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Abstract

The prevalence of sequencing experiments in genomics has led to an increased use of methods for count
data in analyzing high-throughput genomic data to perform analyses. The importance of shrinkage methods
in improving the performance of statistical methods remains. A common example is that of gene expression
data, where the counts per gene are often modeled as some form of an over-dispersed Poisson. In this case,
shrinkage estimates of the per-gene dispersion parameter have led to improved estimation of dispersion in
the case of a small number of samples.

We address a different count setting introduced by the use of sequencing data: comparing differential
proportional usage via an over-dispersed binomial model. This is motivated by our interest in testing for
differential exon skipping in mRNA-Seq experiments. We introduce a novel method that is developed
by modeling the dispersion based on the double binomial distribution proposed by Efron (1986). Our
method (WEB-Seq) is an empirical bayes strategy for producing a shrunken estimate of dispersion and
effectively detects differential proportional usage, and has close ties to the weighted-likelihood strategy of
edgeR developed for gene expression data (Robinson and Smyth, 2007; Robinson et al., 2010). We analyze
its behavior on simulated data sets as well as real data and show that our method is fast, powerful and
gives accurate control of the FDR compared to alternative approaches. We provide implementation of our
methods in the R package DoubleExpSeq available on CRAN.

1 Introduction
In genomic studies, a common approach to high dimensional data is to marginally examine the effect of each
feature with a simple statistical test in order to find the most promising features. A well-known example of
this type of marginal testing is that of gene expression studies, where the features of each sample consists of
measurements of the mRNA levels of tens of thousands of genes from the sample. In this setting, there are
generally few samples (on the order of 10 or less) and thousands of features or genes. A common analysis
is to perform a statistical test separately for each gene; for example, a t-test per gene to determine if there
is a difference between two groups of samples. In such a paradigm, it has been found that shrinkage of the
individual parameter estimates or test statistics greatly improves the results, and a great deal of work has been
done in different settings to this purpose.

The setting for many of these shrinkage routines was initially in the context of continuous, roughly log-
normal intensity data from microarray experiments. The growth of relatively cheap sequencing technologies
has resulted in sequencing becoming preferred over the previous generation of microarray technologies. The
result of sequencing experiments, unlike the continuous intensity measurements of microarray experiments,
is generally a count of the number of sequences matching a criterion, such as the number of sequences from
a particular gene. As a result there has been great interest in how to most effectively use discrete distributions
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for common tasks that previously relied on normal data. For the marginal testing approaches, this includes
appropriate use of over-dispersed models and how to provide shrinkage methods.

A common type of question in sequencing experiments is to compare the counts of sequences measured
across different conditions, such as the two group setting described above. One setting in which this is
frequent is the case of finding differences in the mRNA levels of a gene in different conditions. In this case, the
counts per gene are the number of sequenced mRNA that come from that gene. There are different amounts
of total sequences collected from different samples, so that the question of interest is whether the proportion
of counts allocated to a given gene varies across conditions. In the gene setting, however, the total number
of sequences in a sample is in the millions and are spread across thousands of genes, so that the proportions
are quite small. For this reason it is common to use a Poisson distribution to model the counts with an offset
parameter equal to the total number of sequences (Marioni et al., 2008). Generally an over-dispersed model
is preferred, and the prominent modeling technique for over-dispersion has been to use a negative-binomial
(Robinson and Smyth, 2007), though some methods have incorporated over-dispersed binomial distributions
such as the beta-binomial. For all of these gene expression methods, there has also been focus on creating
shrinkage estimators of the dispersion parameter which greatly improve the performance of the methods in
small sample sizes (Robinson and Smyth, 2007; Anders and Huber, 2010; Zhou et al., 2011; Yang et al.,
2012; Wu et al., 2013; Yu et al., 2013; Leng et al., 2013).

