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Abstract15

Biodiversity maintenance and community evolution depend on the species interaction16

network. The “diversity-stability debate” has revealed that the complex interaction struc-17

ture within real-world ecosystems determines how ecological communities respond to en-18

vironmental changes, but can have opposite effects depending on the community type.19

Here we quantify the influence of shifts on community diversity and stability at both the20

species level and the community level. We use interaction networks from 19 real-world21

mutualistic communities and simulate shifts to antagonism. We demonstrate that both the22

placement of the shifting species in the community, as well as the structure of the interac-23

tion network as a whole contribute to stability and diversity maintenance under shifts. Our24

results suggest that the interaction structure of natural communities generally enhances25

community robustness against small ecological and evolutionary changes, but exacerbates26

the consequences of large changes.27
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Author Summary28

Ecological interaction networks are important determinants of the stability of a community29

and influence how the community responds to environmental changes. Network properties30

that stabilize antagonistic networks destabilize mutualistic networks and vice versa. Previ-31

ous studies of interactions networks all assume that the type of interaction between species32

remains the same over time. Interactions between species, however, can shift from mutualistic33

to antagonistic and back over evolutionary time. Here we quantify the influence of such shifts34

on community diversity and stability at both the species level and the community level. We35

show that the location of the shifting species in the community, as well as the structure of the36

interaction network as a whole contribute to stability under such shifts. Our results suggest37

that the interaction structure of real-world communities generally enhances community ro-38

bustness against small ecological and evolutionary changes, but exacerbates the consequences39

of large changes.40
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1 Introduction41

Forty years ago Robert May theoretically predicted that large complex ecosystems with ran-42

dom interactions are unlikely to be stable [1]. Ever since then, a large body of work has been43

published investigating various aspects of community structures that can stabilise different44

types of ecological communities [2, 3]. Typically such studies have focused on two types of in-45

teractions. The first type is antagonistic interaction, such as in producer-consumer or predator-46

prey communities [4–6]. These interactions are characterised by one of the species benefiting47

from the interaction while the other species suffers a cost. The second type is mutualistic inter-48

action, such as plant-pollinator or plant-seed disperser networks [7–10]. Here both interaction49

partners benefit from the interaction. Interestingly, the network properties that convey stabil-50

ity to antagonistic networks render mutualistic networks unstable and those that make mu-51

tualistic networks more stable make antagonistic networks less stable [11]. Recent studies on52

theoretical and real-world ecological networks containing both types of interactions showed53

that a low ratio of mutualistic to antagonistic interactions can destabilize an otherwise stable54

antagonistic community, but a moderate mixture of both interaction types can stabilize popu-55

lation dynamics [12–14].56

These previous studies all assumed that the type of interaction between species remains57

the same over time. However, empirical studies have suggested that interaction types within58

an ecosystem shift over ecological and evolutionary time [15, 16]. It remains unclear what59

effect these interaction type shifts may have on the diversity and stability of an ecosystem.60

Here we perform a first step towards understanding how shifts between interaction types in61

real-world communities affect biodiversity and community stability at both the species level62

and the community level. Mutualists are continuously under the threat of exploitation [17],63

and therefore shifts from mutualism to antagonism in such mutualistic communities represent64

a relevant case study for the effect of shifts in ecological communities [16].65

More specifically, we examined 19 previously published real-world plant-pollinator net-66

works [7] and applied a species interaction model to study the change in the equilibrium state67

of the community. The general strategy was to choose one or several pollinator species in each68

network and switch their interactions with all plants to antagonistic. We determine the effects69

of these shifts with respect to resistance stability [18], evenness biodiversity [19] and ecological70
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dominance on the shifted species. As proxies for these properties we use the relative Eu-71

clidian distance, the relative Shannon Index change, and the relative frequency change of the72

shifted species between the two equilibrium states respectively (see Methods). To assess the73

importance of network structure, we compared each real-world network with 100 simulated74

networks generated by randomizing the interactions.75

2 Materials and Methods76

We determine the effects of shifts of the interaction type in simulated real-world networks77

