
ViennaNGS: A toolbox for building efficient

next-generation sequencing analysis pipelines

Michael T. Wolfinger 1,2,3 ∗, Jörg Fallmann 1, Florian Eggenhofer 1,
Fabian Amman1,4

1Institute for Theoretical Chemistry, University of
Vienna,Währingerstraße 17, 1090 Vienna, Austria

2Center for Integrative Bioinformatics Vienna, Max F. Perutz
Laboratories, University of Vienna, Medical University of Vienna,

Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
3Department of Biochemistry and Molecular Cell Biology, Max F.

Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030
Vienna, Austria

4Department of Chromosome Biology, Max F. Perutz Laboratories,
University of Vienna, Medical University of Vienna,

Dr. Bohr-Gasse 9, A-1030 Vienna, Austria

February 12, 2015

Abstract

Recent achievements in next-generation sequencing (NGS) technologies
lead to a high demand for reuseable software components to easily com-
pile customized analysis workflows for big genomics data. We present
ViennaNGS, an integrated collection of Perl modules focused on building
efficient pipelines for NGS data processing. It comes with functionality
for extracting and converting features from common NGS file formats,
computation and evaluation of read mapping statistics, as well as nor-
malization of RNA abundance. Moreover, ViennaNGS provides software
components for identification and characterization of splice junctions from
RNA-seq data, parsing and condensing sequence motif data, automated
construction of Assembly and Track Hubs for the UCSC genome browser,
as well as wrapper routines for a set of commonly used NGS command
line tools.

∗to whom correspondence should be addressed: michael.wolfinger@univie.ac.at

1

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 12, 2015. ; https://doi.org/10.1101/013011doi: bioRxiv preprint 

https://doi.org/10.1101/013011


Introduction

Next-generation sequencing (NGS) technologies have influenced both our under-
standing of genomic landscapes as well as our attitude towards handling big bio-
logical data. Emerging functional genomics methods based on high-throughput
sequencing allow investigation of highly specialized and complex scientific ques-
tions, which continuously poses challenges in the design of analysis strategies.
Moreover, the demand for efficient data analysis methods has dramatically in-
creased. While a typical NGS analysis workflow is built on a cascade of routine
tasks, individual steps are often specific for a certain assay, e.g. depend on a
particular sequencing protocol.

A set of NGS analysis pipelines are available for general [4, 3], and specialized
assays such as de-novo motif discovery [6]. While these tools mostly cover the
elementary steps of an analysis workflow, they often represent custom-tailored
solutions that lack flexibility. Web-based approaches like Galaxy [5] cover a wide
portfolio of available applications, however they do not offer enough room for
power users who are used to the benefits of the command line.

The recently published HTSeq framework [2] as well as the biotoolbox1 pack-
age provide library modules for processing high-throughput data. While both
packages implement NGS analysis functionality in a coherent manner, we en-
countered use cases that were not covered by these tools.

Motivation

The motivation for this contribution emerged in the course of the research con-
sortium “RNA regulation of the transcriptome” (Austrian Science Fund project
F43), which brings together more than a dozen experimental groups with various
thematic backgrounds. In the line of this project it turned out that complex
tasks in NGS analysis could easily be automated, whereas linking individual
steps was very labour-intensive. As such, it became apparent that there is a
strong need for modular and reusable software components that can efficiently
be assembled into different full-fledged NGS analysis pipelines.

We present ViennaNGS, a Perl distribution that integrates high-level routines
and wrapper functions for common NGS processing tasks. ViennaNGS is not
an established pipeline per se, it rather provides tools and functionality for
the development of NGS pipelines. It comes with a set of utility scripts that
serve as reference implementation for most library functions and can readily be
applied for specific tasks or integrated as-is into custom pipelines. Moreover, we
provide extensive documentation, including a dedicated tutorial that showcases
core features of the software and discusses common application scenarios.

Development of the ViennaNGS suite was triggered by two driving forces.
On the one hand we wanted to return to the open source community our own
contribution, which itself is heavily based and dependent on open source soft-
ware. On the other hand, beside “open science” we advocate for the concept
of “reproducible science” [16]. Unfortunately, and to some extent surprising,
bioinformatics analyses are often not fully reproducible due to inaccessibility
of tools (keyword “in-house script”) or software versions used. It is therefore

1https://code.google.com/p/biotoolbox

2

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 12, 2015. ; https://doi.org/10.1101/013011doi: bioRxiv preprint 

https://doi.org/10.1101/013011


Figure 1: Schematic overview of ViennaNGS components. Core modules can
be combined in a flexible manner to address individual analysis objectives and
experimental setup.

essential to ensure the entire chain of reproducibility from data generation to
interpretation in the analysis of biological data.