We are interested in a slightly different setting, namely when we are performing marginal testing compar-
ing proportions but the Poisson approximation is not valid and the proportions can take on the full range of 0
to 1. We are motivated by the the question of detecting differences in alternative splicing between conditions
– specifically an approach that simplifies the problem by focusing on each exon separately and evaluating
whether it is excluded (“spliced out”) more frequently in some conditions than others. We focus on the mea-
sure of exclusion often called proportion spliced in (PSI or Ψ) that measures the number of sequences that
show inclusion of the exon compared to the number excluding or skipping the exon (Pan et al., 2008; Ven-
ables et al., 2009; Wu et al., 2011; Shen et al., 2012; Barbosa-Morais et al., 2012; Brooks et al., 2014). There
are alternative approaches to summarizing mRNA-Seq data for detecting differential alternative splicing, but
focusing on PSI per exon has the advantage that it is a relatively simple summary of the data that also makes
use of the large amount of information available in junction reads that span introns (also called split-reads).
We describe and give the necessary background to this problem in Section 2 below.

Our methodological focus, like that of the more standard gene expression setting, is on shrinkage esti-
mates of the dispersion parameter, which is a common focus of high-throughput genomic settings. Unlike the
gene expression example, PSI values can take the full range of values from zero to one, and therefore existing
work based on over-dispersed Poisson models from gene expression are not applicable in this setting.

We propose a novel empirical bayes framework for estimating the dispersion parameter for data whose
distribution is part of the family of dispersed exponential distributions proposed by Efron (1986), called the
double exponential family of distributions. Our empirical bayes method framework is based on the fact that
the distribution of the dispersion parameter can be shown to be approximately Gamma distributed, which
we develop below. In addition to being a tractable distribution, the estimates produced from the double
exponential family model have close ties to quasi-likelihood estimates which are widely used for estimation
of binomial over-dispersion. Given this close connection, our method is effectively an empirical bayes method
for quasi-likelihood estimation of the dispersion parameter.

Our empirical bayes framework provides two, related versions. The first is the standard empirical bayes
estimator (DEB-Seq). The second (WEB-Seq) is also an empirical bayes estimator with a different param-
eterization of the prior; it is related to the weighted likelihood method of shrinkage of Robinson and Smyth
(2007) applied to the double exponential family of distributions, but unlike that approach, the empirical bayes
methodology provides a data-driven estimate for the tuning parameter.

We compare the performance of our method to other methods and demonstrate that in addition to provid-
ing a fully automated method for shrinkage, our methods have superior performance on simulated data in the
exon inclusion setting. We also apply these methods to mRNA-Seq data from real tumor samples generated
by the Cancer Genome Atlas project (Cancer Genome Atlas Research Network, 2011) which suggests that
it can similarly control the false discovery rate and find promising targets of splicing. Furthermore, there is
very little computational overhead in our methods compared to many existing methods.
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2 Differential Exon Usage

2.1 Alternative Splicing
The static genetic code found in the DNA of each cell must be read and converted into the molecular products
that are used throughout the cell, e.g. proteins. Specifically, a portion of the DNA, called a gene, encodes
which specific amino acids will make up a protein. When a protein is needed, regulatory processes in the cell
trigger its corresponding DNA to be transcribed into an independent copy of the DNA, called mRNA; the
genetic code contained in the mRNA is then translated into the string of amino acids that form the protein.

In eukaryotic cells, the process of copying the DNA into mRNA itself has stages. A direct copy of the
DNA is created, called a pre-mRNA, and the pre-mRNA is then further processed into an mRNA. This always
involves some changes to the pre-mRNA (e.g. adding a poly-A tail and a 5’ cap), but in many eukaryotes,
the processing of pre-mRNA goes further and selectively cuts out portions of the pre-mRNA so that the code
for the protein contained in the final (mature) mRNA transcript is not an exact copy of the code found in the
DNA of the cell. The process of cutting out portions of the mRNA product is called splicing.

Splicing is not haphazard but a highly regulated process: the DNA code itself indicates the portions of the
pre-mRNA product that should be spliced out and recruits the protein complexes that actually do the splicing.
In many complex organisms, including human and many common model organisms like fruitflies and mice,
the splicing of a pre-mRNA product is more complex because which parts of the pre-mRNA are removed can
vary based on the environmental cues of the cell. The end result is that a single gene representing a stretch
of code on the DNA can result in a diversity of mRNA transcripts. This is referred to as alternative splicing
(again, see Figure 1a for an illustration)

The different possible transcripts that can result from a single gene are often called isoforms of the gene.
The DNA of a gene can be thought of as being divided into introns (the portion that will be removed) and
exons (the portions that will remain), though because of alternative splicing some regions may be retained in
one isoform and removed in another isoform. How many isoforms there are in a gene and how interrelated
the isoforms are varies by gene. Determining the possible isoforms based on the DNA of a gene is difficult,
and the set of all possible isoforms is not completely determined even for well characterized genomes like
human.