(see Section 2.1). A network is composed of a number of pollinator and plant species. A78

specific pollinator only interacts with a subset of plant species (see Figure 1a). This network of79

interactions is represented by an adjacency matrix. The strength of the interaction is given by80

the interaction model (see Section 2.2).81

We study the stability of the real-world networks on four different levels. In a first step,82

we examine the effect of the shift of the interaction type of a single species on the network as a83

whole, as well as on the shifting species itself (see Section 2.4). This allows us to quantify the84

effect of the shifting species’ centrality in the network (see Section 2.5) on diversity and stabil-85

ity. We also examine the effect of the species centrality on the change of its own abundance.86

In a second step, we compare the effect of shifting random species in a real-world network to87

equivalent randomized networks using two randomization schemes (see Section 2.6). The first88

randomization scheme keeps the connectance constant, while destroying all network struc-89

ture. The second scheme keeps both the connectance and the degree distribution constant.90

This allows us to tease apart the effects of connectance, degree distribution and higher order91

network structure. To quantify the effects of the introduction of an antagonistic interaction on92

the network, in a third step, we study the differences between the interaction type shift of a93

single species and the extinction of the same species. Finally, in a fourth step, we determine the94

robustness of the network to interaction type shifts of multiple species. As for single species,95

we quantify the stability and diversity of the network to such shifts. For multiple shifts, we96

also quantify the number of secondary extinctions caused by the interaction type shifts.97

In general, all simulations proceed in the following manner. We first determine the equilib-98

rium abundances of each species in the network as reference abundances of a specific network99
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(see Section 2.3). We then shift the interaction type of a single pollinator species. This results100

in a new interaction network (see Figure 1b). Finally, we determine the new equilibrium abun-101

dances of each of the species and compare these to the reference abundances.102

2.1 Network data103

We use real world plant-pollinator networks previously published in [7]. The smallest net-104

work has 10 plants and 12 pollinators, while the largest has 112 plants and 839 pollinators. A105

full list of number of species in each network is given in Supplementary Table S1. The values106

of interaction strength between plants and pollinators have been normalized such that bidirec-107

tional asymmetry exists [7].108

2.2 Interaction Model109

We use a multi-species interaction model equivalent to Bascompte et al. [7]. For mathematical110

tractability, we focus on Holling type I functional responses and show in the Supplementary111

Materials that we obtain qualitatively equivalent results in the case of single species shifts112

when using a Holling type II functional response. The model with a type I functional response113

in the interaction term has the form,114

dni
dt

= rini − sin2i +
∑
i6=j

aijninj =

ri −∑
j

ciaijnj

ni, (1)

where ni is the abundance of species i, ri is species’ i’s individual growth rate, si a intra-115

specific competition term and aij is the effect on species i of the interaction with species j. We116

have incorporated the intra-specific interaction term for a species i into the interaction matrix,117

such that aii = si. The parameter ci represents the magnitude of the payoff of an interaction.118

Positive entries in A (aij > 0) are interactions where the species i pays a price for interacting119

with j and negative entries (aij < 0) are interactions where species i gains a benefit from the120

interaction with species j. Note that the interaction matrix A contains both the effects on plants121

when they interact with a animals, as well as the effects on animals, when they interact with122

plants.123

In this study, we only consider interactions between two species classes (plants and polli-124
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nators). Assuming there are N species in total, of which NA are animals species (pollinators)125

and NP are plant species, then we can partition the matrix A such that the rows and columns126

i ∈ {1, 2, . . . , NA} = NA are animal species and i ∈ {NA + 1, NA + 2, . . . , N} = NP are plant127

species. We neglect inter-specific competition (plant-plant and animal-animal interactions), so128

aij = 0 when i, j ∈ NX , X ∈ {NA,NP }.129

To shift the k-th animal from a mutualist into an antagonist, we multiply the k-th column130

of A by −1. Therefore, the animal still gains the same benefit from interacting with the plants131

as before the shift, but the plant now pays a price for each interaction with this animal species.132

In terms of a plant-pollinator system, if the interaction strengths are related to the frequency133

of visits, then the pollinator still claims the reward for visiting the plant (e.g. gets nectar), but134

the plant pays a price for each visit (e.g. damaging of the plant, theft of nectar).135

We assume that the frequency of visitation is equally proportional to the abundance of any136

pollinator species. Thus generalist pollinators distribute their mutualistic interactions across137

many different plants, while specialist pollinators visit few plants more frequently. Mathemat-138

ically, we assume that the columns of A excluding the diagonal sum to 1,139

∑
i6=j

aij = 1.

