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Abstract 

Genome wide association studies provide an unbiased discovery mechanism for 

numerous human diseases. However, a frustration in the analysis of GWAS is that 

the majority of variants discovered do not directly alter protein-coding genes. 

We have developed a simple analysis approach that detects the tissue-specific 

regulatory component of a set of GWAS SNPs by identifying enrichment of 

overlap with DNase I hotspots from diverse tissue samples. Functional element 

Overlap analysis of the Results of GWAS Experiments (FORGE) is available as a 

web tool and as standalone software and provides tabular and graphical 

summaries of the enrichments.  Conducting FORGE analysis on SNP sets for 260 

phenotypes available from the GWAS catalogue reveals numerous overlap 

enrichments with tissue–specific components reflecting the known aetiology of 

the phenotypes as well as revealing other unforeseen tissue involvements that 

may lead to mechanistic insights for disease.  
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Identifying Regulatory Components of Genome Wide Association Study Hit 

Lists 

A primary motivation for sequencing the human genome was to shed light on 

mechanisms involved in human disease.  Since finishing the sequence there has 

been much activity in two areas towards that goal. In the first, extensive re-

sequencing of individual genomes has provided comprehensive lists of human 

variations, which can in turn be examined for association with disease and other 

phenotypes in Genome Wide Association Studies (GWAS) [1]. In the second area, 

efforts have been undertaken to identify the specific sequences that enact 

function within the genome including, but not restricted to, regions defining 

genes and their controlling elements [2-4]. The aim, of course, is to understand 

the associations uncovered in the first approach in the context of the annotations 

delivered from the second. 

The past few years have seen a dramatic growth in the number of variants 

associated with disease by GWAS [1]. An extensive catalogue of GWAS 

associations has been compiled containing nearly 14,000 associations of variants 

to phenotypes [5].  However, a crucial observation is that the majority of the 

variants observed do not directly affect the coding regions of protein coding 

genes. Notwithstanding that the reported variant for an association may be in 

linkage disequilibrium with a causal variant affecting a protein coding sequence, 

regulatory regions have been demonstrated to be linked to both specific diseases 

associations [6-18] (see [19] for review and further examples) and to be 

enriched in bulk in SNPs found across all GWAS [2, 20-22]. The ENCODE 

consortium reported that GWAS single nucleotide variants are substantially 

enriched in regulatory regions and up to 80% of GWAS variants have a potential 

regulatory interpretation via overlap with regulatory annotation [2, 21, 22]. 

Furthermore, Maurano et al [21] showed that regulatory regions revealed by the 

DNase-seq method show a cell specific enrichment for GWAS variants in specific 

phenotypes consistent with probable physiological mechanisms. Trynka et al 

[23] similarly found that regulatory elements identified by the histone 

modification H3K4me3 show a phenotypically relevant cell specific overlap with 

GWAS SNPs. Several tools exist to highlight the specific overlaps of individual 

GWAS SNPs with potential regulatory regions [24, 25]. To date however, much of 

the focus on this work has been on prioritising variants, rather than exploring 
the extensive cell type information present in the large-scale projects.  

We have developed a simple but powerful approach that identifies significant 

cell specific enrichments in regulatory regions for sets of single nucleotide 

variants, typically from GWAS.  We name the approach Functional element  

Overlap analysis of the Results of GWAS Experiments or FORGE, and have 

implemented it as both a rapid web tool for ENCODE[26] and Roadmap 

Epigenome project DNase-seq data[27] and a free-standing open source 

software.  The web tool produces two alternative graphical outputs for 

exploration alongside tabulated enrichment data. FORGE analysis across all 

eligible phenotypes in the entire GWAS catalog [5] identifies numerous 

interesting patterns of enrichment by cell type and suggests tissues to focus on 
for future follow up studies. 
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Forge Analysis approach 

FORGE analysis provides a method to view the tissue specific regulatory 

component of a set of variants. In its current implementation, FORGE analysis 

takes a set of single nucleotide polymorphisms (SNPs), such as those 

SNPs reported above the genome wide significance threshold (p < 5e-8) in a 

GWAS study, optionally filters the SNPs to remove all bar one SNP from a region 

in high LD (“LD pruning”) and determines whether there is enrichment for 

overlap with putative regulatory elements compared to a matched background 

of SNP sets. Initially the elements considered are DNase I hotspots generated 

from either the ENCODE [26] or Roadmap Epigenomics projects DNase I data by 

the Hotspot method [28, 29], because of both the comprehensiveness of the sites 

identified and the broad range of cell types for which DNase I data was available. 