Methods

The major design consideration for the ViennaNGS toolbox was to make available
modular and reuseable code for NGS processing in a popular scripting language.
We therefore implemented thematically related functionality in different Perl
modules under the Bio namespace (Figure 1), partly building on BioPerl [15]
and the Moose2 object framework. Our focus is on consistent versioning, facili-
tated through Github hosting. In addition, ViennaNGS releases are available via
the Comprehensive Perl Architecture Network (CPAN), thereby enabling users
to get back to previous versions at any time in order to reenact conclusions
drawn from shared biological data.

ViennaNGS has been designed to close gaps in established analysis workflows
by covering a wide range of processing steps from raw data to data visualization.
In the following we introduce individual ViennaNGS components and describe
their main functionality.

BAM manipulation and filtering

Once mapped to a reference genome, NGS data is typically stored in the widely
used SAM/BAM file format. BAM is a binary format, which can easily be con-
verted into text-based SAM format via samtools [11] for downstream analysis.
However, modern NGS assays produce hundreds of millions of reads per sample,

2https://metacpan.org/pod/Moose

3

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 12, 2015. ; https://doi.org/10.1101/013011doi: bioRxiv preprint 

https://doi.org/10.1101/013011


hence SAM files tend to become excessively large and can have a size of several
hundred gigabytes. Given that storage resources are always limited, strategies
to efficiently retrieve mapping information from BAM format are an asset. To
accomodate that, we provide functionality for querying global mapping statistics
and extracting specific alignment information from BAM files directly.

ViennaNGS::BamStat extracts both qualitative and quantitative informa-
tion from BAM files, i.e. the amount of total alignments, aligned reads, as well
as uniquely and multi mapped reads. Numbers are reported individually for
single-end reads, paired-end fragments and pairs missing a mate. Quality-wise
ViennaNGS::BamStat collects data on edit distance in the alignments, fraction
of clipped bases, fraction of matched bases, and quality scores for entire align-
ments. Subsequently, ViennaNGS::BamStatSummary compares different samples
in BAM format and illustrates results graphically. Summary information is
made available in CSV format to facilitate downstream processing.

Efficient filtering of BAM files is among the most common tasks in NGS anal-
ysis pipelines. Building on the Bio-SamTools3 distribution, ViennaNGS::Bam

provides a set of convenience routines for rapid manipulation of BAM files, in-
cluding filters for unique and multiple alignments as well as functionality for
splitting BAM files by strand, thereby creating two strand-specific BAM files.
Results can optionally be converted to BedGraph or BigWig formats for visu-
alization purposes.

Genomic annotation

Proper handling of genomic intervals is essential for NGS analysis pipelines.
Several feature annotation formats have gained acceptance in the scientific com-
munity, including BED, GTF, GFF, etc., each having its particular benefits and
drawbacks. While annotation for a certain organism is often only available in
a specific format, inter-conversion among these formats can be regarded a rou-
tine task, and a pipeline should be capable of processing as many formats as
possible.

We address this issue at different levels. On the one hand, we provide
ViennaNGS::AnnoC, a lightweight annotation converter for non-spliced genomic
intervals, which can be regarded a simple yet powerful solution for conversion
of bacterial annotation data. On the other hand we have developed an ab-
stract representation of genomic features via generic Moose-based classes, which
provide functionality for efficient manipulation of BED4, BED6, BED12 and
GTF/GFF elements, respectively, and allow for BED format conversion facili-
tated by ViennaNGS::Bed.

ViennaNGS::MinimalFeature represents an elementary genomic interval,
characterized by chromosome, start, end and strand. ViennaNGS::Feature ex-
tends ViennaNGS::MinimalFeature by two attributes, name and score, thereby
creating a representation of a single BED6 element. ViennaNGS::FeatureChain
pools a set of ViennaNGS::Feature objects via an array reference. All intervals
of interest can be covered by a ViennaNGS::FeatureLine object, which holds
a hash of references to ViennaNGS::FeatureChain objects (Figure 2).

This framework can handle annotation data by providing abstract data rep-
resentations of genomic intervals such as exons, introns, splice junctions etc.

3https://metacpan.org/release/Bio-SamTools

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 12, 2015. ; https://doi.org/10.1101/013011doi: bioRxiv preprint 

https://doi.org/10.1101/013011


Figure 2: Class diagram illustrating the relations among generic Moose classes
which are used as abstract representations of genomic intervals (only attributes
are shown).