We consider facultative mutualism, such that ri > 0 and all species have a positive growth140

rate in absence of any mutualistic interaction. Population growth is limited by the intra-specific141

competition terms si. For randomly interacting populations, a finite non-trivial steady state142

for species i exists if si > ci (see Supplementary Materials). We show in the Supplementary143

Materials that we obtain qualitatively equivalent results with obligate mutualism.144

2.3 Determining the equilibrium abundances145

We find the non-trivial equilibrium state of a system with interaction matrix A by solving146

the nonlinear system of equations dn/dt = 0 (Equation 1). This is equivalent to finding the147

solution to the linear system of equations An̄ = r.148

A species i is extinct at equilibrium if it has an equilibrium abundance n̄i 6 0. These149

negative abundances, however, can influence the equilibrium abundances of the other species.150

We therefore extract a sub-matrix A′ where the i-th row and column are deleted and find the151
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equilibrium abundances of this subsystem n′∗. We repeat this procedure until all remaining152

species have an abundance n̄′i > 0.153

2.4 Stability and diversity measures154

We use three measures to determine the effect of interaction shifts on the stability and diversity155

of the network: (1) relative Euclidian distance; (2) relative frequency change of the shifting156

animal; and (3) the relative Shannon index change of the equilibria.157

Relative Euclidian distance. The relative Euclidian distance δ measures how much the abun-158

dances of the different species change from before to after the shift of one or more animal159

species from mutualists to antagonists. If ni is the abundance at equilibrium of species i before160

the shift and n∗i is the abundance at equilibrium of species i after the shift, then the relative161

Euclidian distance is,162

δ =

√∑N
i=1 (n∗i − ni)

2√∑N
i=1 n

2
i

. (2)

Relative frequency change of the shifting animal. The relative change in an animal’s fre-163

quency ∆fi measures the relative benefit or price an animal gains or pays if that animal shifts164

from being a mutualist to an antagonist,165

∆fi =
f∗i − fi
fi

, (3)

where fi is the relative of abundance of the animal species in the current ecosystem,166

fi =
ni∑
i ni

.

Relative Shannon index change. The relative Shannon index change ∆smeasures how much167

diversity is affected by the shift of one or more animals from pure mutualists to antagonists,168

∆s =
−
∑N

i=1 f
∗
i ln f∗i

−
∑N

i=1 fi ln fi
− 1. (4)
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2.5 Network measures169

Centrality measures determine the importance of an individual species in the network. Here170

we use two centrality measures that capture different aspect of the species placement in the171

network [20].172

Degree centrality. We measure the importance of single species within one network by its de-173

gree centrality ki, which is defined as the number of interactions Ki with other species divided174

by the total number of species,175

ki =
Ki

N
. (5)

Betweenness centrality. An alternative measure of centrality of a single species is its be-176

tweenness. The betweenness of species i is defined as the number of shortest paths between177

any two nodes l and m that pass through i divided by the total number of shortest paths be-178

tween l and m. We calculate betweenness centrality using the algorithm implemented in the179

igraph library [21].180

Nestedness measure We measure nestedness using the established NODF measure [22]. In181

order to account for network properties such as the total number of interaction that can also182

influence nestedness, we use a relative measure of nestedness,183

N∗ =
N − 〈NR〉
〈NR〉

. (6)