2.2 Sequencing of mRNA for Alternative Splicing
Previously, large-scale quantification of the amount of mRNA in a cell (also called mRNA expression) was via
microarray technology. Microarrays allowed an unprecedented ability to measure the mRNA from thousands
of genes simultaneously. However, gene expression measurements from microarrays quantified all mRNA
from a gene without distinguishing between different isoforms of the gene.

“Next-generation” sequencing technologies have resulted in a rapid decline in the price of sequencing and
allow for widespread sequencing of mRNA for expression studies instead of microarrays. Unlike microarrays,
the sequencing of mRNA can detect mRNA in a cell without any prior information as to what isoforms exist.
Due to this, the sequencing of mRNA provides a great deal of information about alternative splicing in the
cell.

While current sequencing methods allow for direct sequencing of mRNA, they still do not allow for
an entire mRNA transcript to be sequenced. Instead the mRNA must be cut into small fragments before
sequencing, meaning that the sequences that are obtained are only a portion of the mRNA from which they
came. If the mRNA has undergone splicing, then the mRNA fragment may not directly match the genome.
Usually it is possible to match a fragment back to the genome, where gaps in the match of the mRNA to the
genome will correspond to introns that were removed due to splicing (see for example Trapnell et al. (2009),
Wu and Nacu (2010)). Figure 1b gives an illustration.

The data from mRNA-Seq consisting of these aligned reads can be simplistically thought of as a mix of
two different types of sequenced fragments. One set consists of fragments that span two or more exons that
were spliced together during the process of removing the introns. As a result they do not directly map to
the genome, but rather portions map to one exon and portions map to another; such reads are often called
junction reads or split-reads (Figure 1b shows examples). Junctions reads are often interesting for alternative
splicing because they can give direct evidence of splicing. For example, in Figure 1b, isoforms A and B
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Figure 1: Illustration of Alternative Splicing and Sequencing. (a) An illustration of the process of creating
multiple isoforms from a single gene (DNA). A RNA copy of a gene is created (pre-mRNA) that contains
all the gene’s exons and introns. The pre-mRNA can then be spliced in one of three ways by removing
different combinations of exons, and each possibility leads to a different mRNA (isoform) and protein prod-
uct. Illustration courtesy of National Human Genome Research Institute (2014) (b) A pictorial example of
aligning sequenced fragments when there are multiple isoforms. The bottom boxes represent the traditional
annotation of a gene region: the dark grey exons represent all known exons (i.e. the gene), the colorful boxes
represent the three isoforms from the gene which have different combinations of the exons. We have divided
the exons of the gene into 4 regions, corresponding to the isoforms in which they are contained. The top set
of small boxes represents the sequenced fragments. Most reads are represented as small boxes, meaning they
completely match the part of genome they are above. Some reads are split into smaller boxes with connecting
lines; these represent junction reads where the two parts of the fragment match disconnected regions of the
genome. The sequenced fragments are also colored by the isoform to which they can be uniquely identified,
with the majority of fragments being grey because it is not possible to identify the isoform from which they
originate.
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differ because one includes an exon and the other does not (called an exon skipping event); then fragments
that connect exon 1 to exon 3 without including the middle exon (exon 2) must come from isoform A, while
those fragments that connect exon 2 to the adjacent exons 1 and 3 must come from isoform B.

Other fragments are contained entirely within an exon. These are less likely to provide direct evidence as
to the isoforms from which they came (though we give an example in Figure 1b where there is such a read
contained entirely within an exon that must come from isoform C). However, the quantity of reads mapping
to different regions can provide indirect evidence of alternative splicing. For example, in the case of the
skipping of exon 2, described above, a reduction in isoform B compared to isoform A would result in less
total expression of exon 2 (i.e. less reads mapping to it) relative to exons 1 and 3. Since the bases just around
the junctions between exons represent only a small portion of mRNA, junction reads are much less common
than reads mapping to the exons, and therefore exon reads are important for accurate quantification the the
overall expression of the mRNA.

