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Synopsis 

Procedures for the decomposition of TLS matrices into elementary vibrations and librations 

indicates possible errors in the definition of these matrices and corrects them when possible. The 

program outputs the corresponding vibration-libration parameters and generates structural 

ensembles. 

Keywords 

TLS model, libration, vibration, correlated motions, validation, ensemble of models 

Abstract 

The widely used Translation Libration Screw (TLS) approximation describes concerted 

motions of atomic groups in X-ray refinement.  TLS refinement often provides a better 

interpretation of diffraction data and the resulting rigid body motions may subsequently be assigned 

biochemical significance. In TLS refinement, three matrices (T, L and S) describe harmonic 

vibration, libration and their correlation. Because these matrices describe specific motions, they 

impose a number of conditions on their elements. Ignoring these conditions while refining the 

matrix elements may result in matrices that cannot be interpreted in terms of physically realistic 

motions. We describe a mathematical framework and the computational tools to analyze refined 

TLS matrices through their decomposition into descriptors of underlying motions. This allows for 

straightforward validation and identification of implausible TLS parameters. An algorithm for the 

generation of structural ensembles that are consistent with given TLS parameters, implemented as a 

part of the Phenix project, is also described. 
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1. Introduction 

Crystallographic models fit to X-ray, neutron, or electron diffraction data describe each 

atom by its central position r0 and additional parameters. Structural disorder, particularly thermal 

motion, is primarily fit by the so-called Debye-Waller factor (also known as the B-factor or 

displacement parameter) that reflects the probability of an atom moving from its central position. 

This factor is accounted for as a multiplier for each structure factor corresponding to integer indices 

( )lkh ,, . In a harmonic approximation, this factor can be presented as following (see for example, 

Grosse-Kunstleve & Adams, 2002, and references therein) 

( )( )hh ττπ 1122exp −−− OUO Cart    .   (1) 

Here O is the orthogonalization matrix for the given crystal, h is the column vector with the indices 

( )lkh ,, , and τ signifies matrix or vector transposition. (In Grosse-Kunstleve & Adams (2002) the 

orthogonalization matrix is noted as A; here this letter is used for the matrix in development of 

CartU , following Tickle & Moss, 1999 and Urzhumtsev et al., 2013). The symmetric matrix CartU  is 

defined by the average shifts (and their correlations) along the coordinate axes. The matrix CartU  

varies between atoms and for isotropic atoms is diagonal with equal elements. 

However, purely isotropic motion is rarely observed in macromolecular crystals where the 

displacement of groups of atoms can be correlated. For example, while each atom of a side chain 

may oscillate independently around its central position, the side chain itself may oscillate around 

one (or several) bonds. This concerted motion is of special interest for several reasons. First, it may 

characterize the mobility of macromolecular domains and thus give insight into molecular 

mechanism. Second, describing only the common motion may drastically simplify the model and 

reduce the number of parameters needed to model the data. This may be especially attractive when 

working at relatively low resolutions.  

A description of concerted molecular motions has been introduced by Cruickshank (1956) 

and Schomaker & Trueblood (1968) and later developed in a number of works (for example 

Johnson, 1970; Scheringer, 1973; Howlin et al., 1989, 1993; Kuriyan & Weis, 1991; Schomaker & 

Trueblood, 1998; Tickle & Moss, 1999; Winn et al., 2001, 2003; Painter & Merritt, 2005, 2006a, 

2006b; for a recent comprehensive review see Urzhumtsev et al. 2013). Since rigid body 

displacement is a composition of translation and rotation (see for example Goldstein, 1950), 

Schomaker & Trueblood presented the matrices nCartU ,  for all atoms n = 1, 2, … N within the model 

as a sum  
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τττ
nnnnnCart ASSALAATU +++=,        (2) 

Anti-symmetric matrices An are functions of the Cartesian coordinates ( )nnn zyx ,,  of atom n 
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Matrix S and symmetric matrices T and L are common to all atoms of the moving group and are 

defined by the following elementary motions. L describes libration (oscillating rotations) around 

three principal rotation axes mutually orthogonal to each other. T describes an apparent translation 

of the atomic group (a term ‘vibration’ may be more appropriate for random translations around a 

central position). S describes the correlation between librations and vibrations (for a detailed 

definition Urzhumtsev et al. 2013). We use the term ‘apparent translation’ because matrix T may 

have an additional contribution from librations as discussed in Section 2.  

Compared to calculating TLS matrices from corresponding libration and vibration 

parameters, the inverse procedure of decomposing TLS matrices into these parameters is more 

difficult. As discussed previously (for example, Johnson, 1970; Scheringer, 1973; Tickle & Moss, 

1999) the problem itself is poorly posed since the same set of diffraction data (and as a consequence 

the same set of the TLS matrices) may correspond to different common motions of the contributing 

atoms or atomic groups. Nevertheless, TLS refinement allows one to search for composite motions 

(librations and vibrations) that correspond to a particular set of matrices. Thus, one may refine 

either the parameters of the composite motions or the elements of the TLS matrices as independent 

parameters, as is currently implemented in modern refinement programs,. 

To describe underlying elementary motions, the matrices must obey certain conditions; 

otherwise, the physical motions they represent are nonsensical. First, there is the trivial condition 

that the matrices T and L must be symmetric and positive semidefinite. Second, the matrices must 

be compatible with each other. For example, since matrix S describes the correlation between 

libration and vibration, its elements should be consistent with the elements of T and L. Ignoring this 

condition may result in a non-positive definite matrix T after the apparent contribution of libration 

is subtracted. Interestingly, refinement of TLS matrix elements without taking into account these 

conditions can still result in physically reasonable individual atomic displacement parameters and 

an improved model to data fit. Zucker et al. (2010) analyzed all PDB entries (Bernstein et al., 1977; 

Berman et al., 2000) that employ TLS and suggested tools for validating TLS parameters to ensure 

that individual atomic displacement parameters were physically realistic. While programs for the 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 2, 2015. ; https://doi.org/10.1101/012930doi: bioRxiv preprint 

https://doi.org/10.1101/012930
http://creativecommons.org/licenses/by/4.0/


 5 

extraction of libration and vibration parameters from TLS matrices (Howlin et al., 1993; Painter & 

Merritt, 2005). A comprehensive mathematical protocol for accomplishing this task could be 

helpful for determining if decomposition into physically interpretable motions is even possible. This 

manuscript describes the corresponding algorithm (Fig. 1) and provides practical calculation 

protocols in a ready-to-program style. In particular, we discuss a list of conditions defining the 

plausibility of such decomposition. Below, we discuss the decomposition of a single set of TLS 

matrices; however, the procedure is similar when molecular models are composed of several such 

groups. For a PDB model that contain several sets of TLS matrices, each set can be processed 

independently.  