DNase I hotspots can be regarded as regions of general DNase I sensitivity. 

For each set of test SNPs, an overlap analysis is performed against the DNase I 

hotspots for each available cell sample separately (125 samples for ENCODE, 299 

for Roadmap, described in Supplementary Table S1), and the number of overlaps 

is counted. Major potential confounders in this analysis are the many biases of 

GWAS SNP distribution on the genome. To account for this a background 

distribution of the expected overlap counts for this SNP set is obtained by 

identifying 1000 matched background SNP sets of the same number of SNPs, 

matching each test SNP with an equivalent SNP by decile bin for each of G+C 

content (GC), minor allele frequency (maf) and distance to the nearest 

transcription start site (TSS). The matched background SNPs sets are overlapped 

with the DNase I hotspots and the background distribution of overlap counts is 

determined. The enrichment of the test SNP set for each sample is expressed as 

the binomial P value of the test SNP set given the background overlap 

distribution. The FORGE results are presented in interactive and static graphical 

and tabular forms by cell type. Enrichments above the background distribution 

with binomial P values less than 0.01 corrected for multiple testing 

are considered significant and are highlighted in red in the graphical output. 

Enrichments with p <= 0.05 are also highlighted in pink (Figure 1). As the DNase 

I patterns are not independent between cell types, we conducted simulation 

experiments with randomly selected input SNPs.  We chose 1000 random test 

SNP sets for each of a series of SNP counts ranging between 5 and 100 SNPs and 

conducted FORGE analysis on both ENCODE and Roadmap data. The false 

positive rate was determined as the number of cell type enrichments identified 

greater than the significance thresholds used by FORGE expressed as the 

proportion of the total number of sample overlap tests performed (424,000) for 

each SNP count. This analysis showed that the P value thresholds are reasonably 

well calibrated to false positive levels around 0.5-0.75 %. In practice we correct 

the thresholds further for multiple testing across different tissues so as to be 

more stringent and so expect typical false positive levels to be less. As discussed 

below, many of the GWAS SNP sets do not reveal any enrichment, consistent with 

low false positive rates. 
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The FORGE tool 

We have implemented FORGE as a web tool available at 

http://browser.1000genomes.org/Homo_sapiens/UserData/Forge.  The 

interface accepts a list of SNPs by dbSNP RefSNP identifier (RSID) or by genomic 

location on human genome build GRCh37 in either Variant Call Format (VCF, 

http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-

variant-call-format-version-41) or Bed format (Personal Genome SNP format, 

http://genome.ucsc.edu/FAQ/FAQformat.html#format10), and allows 

specification of the background selection from two common sets of GWAS SNP 

typing microarrays.  LD filtering is achieved at either r2 >= 0.8 or r2 >= 0.1 using 

1000 genomes project population data. The outputs of the analysis are an 

interactive graphic for exploration of the analysis, a static pdf for printing or 

publication (Figure 1), and a table of enrichments in either an interactive or 

standard tab separated format. 

In addition the code is available to download from 

https://github.com/iandunham/Forge, with the required database files available 

at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/browser/forge. Installed 

on a Macbook Pro with core i7 processor, 16Gb RAM and a solid state hard drive, 

a typical FORGE analysis of a set of 55 SNPs with 1000 background tests is 

accomplished in around 30s, and in 35s with LD filtering.  