Here N =
∑

Npaired

n(n−1)/2+m(m−1)/2 is the NODF measure defined in [22] and 〈NR〉 is the NODF184

nestedness of an interaction matrix obtained by shuffling the interactions, averaged over 100185

randomizations (see section 2.6).186

2.6 Randomizations187

We compare the effects of shifting from mutualists to antagonists in the real network to ran-188

domized networks with equal number of plant and animal species. The randomized networks189

have the same number of plant-animal interactions. We employ two randomization schemes.190

In the first scheme, all interactions are distributed randomly between plants and animals. To191
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guarantee that all animals interact with at least one plant and vice-versa, a single interaction192

partner is first assigned to each animal/plant. The remaining interactions are then randomly193

placed to animal-plant pairs. This randomizes both the degree distribution as well any other194

higher-order structure of the network. In the second scheme, the degrees of each animal and195

plant are retained, but the interaction partners are randomized. In this scheme, only the higher-196

order structure is randomized.197

2.7 Residual measures.198

When species are removed from the community (i.e. extinctions) their abundances are arti-199

ficially set to zero. This is a different perturbation than shifts to antagonism, since in shifts200

the interactions are modified and in extinctions the abundances are modified. In such cases,201

the distance measures may be artificially inflated due to the removal of a single species. For202

example, if species k is removed it’s abundance is set to zero, while if it shifts it may persist203

with a non-zero abundance, leading to a smaller change in the case of shifts. We therefore con-204

sider residual measures of δ, ∆s and ∆f , which are calculated equivalently to explained above205

without considering the shifted/removed species,206

δ(−k) =

√∑
i6=k (n∗i − ni)

2√∑
i6=k n

2
i

, (7)

∆s(−k) =
−
∑

i6=k f
∗,(−k)
i ln f

∗,(−k)
i

−
∑

i6=k f
(−k)
i ln f

(−k)
i

− 1, (8)

where f (−k)i = ni∑
i6=k ni

.207

3 Results208

3.1 Single shifts209

Response to single shifts. Shifting the interaction type of a single pollinator species changed210

the equilibrium abundances of all the species but did not result in any secondary extinctions211

of either plants nor pollinators. As a result of the introduction of antagonistic interactions,212

however, the total sum over the abundance of all species decreases. The relative Euclidian213
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distance, δ, between the equilibrium states before and after the single shift is smallest when the214

shifting species has a low centrality and increases with the centrality of the species (Figure 2215

and Table 1). The relative Shannon index change, ∆s, is always negative for single shifts. The216

magnitude of the relative Shannon index change, |∆s|, is smallest for low centrality species217

and increases with species centrality. The relative abundance frequency change of the shifting218

species is either positive or negative. It is largest for low centrality species and decreases219

with increasing centrality. The rank correlation between the centrality and both δ and |∆s| is220

significantly positive within each network and independent of the centrality measure (Table 1).221

We also qualitatively find the same correlations between the centrality and distance measures222

for weak and strong intraspecific competition (see Supplementary Materials).223

Real networks versus randomizations. To asses the effect of network structure of the sta-224

bility to shifts, we compared the median value of the three distance measures for all possible225

single species shifts in real-world and corresponding randomized networks (mean value over226

100 randomizations). The median relative Euclidian distance and the median magnitude of227

the relative Shannon index change are higher in the randomized networks than the real-world228

networks (Figure 3a-b). Conversely, the relative frequency change of the antagonistic species229

is generally larger in real-world than in randomized networks (Figure 3c). These results are230

consistent for both randomization schemes, though the effect is smaller when the degree dis-231

tribution is kept constant and only the higher order structure is randomized. Weak and strong232

interactions did not qualitatively influence these results (see Supplementary Materials).233

Influence of nestedness. We then determined the role of nestedness on the stability to shifts.234

In agreement with previous findings [8], networks with more species are more nested than235

networks containing less species (Supplementary Figure S1). We find that the median relative236

Euclidian distance δ decreases both with number of species (Spearman’s ρ = −0.984, p = 3.20 ·237

10−14) and nestedness (Spearman’s ρ = −0.753, p = 0.000305), but increases with connectance238