 Thus, analyzing the physical reasonableness of the individual atomic displacement 

parameters and the rigid-body motions that give rise to them require separate validation tools. 

Indeed, from roughly 200,000 sets of TLS matrices in the PDB (25,284 entries from the total 

194,633 PDB depositions) about one-third contain T or L matrices that are non positive-semidefinite 

and another one-third (Table 1) cannot describe vibration-libration correlated motions . Although 

these numbers can be slightly reduced by removing marginal cases, these results suggest that 

decomposition of TLS matrices into elementary motions can be an important validation step.  This 

analysis can be used to build ensembles of models representing plausible conformations, which will 

allow for a better description of diffraction data and for the testing of model agreement with diffuse 

X-ray scattering (Van Benschoten et al., accompanying paper).  

 

2. TLS matrices and different bases 

2.1. Matrix presentations and decomposition difficulties 

 Even if a rigid body is involved in several simultaneous motions (supposing that the 

amplitudes of these motions are relatively small and the motions are harmonic), each motion can be 

described by a libration around three mutually orthogonal axes and by a vibration following three 

other mutually orthogonal axes (Urzhumtsev et al. 2013, and references therein). For example, if 

the principal vibration axes coincide with the coordinate axes, and 222 ,, zyx ttt  are the 

corresponding squared root-mean-square deviations (rmsd) along these axes, the matrix T in 

equation (2) is equal to  
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Similarly, if the libration axes coincide with the coordinate axes, the matrix L in (2) becomes: 
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Here 222 ,, zyx ddd  are the squared rmsds of the vibration angle expressed in radians; for small 

deviations they are numerically equal to the squared rmsds of points at a unit distance from the 

corresponding axes. One difficulty is that in practice the principal vibration and libration axes are 

not parallel to the coordinate axes, which requires transforming the matrices T and L into a more 

general form. Another difficulty is that vibration and libration motions may not be independent, as 

seen in helical rotations. If the correlations between translation and libration are characterized by 

parameters zyx sss ,,  (see Urzhumtsev et al. 2013, for a formal definition), the librations generate an 

additional contribution to translation so that matrix T becomes different from V as defined by 

equation (4) adding diagonal terms: 
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and also resulting in the non-zero S matrix  
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Yet another difficulty is that the principal libration axes do not need to pass through the origin, or 

even through a common point. This generates an additional apparent translation component and 

adds another term  

=WD                 (8) 
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to the T matrix (Urzhumtsev et al. 2013). Similarly, matrix S must account for  
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in addition to (7). Finally, the same actual motion can be presented by different combinations of the 

elementary motions since one may shift a rotation axis and compensate for this by an additional 

translation. The same total motion may also be split differently between correlated and independent 

contributions. These nuances complicate the procedure of extracting the descriptors of elementary 

motions from the TLS matrices. 

2.2. Molecular basis and center of reaction  

 Formally, any origin (and, more generally, any basis) can be chosen to describe the 

composite motions. Clearly, description of the vibration does not depend on the choice of the origin, 

while the position of the libration axes changes as function of origin choice. Most often, the origin 

is taken in the center of mass of the atomic group or in between the axes so that the atomic 

displacements due to the choice of these axes are similar. This point is called the center of diffusion 

(Brenner, 1967) or the center of reaction (Tickle & Moss, 1999). Shifting from one origin to another 

does not change L but both T, minimizing its trace, and S, making it symmetric for the center of 

reaction (Brennen, 1967; Tickle & Moss, 1999; Urzhumtsev et al. 2013). Changing the origin does 

not modify the algorithm of the search for the composite motions. Thus, the TLS matrices depend 

on the choice of the coordinate basis and in particular its origin. In what follows, we suppose that 

the original TLS matrices are defined in a basis chosen with a relation to the molecule, which we 

will call the M basis (for ‘Molecular’). As we will be switching between different bases, we indicate 

the corresponding basis by index in brackets such as T[M], L[M] and S[M].  
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3. Basis of libration axes  

 

3.1. Diagonalization of the L matrix (L basis; step A) 

 We start the procedure from the matrix L[M] that depends only on the libration parameters. 

Let 
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with yxxy TT = , zxxz TT = ,! zyyz TT = !and! yxxy LL = , zxxz LL = , zyyz LL = , be the TLS matrices defined 

in the original M basis. Importantly, for further analysis of the T matrices, we remind the reader that 

if a matrix is symmetric, it remains symmetric for any rotation of the coordinate system. 

The principal libration axes correspond to three mutually orthogonal eigenvectors of the 

symmetric matrix [ ]ML . First we search for the corresponding eigenvalues 3210 λλλ ≤≤≤ ,!which 

must be non-negative (see equation (5); eigenvalues do not change with the coordinate system). Let 

l1, l2, l3 be the corresponding normalized eigenvectors from which we construct a new basis L as  

lx = ±l1, ly = l2, lz = l3          (11) 

The appropriate sign for lx is chosen so that the vectors in (11) form a right-hand triad; for example 

one can take lx = ly × lz such that the condition is guaranteed.   

 The transition from the M basis into the L basis is a rotation with the corresponding matrix 

composed from the coordinates of the new basis vectors  
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The TLS matrices in the L basis are 
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[ ] [ ] MLMMLL RLRL τ=  

[ ] [ ] MLMMLL RTRT τ=          (13) 

[ ] [ ] MLMMLL RSRS τ=

  where matrix [ ]LL  is diagonal with the elements [ ] [ ] [ ] 321 ,, λλλ === zzLyyLxxL LLL  at its diagonal. 

The atomic coordinates in the L basis are 
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3.2. Position of the libration axes in the L basis (step B) 

Given matrix [ ]LL  in the basis of its eigenvectors, we obtain the estimates [ ]xxLx Ld =2 , 

[ ]yyLy Ld =2 , [ ]zzLz Ld =2  of the squared libration amplitudes around the three principal libration 

axes.  

In the general case these libration axes do not pass through the origin but through some points 

( )lxzlx
y
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lx www ,,=w , ( )lyzly
y
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x

ly www ,,=w , ( )lzzlz
y
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x

lz www ,,=w . In fact, the x-component of lxw , y-

component of lyw and z-component of lzw can be any values. In other words, the coordinate axes 

chosen by construction as eigenvectors of [ ]LL  are parallel to the libration axes but do not 

necessarily coincide with them. 

Using equations (5) and (9) we calculate the positions of the rotation axes (Urzhumtsev et 

al. 2013) as 
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A zero value of any denominator in (15) means that there is no rotation around the corresponding 

axis; in this case the two corresponding numerator values must be equal to zero too, otherwise the 

input matrices are incompatible and the procedure must stop. If a libration axis is absent zero values 

are assigned to the corresponding coordinates in (15). For presentation purposes it might be useful 

to assign  

! ( )lz
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1
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1
][ www += , 

! ! ( )lz
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lz
zL ][][2

1
][ www +=         (16) 

which gives the points in the middle of axes. 