 

Gallery of Examples 

We ran FORGE analysis on 260 phenotypes in the NCBI GWAS catalog NCBI 

GWAS catalog [5, 30] with a reported associated SNP count of 5 or more after LD 

pruning (see Supplementary Table S2 for list of phenotypes analysed and 

references) at genome-wide significance.  Complete tables of results for all SNP 

sets analysed are included in the data directory of the Github release, 

https://github.com/iandunham/Forge.  35 and 60 out of 260 SNP sets had at 

least one significant enrichment at the P value thresholds of 0.05 and 0.01 after 

correction for multiple testing, respectively (Table 1).  A set of example positive 

outputs from this analysis is available from 

http://www.1000genomes.org/forge-gwas-catalog-example-gallery11 (PDF 

format). Removing SNPs that directly alter a protein coding exon from the GWAS 

catalog sets did not substantively alter the patterns of enrichments (data not 

shown). 

Figure 1 shows a series of example FORGE analyses for autoimmune disease 

studies on the Roadmap Epigenome samples (references for the studies are 

provided in Supplementary Table S2).  In each case there is a clear signal for 

enrichment of overlap with DNase I hotspots in the blood-derived samples 

including cells of immune function.  In more detail, for those phenotypes where 

there is involvement of T cell activation or invasion in the aetiology (e.g. Crohn’s 

disease, Multiple Sclerosis) there is enrichment in the CD3, CD4 and CD8 positive 

samples containing T cells as well as enrichment in the CD56 positive sample 
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including NK cells. In addition, these disease SNPs overlap with hotspots present 

in the fetal thymus samples, consistent with the location of T cells maturation. 

Further signals specific to the individual aetiologies are also identified. Crohn’s 

disease SNPs show enrichment of overlap with hotspots in the fetal small and 

large intestine samples, as well as fibroblasts and skin cells. For inflammatory 

bowel disease SNPs there is a much more general enrichment, in addition to the 

specific immune cells, which may be consistent with the more generalized 

inflammation. In contrast, for autoimmune diseases where the primary 

involvement is a B cell response (Rheumatoid arthritis (RA), Systemic lupus 

erythematosus (SLE)), the most pronounced overlap enrichment is in CD19 

positive samples characteristic of B cell activation or circulating plasma cells. In 

rheumatoid arthritis there is also some overlap enrichment for samples 

characteristic of T cells and thymocytes, but it is relatively less, and this is much 

less pronounced for SLE. Thus, FORGE analysis reveals tissue specific 

enrichment of overlap for GWAS SNPs with regulatory regions indicative of 

known tissue involvement in the disease aetiology. 

The tissue specific enrichment of overlap is not specific to just autoimmune 

disease (see results gallery at http://www.1000genomes.org/forge-gwas-

catalog-example-gallery11). For instance, for QRS duration the GWAS associated 

SNPs are strongly enriched for overlap with fetal heart samples. GWAS SNPs 

associated with pulmonary function measured by spirometry are enriched for 

overlap with hotspots in fetal lung cells and lung cell lines. For red blood cell 

traits and platelet count the major overlap enrichment signal is in CD34 positive 

hematopoietic progenitor cells consistent with their role in both red blood cell 

and platelet development. In contrast for GWAS SNPs involved in height, the 

overlap enrichment is not tissue specific but is more general over many tissues 

and cell lines. There are further examples displayed in the results gallery at 

http://www.1000genomes.org/forge-gwas-catalog-example-gallery11, in most 

case consistent with expected disease aetiologies.  

Discussion 

FORGE (Functional element Overlap analysis of the Results of GWAS 

Experiments) analysis is a straightforward and fast method to examine sets of 

nucleotide variants, typically identified in GWAS studies, for tissue specific 

regulatory signals. It presents a graphical overview of overlap enrichment with 

DNase I hotspots that quickly provides evidence of a regulatory component to 

SNPs associated with a phenotype, and highlights potentially mechanistically 

relevant cells or tissues. A typical usage scenario would be to analyse a set of 

GWAS SNPs identified above genome wide significance to reveal the regulatory 

component of the association. Furthermore the cell or tissue enrichments might 

be consistent with prior expectation of the disease aetiology providing additional 

confidence in the SNP set identified, or might provide new insights as to 

potential sites of disease mechanism. 

The statistical approach we used here relies on the careful matching of 

background behaviour of SNPs with calibrations by randomization for the per 

cell type enrichment. The underlying biases of GWAS SNP distributions with 
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respect to TSS distance, maf and GC are not easy to model parametrically. 