(Spearman’s ρ = 0.921, p = 1.50 · 10−6). The magnitude of the median relative Shannon index239

change ∆s also decreases with number of species (Spearman’s ρ = −0.947, p = 7.86 · 10−13)240

and nestedness (Spearman’s ρ = −0.707, p = 0.00101), and also increases with connectance241

(Spearman’s ρ = 0.863, p < 10−15). The median relative frequency change ∆f increases with242
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number of species (Spearman’s ρ = 0.548, p = 0.0152) and nestedness (Spearman’s ρ = 0.496,243

p = 0.0323), but decreases with connectance (Spearman’s ρ = −0.574, p = 0.0116).244

Since, however, number of species, connectance and nestedness are not necessarily in-245

dependent (Figure S1), we also perform an ANOVA with all three factors. When analyzed246

together, only the number of species (F = 75.8, p = 3 · 10−7, df = 1) and the connectance247

(F = 5.98, p = 0.0273, df = 1) are significant. The normalized NODF no longer has a significant248

effect (F = 0.147, p = 0.707, df = 1).249

3.2 Shifts to antagonism versus extinctions250

We compared the relative Euclidian distance and the relative Shannon index change when a251

single species shifts to antagonism to the case where the same species is removed, i.e. goes252

extinct (Figure 4). As the extinction of a species in itself represents a strong change in the253

distribution of species abundances, even without considering the secondary effects of this ex-254

tinction on other species, we only consider the change in the species excluding the antago-255

nistic/extinct species (Supplementary Matrials). Interaction type shifts affect the community256

more strongly than the removal of a mutualist, both with respect to relative Euclidian distance257

(ρ = −0.571, p < 10−16) and relative Shannon index change (ρ = −0.406, p < 10−16). Moreover,258

we find that the difference in effects between interaction type shifts and extinctions decreases259

with the centrality of the shifted/removed species. The effect of weak and strong intra-specific260

competition is shown in Supplementary Figures S7.261

3.3 Multiple shifts262

We then assessed how networks respond to shifts of multiple species. For a small number of263

shifts, both the relative Euclidian distance and the Shannon index change is smaller in real-264

world than randomized networks (similar to single species shifts). To this end we compared265

δ and ∆s in real and randomized networks when shifting different fraction of randomly cho-266

sen pollinators. As the number of shifted species increases, the effect on real-world networks267

becomes considerably larger than in randomized networks (Figure 5; we also observe this268

reversal in the case of species removals, see Supplementary Figure S3). When a sufficient269

number of pollinators are shifted, we started to observe secondary extinctions. The number270
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of such secondary extinctions is considerably larger in the real-world networks than random-271

ized networks (Supplementary Figure S2). We observe an initial increase in the number of272

secondary extinctions with the number of shifted species. However, when almost all species273

shift to antagonism then the number of secondary extinctions decreases again (Supplementary274

Figure S2).275

4 Discussion276

More centrally located species, as measured by a higher degree or betweenness centrality, pay277

a higher cost when shifting to antagonism, while species towards the periphery of the network,278

lower degree centrality, pay a smaller cost or even benefit from shifting (Figure 2). Similarly,279

the relative change in Shannon Index and the relative Euclidian distance increase with the cen-280

trality of the shifted species (Figure 2). This confirms the importance of generalists in main-281

taining diversity and stability [23, 24]. Together, this implies that shifts of species at the edge282

of the network are more likely to occur, both because of the advantage to the species itself, as283

well as the smaller effect on the community.284

The effect of a single pollinator species shift to antagonism, however, also strongly depends285

on network structure (Figure 3). The total change in equilibrium abundances and species even-286

ness is larger in randomized than in real-world networks. The relative effect on the shifting287

species, however, is mostly positive (i.e. the shifting species increases its abundance relative to288

all other species) and its magnitude is generally larger in real-world than in randomized net-289

works. Overall, these results have three implications. Firstly, real-world mutualistic networks290

have an intrinsic structure that reduces the effect on the whole community caused by shifts291

to antagonism. Secondly, real-world networks, in contrast to randomized networks, maintain292

evenness biodiversity better under shifts. Thirdly, real-world networks enhance the benefit the293

shifting species receives compared to all the other species in the network.294

These results are generally consistent when all network structure is destroyed, and also295

when the degree distribution of the network is kept constant, although the effect is smaller in296

the latter case. Thus, the degree distribution can only in part explain the difference between297

real-world and randomized networks. This is consistent with previous reports that the degree298

distribution can be a predictor of network stability, but its effect must be teased apart from the299
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effects from other higher-order network structure [25, 26].300