Knowing the position (15) of the libration axes and elements of [ ]LL  we can calculate an 

apparent translation due to the displacement of the libration axes from the origin 

[ ] =LWD !! ! ! ! ! ! ! !
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Then we can calculate the residual T matrix after removal of the contribution (17): 

 

[ ] [ ] [ ]LWLLC DTT −=

        

  (18) 

that must be positive semidefinite. Matrices S[L] and L[L] are not modified at this step. 

 

 

4. Determination of the screw components (step C) 

 

4.1. Correlation between libration and vibration and usual choice of S diagonal elements 

 Next we use the matrices L[L]  and S[L]  to determine the correlation parameters zyx sss ,, , 

then remove the corresponding contribution from the CT  matrix (equation (6)) and extract the 
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matrix V[L] for uncorrelated vibrations. However, there is an ambiguity in the definition of S[L] 

which is apparent from the observation that the matrices nCartU ,  of individual atoms will not change 

if the same number t is removed simultaneously from all three diagonal elements of S[L]. Usually t is 

obtained by minimizing the trace of the resulting matrix SC (Schomaker & Trueblood, 1968): 
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which corresponds to the minimal vibration-libration correlation (Urzhumtsev et al. 2013). This 

unconditioned minimization  

 ( ) [ ] [ ] [ ]( ) tSSStS zzLyyLxxLtCt
3minmin −++=  , 

    

(20) 

gives the value 

 [ ] [ ] [ ]( ) [ ]LzzLyyLxxL trSSSSt 3
1

3
1

0 =++=

      

(21)

 However, this value may lead to physically unrealistic matrices for which libration-vibration 

decomposition is impossible. First, it is clear that the S elements cannot be large in comparison with 

the elements of the T and L matrices; in particular, if there is no rotation around one of the libration 

axes, the corresponding S elements must be zero. Second, if the elements of matrix S and the 

corresponding values zyx sss ,,  are too large, the matrix V in (6) may not be positive definite. We 

have not identified any previous discussion of these complications in the crystallographic literature. 

The following sections describe a procedure that defines the constraints on the diagonal elements of 

matrix S when using (19).  

 

4.2. Cauchy-Schwarz constraints 

 Since the diagonal elements of the positive definite matrix V are non-negative in any 

Cartesian basis, according to equations (5)-(7) the diagonal elements of the matrices must satisfy 

the Cauchy-Schwarz inequality 

 zzLzzLCzzCyyLyyLCyyCxxLxxLCxxC LTSLTSLTS ][][
2
,][][

2
,][][

2
, ;; ≤≤≤     (22) 
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(This condition is also apparent from equations (8.5) - (8.7) in Urzhumtsev et al. 2013 which give 

xxxx udS = , xxxx uuT = , xxxx ddL =  and similar conditions for other axes). In turn, this defines 

the limits as  
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        (23) 

or 

 CC ttt max,min, ≤≤         (24) 

with 

{ }zzLzzLCzzLyyLyyLCyyLxxLxxLCxxLC LTSLTSLTSt ][][][][][][][][][min, ;;max −−−=    (25) 

 { }zzLzzLCzzLyyLyyLCyyLxxLxxLCxxLC LTSLTSLTSt ][][][][][][][][][max, ;;min +++=    

 

4.3. Positive semidefinition of the V matrix 

 Now we analyze the case of the matrix V being positive semidefinite. First, we suppose that 

all diagonal elements of the matrix [ ]LL  are non-zero and note that Section 4.4 considers the 

alternative case. From equations (5) - (7) and (19) we find the screw contribution  
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to be subtracted from matrix (18) as  

 

[ ] [ ] [ ]( )tCTV LLCL −=

  

.

     

  (27) 

 

Matrix [ ]LV  is positive semidefinite along with 

  

[ ] [ ] [ ]( ) ( )tCTtCTVV LLCL ΛΛΛ −=ΛΛ−ΛΛ=ΛΛ= τττ

 

      (28) 
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where 
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   (31) 

Necessarily, all diagonal terms of (31) cannot be larger than the maximal eigenvalue maxτ  of (30) 

giving a condition 

   { } { } ττ ττ max,max][][][max][][][min, ;;min;;max tSSStSSSt zzLyyLxxLzzLyyLxxL =+≤≤−= .  (32)  

Another obvious condition that these terms are not larger than the minimum eigenvalue minτ  of (30) 

is sufficient but not necessary. We have not yet found a direct solution to this problem and thus use 

the numerical approach described below. 

 Matrix ΛV  is positive semidefinite if and only if all three of the real eigenvalues are non-

negative (some of them may coincide with each other). They are the roots of the cubic characteristic 

equation  
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023 =+++ SSS cba ννν         (33) 

with the coefficients  

( ) ZZYYXXS vvvta −−−= ,                          (34) 
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tb detdetdet                      (35) 

( )

!
!
!
!
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$
$
$
$
$

%

&

−=

ZZZYZX

YZYYYX

XZXYXX

S

vvv

vvv

vvv

tc det                 (36) 

The positivity of the roots is equivalent to a system of three inequalities: 

( ) [ ]( )[ ] [ ]( )[ ] [ ]( )[ ] 0222
≤−−+−−+−−= zzzzLyyyyLxxxxLS tSttSttStta        (37) 

( ) [ ]( )[ ] [ ]( )[ ] [ ]( )[ ] [ ]( )[ ]+−−−−+−−−−= zzzzLyyyyLyyyyLxxxxLS tSttSttSttSttb
2222   

[ ]( )[ ] [ ]( )[ ] [ ] 022222
≥++−−−−−+ zxyzxyxxxxLzzzzL ttttSttSt                            (38) 

( ) [ ]( )[ ] [ ]( )[ ] [ ]( )[ ]−−−−−−−= zzzzLyyyyLxxxxLS tSttSttSttc
222      (39) 

[ ]( )[ ] [ ]( )[ ] [ ]( )[ ] 02222222 ≤−−−−−−−−−− xzyzxyzzzzLxyyyyyLxzxxxxLyz ttttStttStttStt    

 

where the left parts are polynomials of order 2, 4 and 6 of the parameter t, all with the unit highest 

coefficient. The first condition (37) defines the interval for t values : 

 aaaa ttttttt +=≤≤−= 0max,0min,       (40) 

with 

 [ ] [ ] [ ]

33

222
2
0

zzLyyLxxLzzyyxx
a

SSSttt
tt

++
−

++
+=           (41) 

 