However other approaches which would make assumptions of homogeneity 

(such as the Poisson distribution) or of regional heterogeneity (Genome 

Structure Correction, [31]) would not be able to capture these known biases.  It 

is important to note that as alternate SNP resources are utilized in GWAS, the 

appropriate background SNPs must be used for control. For instance a switch to 

genotyping by genome sequencing or extensive use of imputation requires 

revision of the background. New and updated background sets can be 

implemented as required in particular for genome sequencing GWAS approaches 

and higher density genotyping arrays. 

Not all GWAS study SNP sets downloaded from the GWAS catalog showed 

overlap enrichment with the DNase I hotspots. In these cases all sample points 

were above the P value thresholds (blue points). This could occur because there 

is no regulatory component underlying the GWAS association in these 

phenotypes, because the associated SNPs do not contain mechanistically causal 

SNPs, because the relevant tissue is not present in the available DNase I datasets 

or because of low power in the GWAS study to detect regulatory effects. As 

further data sets are release by the ENCODE, Roadmap Epigenome and other 

projects these can be incorporated into the database to provide coverage of 

further cell types.  In addition the approach could be readily extended to other 

data types including regions of specific histone modification as used by Trynka et 

al [23] or relevant transcription factor binding regions.  

60 out of 260 sets of GWAS SNPs from the GWAS catalog for specific phenotypes 

had overlap enrichments detected in at least one DNase I hotspot sample (Table 

1). As described above in several cases, the patterns of tissue–specific 

enrichment are highly evocative of the known aetiologies of the phenotypes, but 

can also reveal additional tissue involvements that require further investigation. 

We encourage interested parties to peruse the gallery of results for their own 

phenotypes, as well as running new SNP sets discovered in GWAS either through 
the web interface or with the standalone software.  

 

Methods  

DNase I Data 

ENCODE consortium hotspots [26] were obtained from 

ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/b

yDataType/openchrom/jan2011/combined_hotspots/.  Roadmap Epigenome 

DNAse1 sequencing tag alignments were obtained 

from http://www.genboree.org/EdaccData/Current-Release/experiment-

sample/Chromatin_Accessibility/. The files used correspond to that part of the 

Gene Expression Omnibus (GEO) accession GSE18927 beyond the data use 

embargo date.  These alignments were processed by the Hotspot 

(http://www.uwencode.org/proj/hotspot/) [28, 29] method with the default 

parameters to give hotspot and peak files.  For this analysis we choose to use the 
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hotspots which are regions of general DNase I sensitivity rather than peaks 

which are more similar to DNase I hypersensitive sites because, although the 

method works with peaks, hotspots reveal more tissue specific signal (data not 

shown). Cell and tissue assignments for each of the data sets were made using 

the decodings available from the ENCODE Data Coordination Center tables 

(https://genome.ucsc.edu/encode/cellTypes.html) or from the BioSamples 

database (http://www.ebi.ac.uk/biosamples/) sampleGroup SAMEG31306. A list 

of samples used is provided in Supplementary Table S1. 

GWAS SNP data 

The complete collection of SNPs discovered in GWAS studies curated in the 

NHGRI GWAS Catalog [5] were downloaded from 

http://www.genome.gov/gwastudies/ [30](Accessed 3rd September 2014).  

SNPs were grouped according to the annotation provided in the Disease/Trait 

field and only sets with 5 or more non-redundant SNPs were retained. See 

Supplementary Table S2 for list of SNP sets analysed.  A set of files of the SNPs 

included in analysis for each phenotype is available in the data directory of the 

GitHub release, https://github.com/iandunham/Forge. For Forge analysis SNP 

sets were further filtered by LD pruning removing all but one SNP from a set of 

SNPs at r2 >= 0.8 in the 1000 genomes data (see below) and were analysed for 

both ENCODE and Roadmap Epigenome DNase I hotspots, selecting background 
SNP sets from the default GWAS genotyping array SNPs.  