Mutualistic communities are often strongly nested [27], which could explain the differ-301

ence between real-world and randomized networks that is not due to differences in the de-302

gree distribution. We found that the median values of the relative Euclidian distance and the303

magnitude of the relative Shannon index change both decrease with relative nestedness (Sup-304

plementary Figure S1). The effect of relative nestedness, however, becomes non-significant305

once community size is taken into account. Therefore it is unclear whether the robustness of306

real-world networks is a direct consequence of their nested architecture or other higher-order307

network structure.308

An alternative perturbation to which the stability of an ecological community can be mea-309

sured is the extinction or removal of a species [28, 29]. Interaction type shifts have a greater310

effect on the community than extintions. Even for the most centrally located species, interac-311

tion type shifts lead to more than 50% larger changes compared to extinctions. Thus although312

interaction type shifts lead to greater changes than removals, ecological communities are com-313

paratively more robust to shifts in central species than to extinctions.314

Even though the structure of real-world mutualistic networks enhances their robustness315

against single shifts, the opposite is the case for multiple shifts, i.e. they are more sensitive316

to multiple shifts than randomized networks. Mougi & Kondoh [14] previously showed that317

adding mutualistic interactions to predator-prey networks can stabilize the community, but318

that too many mutualistic interactions decreases the stability again. Here, we replace mu-319

tualistic interactions with anatagonistic ones and find that changing only a small number of320

interactions drastically destabilizes real-world networks. As more and more interactions are321

shifted, stability is regained. Equivalently, Allesina & Tang [13] showed that a large number322

of weak mutualistic interactions has a destabilizing effect on antagonistic communities. Thus,323

these results are in agreement, and the effect of mixed-effects is similar, whether one starts324

with naturally stable antagonistic networks or a naturally stable mutualistic network.325

Due to the general nested architecture of real-world mutualistic communities [27], there are326

more specialists than generalists in these communities. These specialists have a lower degree327

centrality and are more likely to benefit from shifting their interaction type but will have less328

of an effect on the whole community. Thus the species that contribute most to the stability of329
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the community (i.e. generalists) are also those which are most prohibited from shifting their330

interaction type. Generalist species have also been shown to be less tolerant to a decrease in the331

strength of the mutualistic interactions [30]. These results offer an additional explanation why332

in phylogenetic studies of mutualistic communities specialists are more likely to “disappear”333

from the community [16, 24]. While extinctions have been the usual explanation, we propose334

that interaction type shifts could also be a driver of this observation.335

Exploitation represents an important challenge for mutualistic communities since cooper-336

ation between unrelated individuals is particularly susceptible to cheating [17, 31]. The effect337

of such cheating has been well studied in the case of two-species interactions, but it is not338

clear how these changes propagate through the complex interaction networks characterising339

real ecological communities. The interaction type shifts studied here can be seen as the result340

of successfully invading cheaters. Overall, our results indicate that real-world networks pro-341

mote the shifting of a typical single species more strongly compared to random community342

assemblies, but these networks are structured in a way that buffers the effect of interaction343

type shifts of single species on the community as a whole. This increased resistance of real-344

world networks to single species shifts compared to random assemblies wanes and is even-345

tually reversed as the number of shifting species increases. This indicates that the structure346

of real-world networks may protect these communities from small perturbations such as sin-347

gle species shifts, but can exacerbate the consequences of large perturbations such as multiple348

species shifts. This property of real-world networks might be especially relevant as the cur-349

rently on-going anthropogenic changes may lead to the type of large-scale perturbations to350

which ecological communities are particularly sensitive according to our findings.351
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Supplementary Figures479