We failed to find analytical expressions corresponding to the two other inequalities and the 

following numerical procedure was implemented to find the best t value that is physically 

acceptable:  

a) Calculate 0t  value (equation (21)); 

b) Calculate the interval ( )maxmin , tt  for allowed t values as intersection of intervals (24), (32) 
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and (40); { }aC tttt min,min,min,min ,,max τ= , { }aC tttt max,max,max,max ,,min τ=  ; if maxmin tt >  the 

problem has no solution and the procedure stops; 

c) If maxmin tt =  we check the conditions ( ) 0min ≥tbS , ( ) 0min ≤tcS , or directly the condition 

that ΛV  is positive semidefinite; if the conditions are satisfied we assign minttS =  otherwise 

the problem has no solution and the procedure stops; 

d) If maxmin tt <  we search numerically, in a fine grid, for the point St  in the interval ( )maxmin , tt  

and closest to 0t  such that ( ) 0≥SS tb , ( ) 0≤SS tc ; if at any point of this interval at least one 

of these inequalities is wrong, then the procedure stops; 

e) If steps c and d give us the St  value, we accept it as the solution of the problem otherwise 

there is no acceptable t value and the procedure of the TLS matrices decomposition stops. 

 

4.4. Singular sets of rotation 

 When one of the zzLyyLxxL LLL ][][][ ,,  values is zero (that is, there is no rotation around the 

corresponding axis), straightforward use of the standard procedure including (26) becomes 

impossible. However, in this case the St  value must equal to xxCS , , yyCS ,  or zzCS , , corresponding to 

the axes with no rotation, turning the corresponding inequality in (25) into an equality and making 

the corresponding diagonal element in (26) equal to zero; for example if 0][ =xxLL then xxLS St ,=

resulting in 0, =xxCS . We simply need to check two other conditions in (22) and the condition that 

the residual matrix is positive semidefinite, for example calculating (37)-(39). If St  does not satisfy 

these conditions, the problem has no solution and the procedure of the TLS matrices decomposition 

stops.  

 

4.5. Screw parameters 

 For the St  determined above we calculate the matrix ( )SC tS  (19). From this matrix we 

obtain the estimates 
[ ]xxL

xxC
x L
S

s ,= , 
[ ]yyL

yyC
y L
S

s ,= , 
[ ]zzL

zzC
z L
S

s ,=  for the screw parameters following the 

rotation axes currently aligned with the coordinate axes of the basis L. We remind the reader that if 
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one of the zzLyyLxxL LLL ][][][ ,,  values is equal to zero, the corresponding diagonal element of CS  

must also be equal to zero (otherwise the matrices are inconsistent with each other and the 

procedure stops) and we assign the corresponding screw parameter, xs , ys  or zs , to be zero.  

 

5. Determination of the vibration components (step D) 

5.1. Matrix V and vibration parameters in L basis  

 When the St  value is known, matrix [ ]( )SL tC  and then [ ]LV  are calculated according to 

equations (26) - (27). The step of obtaining independent vibrations from the [ ]LV  matrix is similar to 

that for getting the independent librations from [ ]LL . First, we calculate the three eigenvalues 

3210 µµµ ≤≤≤  of matrix [ ]LV  (in practice, all of them are strictly positive). Then we identify 

three corresponding unit eigenvectors 321 ,, vvv  that are orthogonal to each other and assign 

 321 ,, vvvvvv ==±= zyx          (42) 

(the sign for vx is taken so that the vectors (42) form a right-hand triad). The three 

eigenvectors give the directions of the uncorrelated translations and the corresponding eigenvalues 

321 ,, µµµ  are squared rmsds along these axes. These axes define a new orthonormal basis V in 

which matrix [ ]LV  becomes the diagonal matrix [ ]VV  with elements [ ] 1µ=xxVV , [ ] 2µ=yyVV , 

[ ] 3µ=zzVV  ; these values  are the estimates [ ]xxVx Vt =2 , [ ]yyVy Vt =2 , [ ]zzVz Vt =2  of the squared 

vibration amplitudes.  

5.2. Vibration and libration axes in M basis 

 The libration and vibration amplitudes and screw parameters are independent of the choice 

of the basis, and the direction of the libration axes (11) is known in the principal M basis. However 

the directions of the uncorrelated translations 321 ,, vvv  that were calculated in section 4 and the 

points [ ]
lx
Lw , [ ]

ly
Lw , [ ]

lz
Lw !belonging to the libration axes (section 3.2) are given in the L basis.  

 To obtain the coordinates [ ]
lx
Mw , [ ]

ly
Mw , [ ]

lz
Mw  of these points in the M basis we apply the 

transformation 
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  (43) 

 

using (12). Similarly, the direction of the axes zyx vvv ,,  in the M basis and can be obtained as  

 xLMLxM R ][][ vv =     , yLMLyM R ][][ vv =     , zLMLzM R ][][ vv =       (44) 

 

5.3. Calculations in V basis 

 Knowledge of zyx vvv ,,  (42) in the basis M defines the rotation matrix from the M basis to 

the V basis as 
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The coordinates of a vector expressed in the two bases are linked by the equation 
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This step finalizes extracting the parameters of the motions that correspond to the given set of TLS 

matrices. Section 6 provides some examples of this procedure’s application to models deposited in 

the PDB. 

 

 

6. Examples of  TLS matrix decomposition  

 

6.1. General procedure 

To illustrate the algorithm described above we analyzed several entries selected from the 

PDB. For each structure, we applied a standard TLS refinement protocol from Phenix (Adams et al., 
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2010; Afonine et al., 2012) including automatic determination of the TLS groups. During 

refinement, 20 matrix elements (6 for T, 6 for L and 8 for S where the third diagonal element of S 

has been chosen to make the trace of the matrix equal to 0) were refined independently. The 

procedure described above was then applied to all sets of the TLS matrices obtained. By current 

conventions, the L and S matrices for the PDB models are expressed in degrees2 and in Å·degree, 

respectively, and first we need to convert them into radians2 and Å·radians. 

 

6.2. Synaptotagmin 

The crystals of synaptotagmin III (PDB code 1dqv) contain two copies of the molecule in the 

asymmetric unit. The structure, when re-refined by phenix.refine, has Rwork = 0.200 and Rwork = 

0.231. The TLS refinement, with each molecule taken as a single TLS group, reduced R-factors to 

Rwork = 0.177 and Rwork = 0.211 and shows the significance of this TLS modeling. Table 2 shows the 

two sets of the matrices, and Table 3 shows the corresponding motion parameters extracted using 

our routine. For the two groups both vibrations and librations are practically isotropic and are of the 

same order of magnitude for both groups. Fig. 2a shows the principal axes of these motions.  

 

6.3. Calmodulin  

The structure of calmodulin (PDB code 1exr) was automatically split into 4 TLS groups. This 

case was an example of possible problems that could be solved by a minimal manual intervention. 