Preparation of FORGE overlaps 

The FORGE tool utilises either an SQLite (command line tool, 

http://www.sqlite.org) or MySQL (web tool, http://www.mysql.com) database 

of the overlaps of every 1000 genomes project (http://www.1000genomes.org) 

[32] SNP with the ENCODE and Epigenome Roadmap DNase1 hotspots. To 

prepare this database, SNPs from the 1000 genomes phase 1 integrated call data 

set were downloaded from 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_c

all_sets and compared to indexed DNase I hotspots using tabix from the 

SAMtools package (http://samtools.sourceforge.net/tabix.shtml) [33] using a 

distributed approach on the EBI compute farm. The overlaps for each SNP were 

stored in a single large indexed table of SNP location and identifier with binary 

strings representing the presence (1) or absence (0) of overlap in each sample 

for each of the hotspot data sets (ENCODE or Roadmap).  

Background SNP parameters 

To prepare sets of background SNPs matched to the test SNP set, FORGE matches 

SNPs based on GC, maf and TSS distance, and repeats the overlap analysis for 

each of 1000 background sets. Overall population mafs were obtained from the 

1000 genomes project phase 1 integrated call data set at 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_c
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all_sets. To control for the processes involved in selecting SNPs for genotyping, 

only 1000 genomes phase 1 SNPs that had been included on one of the common 

genotyping platforms as described in Ensembl 

(http://www.ensembl.org/info/genome/variation/data_description.html#variat

ion_sets) were considered further. This left either 1875813 SNPs across various 

platforms (Affy GeneChip 100K Array, Affy GeneChip 500K Array Affy SNP6, 

HumanCNV370-Quadv3, HumanHap300v2, HumanHap550v3.0, Illumina Cardio 

Metabo, Illumina Human1M-duoV3, Illumina Human660W-quad) or 2231212 

SNPs across the Illumina HumanOmni2.5 array. TSS distance was determined for 

each remaining SNP relative to the TSS defined by the Gencode project [34, 35] 

given in 

ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDat

aType/gencode/jan2011/Gencodev7_CAGE_TSS_clusters_June2011.gff.gz using 

Bedops closest-features [36]. GC was determined for a 100 bp window centred 

on the SNP at base 50. The SNPs were then sorted into 1000 bins partitioned by 

deciles for each of GC, maf and TSS. For each SNP in a test set, the corresponding 

bin is identified based on its GC, maf and TSS distance, and background 

selections are made from that bin.  

FORGE analysis 

A set of SNPs can be presented to FORGE as a list of RSIDs or by genome location 

on human genome build GRCh37 in either VCF or Bed formats. If RSIDs are not 

provided in one of these formats, the genome coordinates are used to identify 

the RSID. SNPs not present in the 1000 genomes phase 1 integrated call data set 

are excluded from the analysis. With LD pruning selected a single SNP (the first 

in the file) is chosen from LD clusters within either r2 >= 0.8 or r2 >= 0.1 as 

specified. For each analyzable SNP in the test set, overlaps are retrieved from the 

FORGE database, and a count of total hotspot overlaps is recorded for each 

DNase I sample (cell) for the test SNP set. One hundred matching background 

SNP sets containing the same number of SNPs as the test SNP set are selected, 

matched for GC, maf and TSS distance by decile bins as described above.  

Overlaps for each of the SNPs in each of the background SNP sets are also 

retrieved from the database and an overlap count for each background set in 

each DNase I sample is recorded. For each test SNP set, the background 

probability of overlap is determined from the 1000 background set overlap 

counts and the probability of the observed test result under a binomial 

distribution is calculated. The P value thresholds of 0.05 and 0.01 are corrected 

for multiple testing by division by the number of tissue groupings tested, and the 

corrected threshold is used. The use of tissue as the unit for sample grouping is 

consistent with the groupings obtained by hierarchical clustering of samples by 

Dnase 1 data (results not shown). The corrected thresholds are therefore more 

stringent than established by the random trials. 

