA

1 + nA/KA

,
(2)

where nA and nB are the concentrations of the public goods. Although Eq. (2) is known to

describe microbial growth well [16], the exact nature of the nonlinear relationship between

public good concentrations and fitnesses is of minor importance for our results. Moreover,

most aspects of the dynamics can be understood in a much simpler model with KA = KB =

∞, where the fitnesses are linear functions of the nutrient concentrations. Note that we

chose the units of nA and nB to ensure that the numerators in Eq. (2) do not contain any

additional constants of proportionality.

In the simplest model, the dynamics of the public goods concentrations are given by the

following reaction-diffusion equation:

∂nA

∂t
= DA

∂2nA

∂x2
+ pAfA − dAnA, (3)

and an analogous equation for nB. Here, for the public good of type A, DA is the diffusiv-

ity, pA is the production rate, and dA is the rate of loss comprised of consumption by both

species, spontaneous decay or degradation, and transport outside the region of microbial

growth [17]. Both pA and dA can depend on nA, nB and fA in a more realistic model, but

numerical simulations suggest that all important aspects of population dynamics are already

captured by Eq. (3). Since public good dynamics occurs much faster than cell migration

and growth, public good concentrations equilibrate rapidly, i.e. ∂nA/∂t ≈ ∂nB/∂t ≈ 0. This
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results in

nA(x) =
pA

2
√
DAdA

∫
fA(x′)e

−
√

dA
DA
|x′−x|

dx′, (4)

and similarly for nB. Equation (1-4) have been previously used to simulate cooperatively

growing microbial communities [1, 17], but analytical results and broad understanding of

the effect of public good diffusion on population dynamics is still lacking.

To understand the overall effect of public good diffusion on microbial mutualism, it is suffi-

cient to consider a simple symmetric case: pA = pB = p, dA = dB = d, DA = DB = D, and

KA = KB = K =∞, which we proceed to analyze by combining Eqs. (1), (2), and (4):

∂fA

∂t
=
pfA(1− fA)

2
√
Dd

∫
[1− 2fA(x′)]e−

√
d
D
|x′−x|dx′ +

m

2

∂2fA

∂x2
+

√
fA(1− fA)

N
η(t, x), (5)

where we eliminated fB by using the fact that the relative abundances must sum up to one,

i.e. fA + fB = 1.

For small D, the integrand in the first term of Eq. (5) is peaked around x′ = x, so one can

simplify the equation by expanding fA(x′) in Taylor series around x. To the first order, the

selection term becomes sfA(1 − fA)(1/2 − fA), where s = 2p/d is the selection coefficient.

Thus, when diffusion is very slow, our model of mutualism reduces to the standard game

theory formulation with frequency-dependent selection. Population dynamics in this limit

are controlled by a dimensionless quantity S = smN2, which we refer to as the strength of

the mutualism. When S exceeds a critical value of order one Sc, the mutualism is stable,

and the two species coexist [11]. In contrast, when S < Sc, selection for coexistence is not

strong enough to overcome local species extinctions due to genetic drift, and the population

becomes partitioned into domains exclusively occupied by one of the two species (see inset

in Fig. 1). Generically, this demixing phase transition belongs to the universality class of

directed percolation (DP), but the special symmetric case, when all model parameters are

the same for the two species, is in the DP2 or generalized voter universality class [11].
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FIG. 1: Mutualism is destroyed by genetic drift at high nutrient diffusivities. Equilibrium values of

local heterozygosity decay as the diffusivity of the metabolites increases, and the species coexistence

is completely lost above a critical diffusivity Dc. The two insets show how the distribution of species

labeled by different colors varies with position (x-axis) and time (y-axis) for small diffusivities (left)

and just below the critical diffusivity (right). One can clearly see the mixed and demixed states

observed experimentally [14, 15, 17]. Here N = 200, m = 0.1, p = 0.001, d = 1, and K = 1. The

habitat consisted of 104 islands and was observed after 106 generations starting from a well-mixed

state.

Expansion to the next order of the integral in Eq. (5) contributes an additional

term −2pDd−2fA(1 − fA)∂2fA/∂x
2, which effectively reduces migration m and, therefore,

the strength of mutualism S. To test whether public good diffusion weakens mutualism, we

quantified species coexistence by the average local heterozygosity H(t) = 〈2fA(t, x)fB(t, x)〉,

which equals 1/2 for strongly intermixed species and 0 for species that are spatially segre-

gated. In computer simulations, we then observed that equilibrium values H indeed decrease
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FIG. 2: Simulations (points) confirm our analytical predictions (lines) that critical diffusivity

increases as a square of the selection strength s, fourth power of migration rate m, and sixth

power of the population size N . All data are from simulations on a lattice of 104 islands over 106

generations with K = 1.

with D, and mutualism is lost for diffusivities above a certain value Dc (Fig. 1). Note that

the loss of mutualism in our model is due to genetic drift rather than the proliferation of

nonproducers (or cheaters), which are commonly considered in the context of public goods[1].