For the first group, one of the eigenvalues of the matrix L was marginally negative, equal to -

0.000023; we allowed the program to substitute the value 0 thus accepting this group to be singular 

with one degenerate libration. The second group also had one degenerate libration. After correcting 

the slightly negative eigenvalue for the first group, all composited motions were extracted without 

problems.  

For the third group, the screw parameters and axes positions were extremely large, leading to 

the procedure’s inability to find a positive semidefinite [ ]LV . This was caused by the fact that all 

three eigenvalues of the matrix L were practically equal to 0 (0.000000, 0.000008 and 0.000035) 

resulting in high computational instability. We replaced matrix L, and respectively S, by zero 

matrices, defining all librations as absent, and obtained significant values for vibration parameters. 

This group is a helix held at both ends by large domains, which explains the impossibility of 

librations within the helix. 

Finally, for the fourth group one of the diagonal elements of the matrix T was marginally 

negative. Increase all diagonal elements of the matrix T by 0.002 makes this matrix positive 
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definite. This manipulation can be considered a form of ‘borrowing’ roughly 0.16 Å2 from either 

the overall scale factor or from individual atoms (i.e. such that the T modification and the 

simultaneous removing of 0.16 Å2 from all corresponding ADP parameters does not change the 

structure factors). An accurate separation of total ADP values into contribution from several sources 

(for example, Winn et al., 2001, 2003; Afonine et al., 2013) is a separate ongoing project (Afonine 

& Urzhumtsev, 2007). This group vibrates essentially in a plane (Fig. 2b) and the principal 

vibration axis of the group 3 (the helix) is parallel to this plane, leading to the plausible hypothesis 

that these groups at least partially move together.  

 

6.4. Initiation translation factor 2 (IF2) 

The structure of IF2 (PDB code 4b3x) has recently been solved in one of our laboratories 

(Simonetti et al., 2013) with Rwork = 0.180 and Rfree= 0.219 at a resolution of 1.95 Å. TLS refinement 

was performed with two groups: the first included the N-terminal and the following long helix, and 

the second included the rest of structure. This refined model had lower Rwork = 0.176 and Rfree= 

0.203. For this example, the TLS matrices from the first group were not directly interpretable 

because the residual matrix [ ]LV  was not positive semidefinite having one of its eigenvalues equal to 

-0.05. Similarly to the last group of the calmodulin, we artificially added 0.06 to all diagonal 

elements of the matrix T which corresponds to ‘borrowing’ of about 5 Å2 from individual atoms or 

from the overall scale factor (as above). With such a correction the procedure worked well. It 

should be noted that for the first TLS group one of the rotations was degenerated and that the 

assignment trS = 0 would make this matrix incompatible with L. Table 3 shows that vibrations of 

this group are essentially anisotropic. Fig. 2c also shows that the libration axes for this group pass 

quite far away from the molecule, which makes the corresponding rotation similar to a translation. 

Additionally, the large zs  value leads us to believe that the matrix S is not well defined to be 

physically significant. The matrices for the second group were routinely interpreted showing 

isotropic vibrations and librations.  

We then tried to apply the same procedure after manually choosing the TLS groups as residues 

1-50 (N terminal), 51-69 (helix), 70-333 (G domain) and 343-363 (connector to the C domain 

absent in this structure). As before, the G domain the matrices were physically interpretable. For the 

other two groups, after a manual adjustment similar to those discussed above (a slight artificial 

increasing of the diagonal T elements with an accompanying decrease in the residual ADP of the 

individual atoms), we obtained a pure vibration for the helix (as for the calmodulin case) and a 
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libration around a single axis for the terminal group. In contrast, we failed to find reasonably small 

corrections for the matrices of the first group that would make them physically interpretable.  

 

 

7. Interpretation of TLS matrices with an ensemble of models  

 

7.1. Generation of an explicit set of atomic models with a given variability consistent with TLS 

 Some structural problems may explicitly require a set of models that describe a given 

mobility, e.g. corresponding to the TLS matrices for harmonic motion. We do not discuss here 

larger-scale anharmonic motions for which other techniques such as molecular dynamic trajectories 

have traditionally been used, as originated by McCammon et al., 1977. An example of such a 

problem is described in the accompanying paper by Van Benschoten et al. in which X-ray diffuse 

scattering data were compared with calculated data corresponding to different types of molecular 

motion. 

 As soon as vibration and libration parameters are known, we can build a corresponding set 

of models explicitly. If a model deposited in the PDB contains TLS matrices, the procedure of their 

decomposition described above can be applied. A decomposition of this motion into three 

independent vibrations and three independent librations provides the corresponding atomic shifts, 

the sum of which gives the total displacement.  

It is generally more convenient to generate each group of atomic shifts in its own basis: shifts 

[ ] n
V
V rΔ  due to vibration in the V basis and shifts [ ] n

L
L rΔ  due to libration in the L basis. Here we are 

working in a linear approximation such that rotation angles are of order of 0.1 radian. For each 

particular set of generated shifts, they are the transformed into the M basis as [ ] n
V
M rΔ  and [ ] n

L
M rΔ  

and their sum 

 

! [ ] [ ] [ ] n
V
Mn

L
MnM rrr Δ+Δ=Δ        (47) 

 

is applied to the corresponding atoms. Details of the generation of such a model are discussed in the 

next sections. This procedure is repeated independently many times generating randomly moved 

models distributed accordingly to the TLS matrices.  

 

7.2. Calculation of the model shift due to libration 
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 Let us suppose that, using the procedure described above, we know the three mutually 

orthogonal axes lx, ly, lz for independent libration and the points that belong to these axes. If the 

coordinates of these points [ ]
lx
Mw , [ ]

ly
Mw , [ ]

lz
Mw  are given in the molecular basis M we can recalculate 

them into the L basis [ ]
lx
Lw , [ ]

ly
Lw , [ ]

lz
Lw  using (14). We can do the same for the coordinates of all 

atoms of the group that are subject to the TLS motion: [ ] [ ] [ ]( )nLnLnL zyx ,, , n = 1, 2, …, N. We note 

that the squared libration amplitudes [ ] 1
2 λ== xxLx Ld , [ ] 2

2 λ== yyLy Ld , [ ] 3
2 λ== zzLz Ld  

(Section 3.2) and the screw parameters xs , ys , zs  (estimates for which xs , ys , zs  are defined in 

Section 4.5) are independent of the chosen basis.  

For an atom at a distance R = 1 Å from the rotation axis, the probability of the shifts 

zyx ddd ,, , which are numerically equal to the rotation angle in radians, are equal to :  

 axis parallel to lx: !!
"

#
$$
%

&
−=

1

2

1 2
exp2)(

λ
πλ x

x

d
dP          (48) 

 axis parallel to ly : !
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 axis parallel to lz : !!
"

#
$$
%

&
−=
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2

3 2
exp2)(

λ
πλ z

z
ddP

!