2.3 Measuring Differential Alternative Splicing
There are different ways to summarize the information in the sequenced fragments with respect to detecting
differences in alternative splicing. They can be roughly thought of as making different use of fragments
mapping to the junctions versus the interior of the exons. Depending on how the information is summarized,
different statistical approaches are appropriate. Our methods here focus on analyzing data resulting from one
particular approach to summarizing the information regarding alternative splicing. This method makes use of
the junction reads or ‘split reads’ and we call this an inclusion-exclusion summarization, with the summary
statistic often called the percent spliced in or exon inclusion percentage.

The idea of the inclusion-exclusion approach is to break the isoforms into individual contrasting patterns
of interest and count how many fragments agree with one pattern compared to another. An example is that
of the comparison of isoform A to B described above. In this case, junctions that skip exon 2, joining exons
1 and 3, show evidence of isoform A while those that include exon 2 show evidence of isoform B. This
ignores any other exons in the gene, only considering the three exons relevant for assessing the exon skipping
event. Then the proportion of these fragments including exon 2 results in a proportion or percentage which
is called the percent spliced in for exon 2, abbreviated PSI or Ψ. More generally, it is common to break each
gene into well-defined simple alternative splicing events (e.g. skipping exons, alternative 5’/3’ splice starts)
and evaluate whether the PSI changes between different conditions across all genes (see Pan et al. (2008);
Venables et al. (2009); Wu et al. (2011); Shen et al. (2012); Barbosa-Morais et al. (2012); Brooks et al.
(2014) for examples). Programs like MATS (Shen et al., 2012), JuncBase (Brooks et al., 2011), DiffSplice
(Hu et al., 2013), and SpliceTrap (Wu et al., 2011) take an annotation file of the transcriptome and create
counts for these types of alternative splicing events.

In our data analysis, we consider PSI values defined more broadly for other types of events than just
these classical definitions of splicing. These classical alternative splicing events are difficult to identify
computationally for the whole genome, and they also do not include many other more complicated events.
For example, in our simple illustration, there is also isoform C that skips exon 2 but also has an alternative
start site for exon 3. In our computations with real data, we calculate a PSI for every single exon, without
associating an exon with a type of splicing. We define the fragments that include an exon to be all those
contained in the exon, and we define those that exclude the exon to be any junctions that skip the exon
regardless of what other exons that junction combines together. So that in our simple illustration, all reads
that skip exon 2 would be considered “excluding” exon 2, regardless of whether they originated from isoform
A or C. To make the comparison across exons of different lengths more comparable, we can also limit the
fragments “including” an exon to just those fragments that join the exon to other exons (e.g. only fragments
that overlap exon 2 AND another exon). Either way, this creates a measure of PSI for every exon in the
annotation, which we find more satisfying than limiting to just exons that are in simple types of combinations.

We emphasize that regardless of how an ‘event’ is defined, all of these inclusion-exclusion summariza-
tions result in the same kind of data structure from a statistical point of view: Y successes out of m trials
identified for each event.

There are other ways to summarize mRNA-Seq data in order to compare alternative splicing between
samples. Our methods are not generally appropriate for these types of summaries (except as noted below),
but we mention them here so as to make clear the distinction.
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Isoform Estimation A direct way to summarize the information in a gene is to estimate the individual
isoform estimates directly. Because there is not a direct mapping of most reads to isoforms, this is a de-
convolution problem, where the observed expression of a fragment is a convolution of the expression of the
individual isoforms of which it could be a part (Denoeud et al., 2008; Jiang and Wong, 2009; Trapnell et al.,
2010; Richard et al., 2010; Salzman et al., 2010; Katz et al., 2010). In estimating the isoform expression
level, all of the reads of the gene are used. Individual isoform expression levels can be individually compared
in a similar way to gene expression estimates (see EBSeq (Leng et al., 2013) which provides for corrections
specific to isoform analysis), or specific features of the isoforms can be compared for differential isoform
usage (e.g. rSeqDiff (Shi and Jiang, 2013)).

Furthermore, some researchers use isoform expression measures to create PSI values per exon, where
instead of using inclusion-exclusion counts, they use the isoform measurements to calculate, per exon, the
percentage of the overall isoform expression that comes from isoforms including the exon (Shi and Jiang,
2013). So in our simple example, exon 2 is contained only in isoform B, and the PSI for exon 2 would be
the isoform abundance for isoform B as a fraction of the total (sum) abundance for the gene (this estimates a
similar quantity to our preferred way of calculating PSI per exon described above). Since isoform estimates
are continuous, and not counts, this form of a PSI would not have the discrete statistical structure of Y
successes out of m trials; however it is common to convert isoform expressions into expected counts, in
which case the expected counts would have that discrete nature.