The small D expansion is only valid when fA is slowly varying in space, but microbial com-

munities are often found at low values of spatial intermixing when individual species appear

as clusters or domains [8, 14, 15, 17, 21]. Indeed, Fig. 1 shows that intermediate values of

local heterozygosity are observed as D changes by almost two orders of magnitude. To under-

stand population dynamics in this important regime, we consider large diffusivities when the

size of the domain boundaries Lb is much smaller than the nutrient length scale Ln =
√
D/d,

i.e. the typical distance between the locations of nutrient production and consumption. To

the first order, the size of the domain boundaries is the same as in the neutral model with no

mutualism, for which Lb = mN [4]. We will also assume that the population is sufficiently

close to the demixing phase transition so that the distance between domain boundaries Ld

is much greater than Ln, as it is commonly observed experimentally [14, 15, 17].

When Ld � Ln � Lb, one can solve Eq. (5) near the domain boundary located at x = 0
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by assuming that fA(x) is a step function, i.e. fA(x) = 1 for x < 0 and fA(x) = 0 for x > 0.

The solution yields

nB(x)− nA(x) = p/d(1− e−x/Ln) ≈ xp/(dLn) (6)

for x << Ln.

Since the selection term in Eq. (5) vanishes when fA(1 − fA) = 0, only the fitness dif-

ferences at the domain boundary (when x ≈ Lb) affect population dynamics. Near the

boundary fA(x) ≈ 1/2 − x/Lb. Hence, by eliminating x from Eq. (6), we can again recast

the selection term in the form sefffA(1 − fA)(1/2 − fA), where the effective strength of se-

lection seff ∼ (p/d)(Lb/Ln) is reduced by a factor of Lb/Ln = mN/
√
D/d compared to the

model with D = 0.

Our finding that higher diffusivities of the public goods reduce the effective strength of

selection explains the decrease of H with D in Fig. 1 and provides a way to estimate the

critical diffusivity Dc above which mutualism is lost. Indeed, when D = Dc, we expect that

the strength of mutualism S approaches its critical value as well. Thus, Sc = seffmN
2 ∼

pm2N3/
√
Dcd, and Dc ∼ s2m4N6d3, where s = 2p/d is the strength of selection in the model

without public good diffusion. Surprisingly, we find that population density and migration

have a much stronger effect on the critical nutrient diffusivity than natural selection. Our

simulation results are in excellent agreement with these predictions; see Fig. 2.

Since the model with D > 0 is equivalent to that with D = 0 provided the strength of

selection s is renormalized, many of the results from the evolutionary game theory can be

generalized for microbial communities with diffusible public goods. The size of the domains

formed by the species Ld is of particular interest because it is used in the experiments to

quantify the degree to which the two species benefit from their mutualistic interactions.

Previous studies suggested that Ld ∼ D1/4 [17] or Ld ∼ D1/5 [14]; however, we find that

such scalings are unlikely because Ld becomes large only close to the underlying phase

transition, where Ld ∼ (Dc −D)ν⊥ . The exponent ν⊥ is that of a spatial correlation length

and is determined by the universality class of the phase transition. In our model, any species
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FIG. 3: The scale of species intermixing is controlled by the underlying nonequilibrium phase

transition. The dots are the simulation data, and the line is the fit of the expectation that Ld ∼

(Dc − D)v⊥ , where v⊥ = 1.83 is the correlation-length exponent for the generalized voter (or

directed percolation 2) critical point [5, 20]. The simulations were carried out on a lattice of 104

islands for 106 generations. Here, N = 200, m = 0.1, p = 0.001, d = 1, and K = 1.

asymmetry results in DP universality class and ν⊥ = 1.096854(4), while, when all model

parameters are the same for the two species, the dynamics is in DP2 universality class

and ν⊥ = 1.83(3) [5, 20]. Simulations confirm this expectation as shown in Fig. 3.

Next we turn to the effects of species asymmetries on the population dynamics. When D = 0

and the model reduces to that of frequency-dependent selection, the asymmetries in nutrient

production and decay rates result in the selection term of the form sfA(1 − fA)(f ∗ − fA),

where the preferred fraction f ∗ no longer equals 1/2. Population dynamics in this limit

have been previously analyzed in Ref. [11] with the main conclusion that species asymmetry

substantially weakens mutualism and species A is favored if f ∗ > 1/2 while species B is
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FIG. 4: Nonlinearity due to the diminishing effect of public goods on fitness benefits the species

producing public goods with smaller diffusivity. The degree of fitness nonlinearity decreases as a

function of parameter K in Eq. (2). When K is very large, the model is linear and the differences

in metabolite diffusivities have no affect on the relative species abundances (magenta dots). As the

fitness nonlinearity is increased, the species with the lower diffusivity dominates (green triangles).