       (50) 

If one of the eigenvalues is equal to 0 then the corresponding d is equal to 0 with unit probability. 

Let us obtain particular values of 0xd , 0yd , 0zd  using a random numbers generator with the normal 

distribution (48-50).  

 For the rotation around the axis parallel to lz and crossing the point [ ] [ ] [ ] [ ]( )lz
zL

lz
yL

lz
xL

lz
L www ,,=w

, for each atom n described by the vector nr  we recalculate the coordinates of [ ]
lz
Ln wr −  in the L 

basis  

! [ ] [ ] [ ] [ ] [ ] [ ]nLnA
lz
ynLnA

lz
xnLnA zzwyywxx =−=−= ;;     (51) 

 

If nr!  stands for the position of the same atom after rotation by angle 0zd  around this axis, the 

coordinates of [ ]
lz
Ln wr −"  can be written as   

[ ] [ ]( ) [ ] [ ]( ) [ ]( ) zyx lll 00000 cossinsincos zznAznAznAznAznA dszdydxdydx ++++−  . (52) 
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This gives the corresponding atomic shift nn rr −"  

! [ ] [ ] [ ] [ ]( ) +−−=Δ xlnAznAznAn
lz
L xdydx 00 sincosr !

! [ ] [ ] [ ]( ) [ ] [ ]( ) =−++−++ zy ll nAzznAnAznAznA zdszydydx 000 cossin !
! [ ]( )( ) [ ]( )[ ] +−−−−= xl00 sin1cos z

lz
ynLz

lz
xnL dwydwx     (53) 

! ! [ ]( ) [ ]( )( )[ ] zy ll 000 1cossin zzz
lz
ynLz

lz
xnL dsdwydwx +−−+−+  

Similarly for two other axes: 

! [ ] [ ]( )( ) [ ]( )[ ] +−−−−=Δ yl00 sin1cos x
lx
znLx

lx
ynLn

lx
L dwzdwyr    (54) 

! ! [ ]( ) [ ]( )( )[ ] xz ll 000 1cossin xxx
lx
znLx

lx
ynL dsdwzdwy +−−+−+  

! [ ] [ ]( )( ) [ ]( )[ ] +−−−−=Δ zl00 sin1cos y
ly
xnLy

ly
znLn

ly
L dwxdwzr    (55) 

! ! [ ]( ) [ ]( )( )[ ] yx ll 000 1cossin yyy
ly
xnLy

ly
znL dsdwxdwz +−−+−+ !

 

The overall shift due to libration (around the three axes) is the sum of shifts (53)-(55) 

! [ ] [ ] [ ] [ ] n
lz
Ln

ly
Ln

lx
Ln

L
L rrrr Δ+Δ+Δ=Δ       (56) 

 

It changes from one atom of the group to another and must be calculated for all atoms of the group 

with the same ( 0xd , 0yd , 0zd ) values for a particular instance of the three rotations.  

 The atomic shift (56) is given in the L basis. To transform this shift from the L basis into the 

initial M basis, we invert equation (14):  

 

! [ ] [ ] n
L
LMLn

L
M R rr Δ=Δ

 

        (57) 

 

7.3. Calculation of the model shift due to vibration 

 In the harmonic approximation, the independent vibration shifts zyx ttt ,,  expressed in the V 

basis are distributed accordingly to the probability laws: 

 

! [ ]
[ ]

!!
"

#
$$
%

&
−=!

!
"

#
$
$
%

&
−=

1

2

1

2

2
exp2

2
exp2)(

µ
πµπ x

xxV

x
xxVx

t
V
t

VtP

!

   (58) 
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! [ ]
[ ]

!
!
"

#
$
$
%

&
−=!

!
"

#
$
$
%

&
−=

2

2

2

2

2
exp2

2
exp2)(

µ
πµπ y

yyV

y
yyVy

t
V
t

VtP

!

   (59) 

! [ ]
[ ]

!!
"

#
$$
%

&
−=!

!
"

#
$
$
%

&
−=

3

2

3

2

2
exp2

2
exp2)(

µ
πµπ z

zzV

z
zzVz

t
V
tVtP

!

   (60) 

 

Using a random numbers generator, for each model we obtain particular values of! 000 ,, zyx ttt !using 

(58-60). If one of the eigenvalues µ is equal to zero, the zero value is assigned to the corresponding 

shift. The overall translational shift, common to all points of the rigid group, is equal to  

! [ ] zzyyxxn
V
V ttt vvvr 000 ++=Δ .      (61) 

In order to obtain this shift in the M basis we calculate, similarly to equation (57), 

! [ ] [ ] n
V
VMVn

V
M R rr Δ=Δ

 

        (62) 

 

7.4. Validation and application to GpdQ 

We generated the ensembles produced by alternative TLS refinements of the 

glycerophosphodiesterase GpdQ (Jackson et al., 2007). GpdQ is found in Enterobacter aerogenes 

and contributes to the homeostasis of the cell membrane by hydrolyzing the 3’-5’ phosphodiester 

bond in glycerophosphodiesters. Each dimer contains three distinct domains per monomer: an 

α/β  sandwich fold containing the active site, a domain-swapped active site cap and a novel 

dimerization domain comprised of dual-stranded antiparallel β-sheets connected by a small β-sheet. 

Due to the high global B-factors and presence of diffuse signal, Jackson and colleagues performed 

three separate TLS refinements to model the crystalline disorder (Fig. 3): Entire molecule, Monomer 

and Sub-domain. All TLS refinement attempts improved the Rfree values when compared to the 

standard isotropic B-factor refinement; however, there was no significant difference among the final 

Rfree values from the three TLS groupings.  

We hypothesized that the diffuse scattering produced by each TLS motion would contain 

significant differences, as diffuse signal is a direct result of correlated motion. The notion that TLS 

refinement produces unique diffuse signal has been suggested previously (Tickle & Moss, 1999). 

Physical ensembles of the TLS motion, rather than an explicit mathematical description, were 

required to generate 3D diffuse scattering maps from phenix.diffuse. Visual inspection confirmed 

that the ensemble produced by phenix.tls_as_xyz replicated the anisotropic motion predicted by TLS 

thermal ellipsoids (Fig. 4). Additionally, we calculated the structure factors predicted by the original 

TLS refinement Entire molecule and compared them to Fmodel values (for example as defined in 
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Afonine et al., 2012) produced by various phenix.tls_as_xyz ensemble sizes. The structure factors 

converged to a global correlation value of 0.965, demonstrating that phenix.tls_as_xyz ensembles 

accurately represent the motions predicted by TLS refinement. Physical representation of the 

underlying motion also revealed that, while two of the TLS refinements produced motion with small 

variances (a necessity within TLS theory), the Subdomain TLS grouping produced fluctuations that 

are clearly chemically unreasonable (Fig. 3). Thus, viewing TLS refinement in the form of a 

structural ensemble is a valuable check of the validity of the results, as matrix elements that satisfy 

the previously described conditions may still produce motions that are clearly implausible.  