It allows for efficient description and manipulation of genomic features up to
the level of transcripts (Figure 3). Conversely, it is highly generic and can
be extended to hierachically higher levels such as genes composed of different
transcript isoforms or clusters of paralogous genes.

Visualization

Another cornerstone of NGS analysis pipelines is graphical representation of
mapped sequencing data. In this context a standard application is visualization
of Chip-seq peaks or RNA-seq coverage profiles. The latter are typically encoded
in Wiggle format, or its indexed binary variant, BigWig, which can readily be
displayed within a genome browser. In the same line, genomic annotation and
intervals are often made available in BigBed format, an indexed binary version of
BED. ViennaNGS::Util comes with wrapper routines for automated conversion

5

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 12, 2015. ; https://doi.org/10.1101/013011doi: bioRxiv preprint 

https://doi.org/10.1101/013011


Figure 3: Schematic representation of genomic interval classes in terms of
their corresponding feature annotation. Simple invervals (“features”) are char-
caterized by Bio::ViennaNGS::Feature objects (bottom box). At the next
level, Bio::ViennaNGS::FeatureChain bundles these, thereby maintaining in-
dividual annotation chains for e.g. UTRs, exons, introns, splice junctions, etc.
(middle box). The topmost level is given by Bio::ViennaNGS::FeatureLine

objects, representing individual transcripts.

from common formats like BAM to BigWig or BED to BigBed via third-party
utilities [9]. In addition, we have implemented interfaces for a selection of BED-
tools [13] components as well as a collection of auxiliary routines.

The UCSC genome browser allows to display potentially large genomic data
sets, that are hosted at Web-accessible locations by means of Track Hubs [14].
On a more general basis this even works for custom organisms that are not sup-
ported by default through the UCSC genome browser, via Assembly Hubs. A
typical use case is visualization of genomic annotation, RNA-seq coverage pro-
files and Chip-seq peaks for Arabidopsis thaliana (which is not available through
the generic UCSC browser) via a locally hosted Assembly Hub. ViennaNGS::UCSC
provides all relevant routines for automatic construction of Assembly and Track
Hubs from genomic sequence and/or annotation. Besides automated Assem-
bly and Track Hub generation, we support deployment of custom organism
databases in local mirrors of the UCSC genome browser.

Gene expression and normalization

RNA-seq has become a standard approach for gene and transcript quantifica-
tion by means of measuring the relative amount of RNA present in a certain
sample or under a specific condition, thus ideally providing a good estimate for
the relative molar concentration of RNA species. Simple “count-based” quan-
tification models assume that the total number of reads mapping to a region
can be used as a proxy for RNA abundance [12]. A good measure for transcript
abundance is ideally as closely proportional to the relative molar concentration

6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 12, 2015. ; https://doi.org/10.1101/013011doi: bioRxiv preprint 

https://doi.org/10.1101/013011


of a RNA species as possible. Various measures have been proposed, one of the
most prominent being RPKM (reads per kilobase per million). It accounts for
different transcript lengths and sequencing depth by normalizing by the number
of reads in a specific sample, divided by 106. It has, however, been shown that
RPKM is not appropriate for measuring the relative molar concentration of a
RNA species due to normalization by the total number of reads [10, 18].

Alternative measures that overcome this shortcoming have been suggested,
e.g. TPM (transcript per million) (eq. 1). Here, rather than normalizing by
the total number of mapped reads, a proxy for the total number of transcript
samples considering the sequencing reads per gene rg is used for normalization
(eq. 2). The variable rl is the read length and flg the feature length of a gene
region g. Consequently, T can be computed by summing over the set of all genes
G.

TPMg =
rg × rl

flg
× 106

T (1)

T =
∑
g∈G

rg × rl

flg (2)

We provide routines for the computation of TPM values for genomic intervals
from raw read counts within ViennaNGS::Expression.

Characterization of splice junctions

ViennaNGS::SpliceJunc addresses a more specific problem, namely character-
ization of splice junctions which is becoming increasingly relevant for under-
standing alternative splicing. This module provides code for identification and
characterization of splice junctions from short read mappers. It can detect novel
splice junctions in RNA-seq data and generate visualization files. While we have
focused on processing the output of segemehl [8, 7], the module can easily be
extended for other splice-aware split read mappers.