FORGE outputs 

FORGE generates both tabular and graphic descriptions of the enrichment of 
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overlap for the test SNPs for each DNase I hotspot sample.  A tab-separated 

values (TSV) file is output including columns for the binomial P value, cell, tissue, 

filename of the sample hotspots, SNPs that contribute to the enrichment, and the 

GEO accession for each sample. This data is also provided as an interactive table 

produced using the Datatables (https://datatables.net/) plug-in for the jQuery 

Javascript library accessed through the rCharts package 

(http://ramnathv.github.io/rCharts/).  

Each of the graphic outputs presents the –log10 binomial p by cell sample. A pdf 
graphic is generated using base R graphics (http://www.r-project.org ). The 

interactive Javascript graphic is generated using the rCharts package 

(http://ramnathv.github.io/rCharts/) to interface with the dimple d3 libraries 

(http://dimplejs.org). In both cases cells are grouped alphabetically by tissue, 

and for the pdf alphabetically by cell. The interactive graphic stacks replicate 

samples at the same x coordinate. In each of the graphics the colouring of results 

by P value is consistent, blue (p > 0.05 equivalent after correction), pink (0.05 => 

p < 0.01), and red (p <= 0.01). The corrected P value threshold is given on the pdf 

output. 

 False positive rates  

To estimate false positive rates, 1000 sets of SNPs at each of a series of SNP 

counts between 5 and 300 SNPs were randomly chosen from the 1000 genome 

phase 1 integrated SNP set. FORGE analysis was run for each set across the 

ENCODE and Roadmap Epigenome data, and the number of tests with P values 

less than thresholds ranging from 0.05 to 0.001 were recorded. These represent 

the false positives from 1000 trials at each of 424 samples i.e. 424,000 tests, and 

were used to calculate false positive rates at each significance threshold.  

Hierarchical Clustering of DNase I samples 

The hierarchical clustering solution was obtained using a multi-scale bootstrap 

resampling approach. We first computed a binary regulatory signature for each 

cell type classifying each DNase I site as active or inactive in each cell type 

sample. Hierarchically clustering of the binary regulatory signatures was by 

Euclidean distance with Ward's agglomerative method using the pvclust R/CRAN 

package with default values (http://cran.r-

project.org/web/packages/pvclust/index.html). Finally, we identified clusters 

supported by the data at a bootstrap probability p value < 0.01.   

Access and Source Code 

FORGE is available through a web interface at 

http://browser.1000genomes.org/Homo_sapiens/UserData/Forge. The source 

code for FORGE is available on GitHub at https://github.com/iandunham/Forge 

with the Forge.db sqlite database and background selection hash tables available 
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at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/browser/forge_11. 

FORGE has been successfully been installed and run on Mac OSX 10.8.4 and Red 
Hat Linux.  

 

Links  

Web tool 

http://browser.1000genomes.org/Homo_sapiens/UserData/Forge  

Web documentation 

http://www.1000genomes.org/forge-analysis-11  

Results Gallery 

http://www.1000genomes.org/forge-gwas-catalog-example-gallery11  

Source Code and Database 

https://github.com/iandunham/Forge 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/browser/forge_11 
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Figures 

Figure 1.  FORGE analysis results for GWAS of several autoimmune diseases on 

Roadmap Epigenome DNase I hotspots. A series of FORGE analysis results are 

presented for autoimmune phenotype GWAS SNPs.  Each point represents the Z 

score (y axis) of the enrichment of the test SNP set compared to matched 

background SNPs on a single DNase I hotspot sample, organized by tissue as 

indicated by the brown labels at the top of the figure, and alphabetically by cell 

sample (x axis). Where informative, additional labels at the bottom of the figure 

highlight relevant distinct cell types.  Red points are at Z >= 3.39 (empirical false 

positive rate <= 0.005 for 25 SNPs or more), pink points at Z >= 2.58. Full lists of 

the cells and results for each analysis are available in the Github data directory at 

https://github.com/iandunham/Forge. Phenotypes are labeled beneath each 
result.  
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Tables 

Table 1: A list of SNP sets with positive enrichments. GWAS SNP set gives the 

phenotype of the study for which these SNPs were found to be associated as 

recorded in the GWAS catalog. SNP Count is the number of SNPs analysed before 

LD pruning.  High and Low columns give the number of DNas1 cell samples 

found to be enriched for overlap in the Forge analysis at binomial p >= 0.01 

(High) and p >= 0.05 (Low) thresholds. Further details of the SNP sets analysed 
are given in Supplementary Table S2. 