 

 

8. Discussion  

While our previous review on the subject (Urzhumtsev et al. 2013) describes the calculation 

of TLS matrices from a known set of vibration and libration parameters, this work focuses on the 

opposite problem of extracting vibration and libration parameters from a given set of TLS matrices. 

The problem is not as simple as it may at first seem because identical motions may be represented 

by different vibration-libration combinations. As a consequence, the matrix S is not uniquely 

defined. However, there remains a necessary consistency between the S matrix and the T and L 

matrix elements. Because current structure refinement programs ignore this constraint, some 

definitions of S may result in TLS matrices that cannot be interpreted in terms of physically 

meaningful motions. 

The detailed algorithm for obtaining molecular vibration and libration parameters makes 

decomposition of the TLS matrices into ensemble models possible. The constraints on the matrices 

can also be used to identify ‘non physical’ combinations of TLS matrices. Beyond the well-known 

conditions of non-negativity for the eigenvalues of T and L, we also discuss the conditions that 

relate matrices, which is crucial for ensuring that the TLS refinement corresponds to physically 

meaningful motions. Table 1 sheds more light on how well these conditions are verified for the full 

collection of PDB structures. For approximiately 4,500 TLS sets (roughly 700 PDB entries), 

correcting the diagonal elements of the S matrix as described previously (instead of the standard 

requirement making its trace equal to zero) corrects the underlying problems. However, even after 

this correction is applied, however, there still remain a significant number of PDB entries with 

unphysical TLS matrices. 

We suggest that the problem of obtaining physically meaningless TLS matrices and the need 

for their post-refinement correction may be entirely eliminated if TLS refinement were to use 
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vibration and libration parameters directly as refined variables. The mathematical basis and 

computation algorithms for such a refinement is under active development and will be discussed 

elsewhere. However, eliminating physically meaningless rigid body motions may increase the R-

factors for some structures. The procedures for analysis and validation of TLS parameters, as well as 

the algorithm for generating a set of models from given libration and vibration parameters, are 

implemented in the Phenix suite as phenix.tls_analysis and phenix.tls_as_xyz, respectively and  are 

available starting with version dev-1890. 

 

Acknowledgements 

PVA and PDA thank the NIH (grant GM063210) and the Phenix Industrial Consortium for support 

of the Phenix project. J.S.F. is a Searle Scholar, a Pew Scholar, and a Packard Fellow. Work in the 

lab of J.S.F. is supported by NIH OD009180, GM110580, and NSF STC-1231306. This work was 

supported in part by the Program Breakthrough Biomedical Research, which is partially funded by 

the Sandler Foundation, and by the US Department of Energy under Contract No. DE-AC02-

05CH11231. AU thanks the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-

10-INSB-05-01 and Instruct, part of the European Strategy Forum on Research Infrastructures 

(ESFRI) and supported by national member subscription. 

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 2, 2015. ; https://doi.org/10.1101/012930doi: bioRxiv preprint 

https://doi.org/10.1101/012930
http://creativecommons.org/licenses/by/4.0/


 26 

References 

 

Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, 

L.-W., Kapral, G.J., Grosse-Kunstleve, R.W., McCoy, A.J., Moriarty, N.W., Oeffner, R., Read, 

R.J., Richardson, D.C., Richardson, J.S., Terwilliger, T.C. & Zwart, P.H. (2010). Acta Cryst., 

D66, 213-221. 

Afonine, P., Urzhumtsev, A. (2007). CCP4 Newsletter on Protein Crystallography, 45, 

http://www.ccp4.ac.uk/newsletters/newsletter45/articles/  

Afonine, P.V., Echols, N., Grosse-Kunstleve, R.W., Headd, J.J., Moriarty, N.W., Mustyakimov, M., 

Terwilliger, T., Urzhumtsev, A., Zwart, P.H., Adams, P.D. (2012). Acta Cryst., D68, 352-367. 

Afonine, P.V., Grosse-Kunstleve, R.W., Adams, P.D., Urzhumtsev, A.  (2013). Acta Cryst., D69, 

625-634 

Brenner, H. (1967). J.Colloid Interface Chem., 23, 407-435.  

Cruickshank, D.W.J. (1956). Acta Cryst. 9, 754-756. 

Goldstein, H. Classical Mechanics. 1950, Cambridge, Massachusetts: Addison-Wesley.  

Howlin, B., Moss, D.S. & Harris, G.W. (1989). Acta Cryst., A45, 851-861.  

Howlin, B., Butler, S.A., Moss, D.S., Harris, G.W. & Driessen, H.P.C. (1993). J.Appl. Cryst., 26, 

622-626. 

Jackson, C. J., Carr, P. D., Liu, J. W., Watt, S. J., Beck, J. L. & Ollis, D. L. (2007). J. Mol. Biol., 

367, 1047-1062. 

Johnson, C.K. (1970). In Crystallographic Computing, ed. F.R.Ahmed, Munksgaard, Copenhagen, 

1970, 220-226. 

Kuriyan J. & Weis W.I. (1991) Proceedings of the National Academy of Sciences, 88, 2773-2777.  

McCammon, J.A., Gelin, B.R. & Karplus, M. (1977). Nature, 267, 585-590.  

Painter, J. & Merritt, E.A. (2005). Acta Cryst., D61, 465-471. 

Painter, J. & Merritt, E.A. (2006a). Acta Cryst., D62, 439-450. 

Painter, J. & Merritt, E.A. (2006b). J.Appl. Cryst., 39, 109-111. 

Scheringer, C. (1973). Acta Cryst. A29, 554-570. 

Schomaker, V. & Trueblood, K.N. (1968). Acta Cryst. B24, 63-76. 

Schomaker, V. & Trueblood, K.N. (1998). Acta Cryst. B54, 507-514. 

Tickle, I. & Moss, D.S. (1999). Notes from IUCr Cryst.Computing School, http://public-

1.cryst.bbk.ac.uk/~tickle/iucr99/iucrcs99.htm. 

Urzhumtsev, A., Adams, P.D. & Afonine, P. (2013). Crystallography reviews, 19, 230-270. 

Winn, M.D., Isupov, M.N. & Murshudov, G.N. (2001). Acta Cryst., D57, 122-133. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 2, 2015. ; https://doi.org/10.1101/012930doi: bioRxiv preprint 

https://doi.org/10.1101/012930
http://creativecommons.org/licenses/by/4.0/


 27 

Winn, M.D., Murshudov, G.N. & Papiz, M.Z. (2003). Methods in Enzymology., 374, 300-321. 