Documentation and Tutorial

The ViennaNGS suite comes with extensive documentation based on Perl’s POD
system, thereby providing a single documentation base which is available through
different channels, e.g. on the command line via the perldoc utility or on the Web
via CPAN. Moreover, we provide ViennaNGS::Tutorial to guide prospective
users through the development of basic NGS analysis pipelines. The tutorial is
split into different chapters, each covering a common use case in NGS analysis
and describing a possible solution.

Utilities

The ViennaNGS suite comes with a collection of complementary executable Perl
scripts for accomplishing routine tasks often required in NGS data processing.
These command line utilities serve as reference implementations of the routines

7

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 12, 2015. ; https://doi.org/10.1101/013011doi: bioRxiv preprint 

https://doi.org/10.1101/013011


implemented in the library and can readily be used for atomic tasks in NGS
data processing. Table 1 lists the utilities and gives a short description of their
functionality.

Table 1: Overview of the complementary utilities shipped with ViennaNGS.
While some of these scripts are re-implementations of functionality available
elsewhere, they have been developed primarily as reference implementation of
the library routines to help prospective ViennaNGS users getting started quickly
with the development of custom pipelines.

Utility Description
assembly hub constructor.pl Construct Assembly Hubs for UCSC

genome browser visualization
bam quality stat.pl Compute mapping/quality statistics along

with publication-ready figures
bam split.pl Split BAM files by strand
bam to bigwig.pl Produce BigWig coverage profiles from

BAM files for visualization
bam uniq.pl Filter uniquely and multi mapped reads

from BAM files
bed2bedGraph.pl Convert BED to (strand specific) bed-

Graph format
extend bed.pl Extend genomic intervals in BED format

at the 5’, 3’, or both ends
gff2bed.pl Convert bacterial RefSeq GFF3 annotation

to BED12 format
kmer analysis.pl Count k-mers of predefined length in FastQ

and Fasta files
MEME xml motif extractor.pl Compute basic statistics from MEME

XML output
newUCSCdb.pl Create a new genome database in a local

UCSC genome browser instance
normalize multicov.pl Compute normalized expression data in

TPM from read counts
sj visualizer.pl Convert splice junctions in segemehl BED6

splice junction format to BED12
splice site summary.pl Identify and characterize splice junctions

from RNA-seq data
track hub constructor.pl Construct Track Hubs for UCSC genome

browser visualization
trim fastq.pl Trim sequence and quality fields in FastQ

format

Discussion

ViennaNGS is a comprehensive software library for rapid development of custom
NGS analysis pipelines. We have successfully applied its components in the
course of an ongoing, large scale collaboration project focusing on RNA regula-

8

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 12, 2015. ; https://doi.org/10.1101/013011doi: bioRxiv preprint 

https://doi.org/10.1101/013011


tion. It has been used with different genomics assays in a wide range of biological
systems, including human, plants and bacteria. While we have primarily applied
ViennaNGS in combination with the short read aligner segemehl [8, 7], it has also
been used with Tophat [17] output very recently in a large scale transcriptome
study of Ebola and Marburg virus infection in human and bat cells (Hölzer
et al., unpublished data). Moreover, ViennaNGS will be used for automated
UCSC genome browser integration in an upcoming version of TSSAR [1], a re-
cently published approach for characterization of transcription start sites from
dRNA-seq data.

ViennaNGS is actively developed and its functionality is constantly extended.
In this line, we encourage the scientific community to contribute patches and
novel features.

Data availability

Input data for the ViennaNGS tutorial is available from
http://rna.tbi.univie.ac.at/ViennaNGS

Software availability

The ViennaNGS distribution is available through the Comprehensive Perl Archi-
tecture Network (CPAN) at and GitHub.

1. http://search.cpan.org/dist/Bio-ViennaNGS

2. https://github.com/mtw/Bio-ViennaNGS

3. Software license: The Perl 5 License

Author contributions

MTW, JF, FE, FA designed and implemented the software. MTW and FA
wrote the manuscript. All authors approved the final manuscript.

Competing interests

No competing interests were disclosed.

Grant information

This work was funded by the Austrian Science Fund (FWF projects F43 to
MTW, FA and FE) and the Research Platform “Decoding mRNA decay in
inflammation” by the University of Vienna to JF.

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 12, 2015. ; https://doi.org/10.1101/013011doi: bioRxiv preprint 

http://rna.tbi.univie.ac.at/ViennaNGS
http://search.cpan.org/dist/Bio-ViennaNGS
https://github.com/mtw/Bio-ViennaNGS
https://doi.org/10.1101/013011


References

[1] Fabian Amman, Michael T. Wolfinger, Ronny Lorenz, Ivo L. Hofacker, Peter F. Stadler, and

Sven Findeiß. TSSAR: TSS annotation regime for dRNA-seq data. BMC Bioinformatics,

15(1), 2014.