S1 The effect of number of species, connectance and relative nestedness on the median val-480

ues of the three distance measures. The color and size of the circles are indicative of the481

number of species in the network (see Main Figure 3). ri = 0.4, si = 1.5, ci = 1.482

S2 The effect of multiple shifts on Euclidian distance δ, relative Shannon index change ∆s483

and the number of secondary extinctions. (a-b) δ and ∆s for real and random networks,484

as well as the ratios δreal/δrandom and ∆sreal/∆srandom. A positive ratio indicates a larger485

value in real networks and a negative ratio a larger value in random networks. (c) The486

number of secondary extinctions in real and random networks. ri = 0.4, si = 1.5, ci = 1.487

S3 The effect of multiple removals/extinctions on residual Euclidian distance δ(−k), resid-488

ual relative Shannon index change ∆s(−k) and the number of secondary extinctions.489

(a-b) δ and ∆s for real and random networks, as well as the ratios δreal/δrandom and490

∆sreal/∆srandom. A positive ratio indicates a larger value in real networks and a nega-491

tive ratio a larger value in random networks. (c) The number of secondary extinctions in492

real and random networks. We did not observe any secondary extinctions with species493

removals, since there is facultative mutualism and species removals do not result in neg-494

ative interactions. ri = 0.4, si = 1.5, ci = 1.495

S4 Relative Euclidian distance, relative Shannon index change and relative abundance change496

for different values of intra-specific competition. Left: weak competition (si = 1.1); Right:497

strong competition (si = 3). ri = 0.4, ci = 1.498

S5 Distance measures for single shifts in real-world vs. randomized networks for weak499

competition (si = 1.1). ri = 0.4, ci = 1.500

S6 Distance measures for single shifts in real-world vs. randomized networks for strong501

competition (si = 3). ri = 0.4, ci = 1.502

S7 Antagonism vs. extinctions for weak and strong intra-specific competition. Left: weak503

competition (si = 1.1); Spearman’s ρ = −0.609 (p < 10−15) for δ and ρ = −0.475 (p <504

10−15) for ∆s. Right: strong competition (si = 3); Spearman’s ρ = −0.563 (p < 10−15) for505
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δ. There is no significant decrease with degree centrality for ∆s, ρ = −0.0196 (p = 0.242).506

ri = 0.4, ci = 1.507
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Table 1: Rank correlation (Spearman’s ρ) between the centrality measures and the distance
measures in the case of single shifts within each network. Parameters: ri = 0.4, si = 1.5, ci = 1.
A double asterisk signifies p < 0.01, a single asterisk p < 0.05.

Betweenness centrality Degree centrality

Network δ |∆s| ∆f δ |∆s| ∆f

1 0.861∗∗ 0.819∗∗ −0.626∗∗ 0.881∗∗ 0.845∗∗ −0.652∗∗

2 0.709∗∗ 0.658∗∗ −0.416∗∗ 0.707∗∗ 0.658∗∗ −0.41∗∗

3 0.617∗∗ 0.597∗∗ −0.445∗∗ 0.597∗∗ 0.578∗∗ −0.422∗∗

4 0.63∗∗ 0.609∗∗ −0.434∗∗ 0.623∗∗ 0.6∗∗ −0.417∗∗

5 0.714∗∗ 0.692∗∗ −0.535∗∗ 0.737∗∗ 0.714∗∗ −0.557∗∗

6 0.63∗∗ 0.617∗∗ −0.427∗∗ 0.632∗∗ 0.62∗∗ −0.428∗∗

7 0.679∗∗ 0.656∗∗ −0.427∗∗ 0.679∗∗ 0.657∗∗ −0.423∗∗

8 0.612∗∗ 0.6∗∗ −0.438∗∗ 0.606∗∗ 0.594∗∗ −0.426∗∗

9 0.684∗∗ 0.666∗∗ −0.465∗∗ 0.693∗∗ 0.674∗∗ −0.47∗∗

10 0.563∗ 0.564∗ −0.219 0.567∗ 0.567∗ −0.212
11 0.592∗∗ 0.55∗∗ −0.368∗ 0.602∗∗ 0.564∗∗ −0.374∗