 

GWAS SNP Set (Phenotype) SNP 

count 

High Low 

Acute lymphoblastic leukemia B-cell precursor 6 6 15 

Acute lymphoblastic leukemia childhood 9 0 1 

Adiponectin levels 28 0 1 

Allergic sensitization 10 0 1 

Atrial fibrillation 14 1 13 

Birth weight 7 0 1 

Blood pressure 43 7 19 

Breast cancer 84 13 49 

Celiac disease 30 9 18 

Celiac disease and Rheumatoid arthritis 12 8 12 

Chronic kidney disease 27 0 8 

Chronic lymphocytic leukemia 27 40 62 

Colorectal cancer 26 1 4 

Corneal structure 27 0 3 

Crohns disease 157 39 76 

Endometriosis 8 2 5 

Erythrocyte sedimentation rate 5 1 3 

Fasting glucose-related traits 17 0 2 

Fasting glucose-related traits interaction with 

BMI 

22 0 4 

Fractional exhaled nitric oxide childhood 6 0 5 

HDL cholesterol 123 1 3 

Heart rate 24 0 1 

Height 346 81 143 

Hematological parameters 9 0 1 

Hodgkins lymphoma 9 0 1 

IgA nephropathy 7 1 4 

Inflammatory bowel disease 117 139 207 

Liver enzyme levels gamma-glutamyl 

transferase 

26 1 6 

Mean corpuscular hemoglobin 29 2 4 

Mean platelet volume 51 1 2 

Migraine 13 0 2 
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Multiple myeloma 6 2 9 

Multiple sclerosis 74 32 43 

Myopia pathological 37 0 2 

Platelet counts 64 30 51 

Primary biliary cirrhosis 26 1 2 

Proinsulin levels 9 0 1 

Prostate cancer 86 2 11 

Pulmonary function 29 7 24 

QRS duration 12 2 8 

QT interval 29 0 2 

Red blood cell traits 60 3 9 

Renal function-related traits BUN 13 9 30 

Restless legs syndrome 9 0 1 

Rheumatoid arthritis 127 8 16 

Schizophrenia 49 0 1 

Sphingolipid levels 13 0 1 

Systemic lupus erythematosus 51 7 14 

Systemic lupus erythematosus and Systemic 

sclerosis 

11 0 6 

Systemic sclerosis 14 1 4 

Systolic blood pressure 24 0 9 

Telomere length 9 0 1 

Thyroid cancer 6 0 1 

Thyroid volume 6 0 2 

Type 1 diabetes 53 0 1 

Ulcerative colitis 88 1 1 

Urate levels 49 3 13 

Waist-hip ratio 8 3 25 

White blood cell count 18 1 2 

White blood cell types 12 1 4 
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Supplementary Tables 

Supplementary Table S1 

List of DNase I hotspot samples included in FORGE analysis. The table lists 

details of the 125 ENCODE and 299 Roadmap Epigenome samples in tab 

separated value format (tsv). The fields are  

File : File name 

Lab : The data-generating lab. One of UW (University of Washington, John 

Stamatoyannopoulos lab), Duke:UNC:UTA (Duke University, Greg Crawford lab) 
or combined representing a merged dataset from both labs. 

Experiment type : always DNase-seq in the current implementation.  

Project : Either ENCODE or Roadmap 

Cell : The cell type 

Tissue : Tissue name derived as described above.  

Datatype : Always hotspots in the current implementation. 

Short name : A short sample name used for plotting. 

Individual : Either the code for the individual sample as described in Biosamples 

or NA if not available 

GEO accession : The GEO accession where found, or “Not found” if it could not be 

deconvoluted. 

 

Supplementary Table S2 

List of phenotypes analysed, with non-redundant SNP counts and Pubmed 

identifiers for the studies involved. This table is also available in the data 
directory of the GitHub release, https://github.com/iandunham/Forge. 
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