[2] Simon Anders, Paul Theodor Pyl, and Wolfgang Huber. HTSeq – a Python framework to

work with high-throughput sequencing data. Bioinformatics, 2014.

[3] Marcus R. Breese and Yunlong Liu. NGSUtils: a software suite for analyzing and manipulating

next-generation sequencing datasets. Bioinformatics, 29(4):494–496, 2013.

[4] Konrad U. Förstner, Jörg Vogel, and Cynthia M. Sharma. READemptiona tool for the compu-

tational analysis of deep-sequencingbased transcriptome data. Bioinformatics, 30(23):3421–

3423, 2014.

[5] Jeremy Goecks, Anton Nekrutenko, James Taylor, and The Galaxy Team. Galaxy: a com-

prehensive approach for supporting accessible, reproducible, and transparent computational

research in the life sciences. Genome Biol., 11(8):R86, 2010.

[6] Sven Heinz, Christopher Benner, Nathanael Spann, Eric Bertolino, Yin C. Lin, Peter Laslo,

Jason X. Cheng, Cornelis Murre, Harinder Singh, and Christopher K. Glass. Simple Combina-

tions of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required

for Macrophage and B Cell Identities. Mol. Cell, 38(4):576 – 589, 2010.

[7] Steve Hoffmann, Christian Otto, Gero Doose, Andrea Tanzer, David Langenberger, Sabina

Christ, Manfred Kunz, Lesca M. Holdt, Daniel Teupser, Jörg Hackermüller, and Peter F.

Stadler. A multi-split mapping algorithm for circular RNA, splicing, trans-splicing, and fusion

detection. Genome Biol., 15(2):R34, 2014.

[8] Steve Hoffmann, Christian Otto, Stefan Kurtz, Cynthia M. Sharma, Philipp Khaitovich,

Jörg Vogel, Peter F. Stadler, and Jörg Hackermüller. Fast mapping of short sequences with

mismatches, insertions and deletions using index structures. PLoS Computational Biology,

5(9):e1000502, 2009.

[9] W. James Kent, Ann S. Zweig, G. Barber, Angie S. Hinrichs, and Donna Karolchik. BigWig

and BigBed: enabling browsing of large distributed datasets. Bioinformatics, 26(17):2204–

2207, 2010.

[10] Bo Li, Victor Ruotti, Ron M. Stewart, James A. Thomson, and Colin N. Dewey. RNA-Seq

gene expression estimation with read mapping uncertainty. Bioinformatics, 26(4):493–500,

2010.

[11] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth,

Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Processing Subgroup. The

Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

[12] Lior Pachter. Models for transcript quantification from RNA-Seq. arXiv preprint

arXiv:1104.3889, 2011.

[13] Aaron R. Quinlan and Ira M. Hall. BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics, 26(6):841–842, 2010.

[14] Brian J. Raney, Timothy R. Dreszer, Galt P. Barber, Hiram Clawson, Pauline A. Fujita, Ting

Wang, Ngan Nguyen, Benedict Paten, Ann S. Zweig, Donna Karolchik, and W. James Kent.

Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC

Genome Browser. Bioinformatics, 30(7):1003–1005, 2014.

[15] Jason E Stajich, David Block, Kris Boulez, Steven E Brenner, Stephen A Chervitz, Chris

Dagdigian, Georg Fuellen, James GR Gilbert, Ian Korf, Hilmar Lapp, and other. The Bioperl

toolkit: Perl modules for the life sciences. Genome Res., 12(10):1611–1618, 2002.

[16] Victoria Stodden, Friedrich Leisch, and Roger D Peng. Implementing Reproducible Research.

CRC Press, 2014.

[17] Cole Trapnell, Lior Pachter, and Steven L. Salzberg. TopHat: discovering splice junctions

with RNA-Seq. Bioinformatics, 25(9):1105–1111, 2009.

[18] Günter P. Wagner, Koryu Kin, and Vincent J. Lynch. Measurement of mRNA abundance

using RNA-seq data: RPKM measure is inconsistent among samples. Theory in Biosciences,

131(4):281–285, 2012.

10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 12, 2015. ; https://doi.org/10.1101/013011doi: bioRxiv preprint 

https://doi.org/10.1101/013011