12 0.843∗∗ 0.755∗∗ −0.749∗ 0.867∗∗ 0.791∗∗ −0.788∗∗

13 0.705∗∗ 0.684∗∗ −0.395∗∗ 0.722∗∗ 0.698∗∗ −0.403∗∗

14 0.955∗∗ 0.944∗∗ −0.908∗∗ 0.963∗∗ 0.955∗∗ −0.912∗∗

15 0.741∗∗ 0.688∗∗ −0.509∗∗ 0.737∗∗ 0.686∗∗ −0.514∗∗

16 0.679∗∗ 0.646∗∗ −0.484∗∗ 0.677∗∗ 0.645∗∗ −0.472∗∗

17 0.747∗∗ 0.743∗∗ −0.611∗∗ 0.751∗∗ 0.746∗∗ −0.607∗∗

18 0.83∗∗ 0.786∗∗ −0.747∗∗ 0.834∗∗ 0.789∗∗ −0.749∗∗

19 0.598∗∗ 0.593∗∗ −0.415∗∗ 0.595∗∗ 0.59∗∗ −0.407∗∗
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before shift after shifta b

Figure 1: Schematic of a mutualistic network that undergoes an interaction type shift. Before
the shift, all interactions between plants and pollinators are beneficial for both the plant and
the pollinator (green: ++ mutualistic interaction). After a pollinator shifts, interaction with
plants remain beneficial to the pollinator, but are detrimental to the plant (red: −+ antagonistic
interaction). This is modeled by inverting the signs of the interactions between the pollinator
and the plants in the adjacency matrix of the network.
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Figure 2: Effect of degree centrality on the different stability measures. Relative Euclidian
distance change (top), relative Shannon index change (middle) and relative frequency change
(bottom) as a function of the degree centrality of the shifting species for all networks com-
bined. Each point represents a single shifted pollinator species. The model parameters are:
si = 1.5; ri = 0.4; ci = 1. The networks figures to the right of the plots give a qualitative
impression of the on the dependence of the measures on centrality for the plant-pollinator
dataset from Kibune Forest, Kyoto, Japan [7, 32]. Grey nodes correspond to plant species and
coloured nodes to pollinator species. Green animal species increase their relative abundance
when shifting to antagonism and red species decrease their relative abundance. The size of the
nodes is proportional to the magnitude of the respective measure.
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Figure 3: The mean values of the stability measures in the real networks vs. their randomized
counterparts. The coloured circles and squares are the median values over all pollinators for
each of the three measures and each network under the randomization scheme that discards
and retains the degree distribution respectively. The position on the y-axis is the mean value
of this median over 200 repetitions. The individual median values are indicated by small
black dots (partially hidden behind the coloured circles). The size and colour of the circles are
representative of the number of species in each network. Points above (below) the diagonal
for positive (negative) values indicate larger values for randomized networks. The model
parameters are the same as in Figure 2: si = 1.5; ri = 0.4; ci = 1. The effect of weak and strong
intra-specific competition is shown in Supplementary Figures S5 and S6.
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Figure 4: The effects of shifts to antagonism vs. extinctions of pollinators. Top panel: The
relative Euclidian distance and relative Shannon index change when a pollinator shifts to an-
tagonism divided by the measure when that same pollinator is removed, respectively. si = 1.5;
ri = 0.4; ci = 1.
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Figure 5: Multiple shifts to antagonism. The relative Euclidian distance and the relative Shan-
non index change as a function of the fraction of pollinators that shift to antagonism in real
compared to randomized networks. The effect of only a small number of pollinator shifts is
larger in randomized than real-world networks (negative values). As the number of shift-
ing pollinators increases, this is generally reversed and the effects on the community become
larger in real-world than randomized networks (positive values). For each network, we ran-
domly sample m = 1, 2, . . . , NA pollinators and shift their interaction to antagonism (NA =
number of pollinators). The plotted values are the mean over 200 such samples at each m for
the both real-world network and 100 randomizations. si = 1.5; ri = 0.4; ci = 1.
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