This trend continues as K is decreased further, but, in addition, species coexistence and mutualism

are lost when the metabolite diffusivities become too unequal (blue squares). These simulations

were run for 105 generations on a lattice of 500 islands; N = 200, m = 0.1, p = 0.001, and d = 1.

favored otherwise. We find that D > 0 does not alter these results.

The asymmetry in the public good diffusivities is more subtle. Upon repeating the steps

leading to Eq. (5) but for DA 6= DB one still finds that the resulting equation is invariant

under the exchange of species labels, i.e. fA → 1− fA. Hence, if only the public good diffu-

sivities are different between the species, then none of the species is expected to dominate

the other. This conclusion however holds only when the fitnesses are linear functions of the

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2014. ; https://doi.org/10.1101/013144doi: bioRxiv preprint 

https://doi.org/10.1101/013144
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

nutrient concentrations, i.e. K = ∞. For lower values of K, we find that the species pro-

ducing public goods that diffuse more slowly dominates the other species (Fig. 4). As K is

decreased further, the population undergoes the demixing phase transition described above,

and one of the species becomes extinct.

The effects of fitness nonlinearities and public good diffusivities can be easily understood by

considering the population dynamics close to the domain boundary. The dominant species

is determined by whether species A is more likely to invade the space occupied by species B

or species B is more likely to invade the space occupied by species A. To make the argument

more clear let us assume that DA = 0 and DB = ∞, then the concentration of public

good B is the same everywhere while the concentration of public good A is high inside the

domain comprised of species A and zero outside. As a result, the fitness of species A is

the same everywhere, while the fitness of species B is low in its own domain and high in

the domain occupied by species A. The nonlinearity in Eq. (2) makes fitness changes at low

nutrient concentrations much more pronounced than at high nutrient concentrations. Thus,

the advantage that the species B has over A in the domain occupied by species A (where nA

is high) is smaller than the advantage that species A has over B in the domain occupied

by species B (where nA = 0). In consequence, species A with lower public good diffusivity

should dominate species B in agreement with the simulations (Fig. 4).

In summary, we demonstrated that the main effect of public good diffusion is the reduction

of the effective strength of natural selection, which can lead to the loss of mutualism via

a nonequilibrium phase transition. The distance to this phase transition controls the size

of the domains formed by the species, a quantity of prime interest in empirical studies. In

addition, differences in the diffusivities of the public goods could have a profound effect on

the population dynamics. The effect of these differences depends on the fitness and other

nonlinearities and results in the selective advantage for one of the species. Our work provides

a theory for the phenomena observed in recent experimental studies [14, 15, 17] and could

potentially explain why cooperatively growing microbes modulate the diffusivities of their

public goods [12].
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populations. Europhysics Letters, 101:18003, 2013.

[4] Oskar Hallatschek and KS Korolev. Fisher waves in the strong noise limit. Physical Review

Letters, 103(10):108103, 2009.

[5] Haye Hinrichsen. Non-equilibrium critical phenomena and phase transitions into absorbing

states. Advances in physics, 49(7):815–958, 2000.

[6] Thomas Julou, Thierry Mora, Laurent Guillon, Vincent Croquette, Isabelle J Schalk, David

Bensimon, and Nicolas Desprat. Cell–cell contacts confine public goods diffusion inside pseu-

domonas aeruginosa clonal microcolonies. Proceedings of the National Academy of Sciences,

110(31):12577–12582, 2013.

[7] Motoo Kimura and George H Weiss. The stepping stone model of population structure and

the decrease of genetic correlation with distance. Genetics, 49(4):561, 1964.

[8] Kirill S Korolev, Melanie JI Müller, Nilay Karahan, Andrew W Murray, Oskar Hallatschek,

and David R Nelson. Selective sweeps in growing microbial colonies. Physical biology,

9(2):026008, 2012.

[9] Kirill S Korolev, Joao B Xavier, David R Nelson, and Kevin R Foster. A quantitative test of

population genetics using spatiogenetic patterns in bacterial colonies. The American Natural-

ist, 178(4):538, 2011.

[10] KS Korolev, Mikkel Avlund, Oskar Hallatschek, and David R Nelson. Genetic demixing and

evolution in linear stepping stone models. Reviews of modern physics, 82(2):1691, 2010.

[11] KS Korolev and David R Nelson. Competition and cooperation in one-dimensional stepping-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2014. ; https://doi.org/10.1101/013144doi: bioRxiv preprint 

https://doi.org/10.1101/013144
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

stone models. Physical Review Letters, 107(8):088103, 2011.
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