Zucker, F., Champ, P.C. & Merritt, E.A. (2010). Acta Cryst., D66, 889-900.  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 2, 2015. ; https://doi.org/10.1101/012930doi: bioRxiv preprint 

https://doi.org/10.1101/012930
http://creativecommons.org/licenses/by/4.0/


 28 

Table 1. Number of PDB entries with at least one unphysical TLS matrix condition. Note: 

when one of the conditions was found to be broken, the other conditions were not checked (Figure 

1). The conditions are (from left to right) : (T≥0 & L≥0) matrices T and L are positive semidefinite; 

(s=0 & w=0) for the L matrix with one degenerate libration the corresponding elements of the S 

matrix are equal to 0; (S≤TL) elements of the S matrix are limited by the corresponding elements of 

the T and L matrices following the Cauchy conditions (23); (TC≥0) matrix T is positive semidefinite 

after the contribution due to the displacement of libration axes is removed; (V≥0) residual V matrix 

is positive semidefinite. Right columns summarize the total number of the TLS sets with one of the 

condition broken and the number of the PDB entries concerned. The two lines shows the statistics 

for the original matrices in the PDB with the default condition trS = 0 (upper line) and after the 

optimal choice of the diagonal S elements whenever possible as described in Sections 3-4 (bottom 

line). The total number of the PDB entries is 104,633. 

 
 

 
 total  PDB 

number 
total TLS 
number 

 conditions  broken  total TLS 
broken 

total PDB 
broken 

   T≥0 & L≥0 s=0 & w=0 S≤TL TC≥0 V≥0   
tS = 0 25284 197920 66438 13824 1271 43934 7941 133408 22263 
best tS  25284 197920 66438 13824 0 43090 5699 129051 21540 
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Table 2. Examples of the TLS matrices. 

 
PDB 

code 

chain, 

residue 

number 

 

T (Å2) 

 

L (degree2) 

 

S (Å·degree) 

1dqv A1-A97  0.1777  0.0090 -0.0044 

 0.0090  0.1306  0.0019 

-0.0044  0.0019  0.1372 

 1.4462 -0.0160 -0.2656 

-0.O160  1.2556  0.4713 

-0.2656  0.4713  0.8689 

 0.0467 -0.0523  0.0566 

 0.1010  0.0032 -0.0164 

 0.0090  0.0188  0.0560 

 B1-B97  0.1777  0.0090 -0.0044 

 0.0090  0.1306  0.0019 

-0.0044  0.0019  0.1372 

 1.4462 -0.0160 -0.2656 

-0.O160  1.2556  0.4713 

-0.2656  0.4713  0.8689 

 0.0467 -0.0523  0.0566 

 0.1010  0.0032 -0.0164 

 0.0090  0.0188  0.0560 

4b3x A1-A65  0.4663  0.0991 -0.0764 

 0.0991  0.5443 -0.0321 

-0.0764 -0.0321  0.5001 

 0.4738  0.0063  0.2318 

 0.O063  0.2120 -0.0584 

 0.2318 -0.0584  0.1312 

 0.0391 -0.0307 -0.4316 

 0.0587  0.1786 -0.2003 

 0.3665  0.4293  0.0403 

 A66-A363  0.1649 -0.0259  0.0184 

-0.0259  0.1422  0.0055 

 0.0184  0.0055  0.2028 

 0.8808 -0.0912 -0.1736 

-0.O912  0.9522  0.0972 

-0.1736  0.0972  1.6563 

-0.0345  0.0102 -0.0661 

 0.1159 -0.0222  0.0999 

 0.0424 -0.1330 -0.0237 

 

 

 

Table 3. Examples of parameters of the elementary motions found form the decomposition of 

the TLS matrices.  

 
PDB 

code 

chain, 

residue 

number 

 

T: tx, ty, tz  (Å) 

 

L: dx, dy, dz (rad) 

 

 

S: sx, sy, sz (Å) 

 

trS  

1dqv A1-A97 .3455 .3671 .4172 .01239 .02044 .02273 1.343  1.137 -1.319  0 

 B1-B97 .3634 .3885 .4166 .01608 .01753 .03069 0.679 -1.177  0.200  0 

1exr A2-A30 .1944 .2663 .2870 .00000 .01602 .02182 0.000  2.951  3.408  >0 

  A31-A74 .2110 .2939 .3068 .00000 .00860 .01637 0.000 -18.14 -5.028  <0 

  A75-A84 .1692 .4906 .6598 .00000 .00000 .00000 0.000  0.000  0.000  0 

  A85-A147 .0002 .2270 .3078 .00553 .01418 .02109 20.83  0.800 -1.672  ≈0 
4b3x A1-A65 .0994 .6064 .7116 .00000 .00825 .01343 0.000  2.718 -11.05 <0 

  A66-A363 .3306 .4102 .4413 .01568 .01720 .02283 3.164 -2.276 -0.197  0 
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Figure 1. General flowchart of the TLS decomposition into libration and vibration composite 

motions. Yellow ellipses are for conditions to the verified. Green rectangles are for the output 

parameters of the composite motions. Letters A-E indicate different steps of the procedure as 

described in the text. 

 

 

Figure 2. Examples of the vibration-libration ensembles. Red / salmon / magenta sticks indicate 

the principal vibration axes with the origin in the centre of the group; blue / marine / black sticks are 

for the libration axes. Yellow spheres for the 1dqv model show the reaction centers. a) 1dqv model. 

b) 1exr model; note pure vibrations for the group 3 (the helix) and absence of one of libration axes 

for the groups 1 and 2. c) 4b3x model. Libration axes for the first group are not shown being too far 

from the molecule. 

 

 

 

Figure 3. GpdQ TLS ensembles. The GpdQ TLS groups are projected onto the protein structure. 

The corresponding ensembles produced by phenix.tls_as_xyz are shown below. Each TLS PDB 

ensemble is shown as a single asymmetric unit outlined by the unit cell. An increase in overall 

motion is apparent going from left to right. The 20 member ensemble is shown for visual simplicity. 

 

 

Figure 4. phenix.tls_as_xyz ensembles replicate TLS anisotropic motion. a) GpdQ backbone 

with thermal ellipsoid representation of “entire molecule” TLS anisotropic B-factors. b) 

phenix.tls_as_xyz ensemble backbones produced from “entire molecule” TLS refinement. c) 

Complete electron density predicted by “entire molecule” TLS refinement. d) Global correlation 

coefficient between experimental structure factor amplitudes Fobs of the original GpdQ ‘entire 

motion’ refinement and phenix.tls_as_xyz ensembles of various sizes. Convergence values plateau 

at 0.935. 
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