The ability to estimate isoform expression levels depends on having complete knowledge of all possible
isoforms in the gene (called the transcriptome), as well as having enough distinguishing information between
the isoforms to deconvolve the isoform expression from the overall expression. There are still many organ-
isms of interest to researchers that do not have extensive knowledge of the transcriptome. While there are
computational methods that attempt to construct the set of isoforms de novo, based on mRNA-Seq reads
(Trapnell et al., 2010; Guttman et al., 2010; Richard et al., 2010), this is an extremely complicated problem,
and these de-novo methods can be unreliable and unstable if used on a single, small experiment or without
sufficient numbers of sequenced fragments. For this reason, it can be preferable to use alternative methods of
summarizing the data for detecting differential alternative splicing.

Relative Exon Usage Another approach to alternative splicing is to evaluate the relative expression of exons
to detect alternative splicing, ignoring the specific information in the junction reads. As we noted above, if
isoform B is less expressed, this should be apparent in relatively less total number of counts overlapping exon
2; in theory this can be done without any recourse to what specific exons are joined together by junction
reads. For relative exon usage, the input per exon is all counts overlapping an exon. Relative exon usage
does not make use of the information of how junction fragments skip the exons, except in their contribution
to reads overlapping an exon.

In practice, many technical aspects of sequencing can create biases so that some exons are more likely to
get sequenced reads affecting the overall count of an exon relative to other exons in the gene. For this reason
the goal of methods based solely on exon counts is to find differential changes in relative exon expression
across groups. This is based on the assumption that the sequencing-related biases would be the same across
samples, which may not be true.

Methods that analyze relative exon counts to detect differential alternative splicing, like DEXSeq (Anders
et al., 2012) and the diffSplice method of voom (Law et al., 2014), fit a linear model per gene to the
counts per exon, allowing for an individual exon effect which quantifies the relative exon expression i.e.
how different an exon is from the overall mean gene expression. Then they find differentially spliced exons
by detecting exons who have different exon effects in the two groups. In fitting this model, standard count
distributions like the negative binomial model, along with the corresponding shrinkage of the dispersion, can
be used in the same manner as for gene expression. For this reason relative exon usage depends on global
behavior of the gene, unlike the inclusion-exclusion approach which is quite local.

Like the inclusion-exclusion approach, relative exon usage also focuses on individual exons rather than
global isoform estimates. However, the linear model also implies that the usage of the exon is defined relative
to all other exons in the gene, which means that identification of an exon effect in the linear model does
not directly translate to alternative splicing differences in that exon (Anders et al. (2012)). For example, if
many of the exons in a gene are alternatively spliced then, relative to the mean, the unusual exons with large
exon effects are actually the few that are not alternatively spliced. Similarly, introns should not be included
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in a relative exon usage analysis since they will overwhelm the gene model. Neither of these situations are
a problem with the inclusion-exclusion framework, where the measurement of splicing given by the PSI is
truly local and independent of other, non-adjacent, exons in the gene.

On the other hand, relative exon counts can find differential usage of exons that cannot have inclusion-
exclusion data; for example exons at the beginning or end of a gene do not produce skipping reads even if
some isoforms do not use those exons.

We note that in addition to targeting the correct exon, the paradigm of inclusion-exclusion offers one
possibly significant advantage compared to an analysis of the relative usage of exon counts, regardless of the
specific statistical method. In the inclusion-exclusion paradigm, those exons that show no reads skipping the
exon in any sample of any group are naturally excluded by getting a p-value of 1 by definition (and similarly
for those that show that fragments always skip the exon, such as introns). To get a sense of the value of using
information about how many junction reads skip an exon, we can look at our real data example of 30 samples
from 2 tissue types (described in Section 5.4). For each exon, our annotation of the isoforms that contain the
exon results in a classification of an exon as constitutive (i.e. should not be excluded in any of the transcripts
if the annotation is completely accurate) or as alternative (the exon is excluded in at least one isoform).

Of the constitutive exons (12.7% of the exons in the data), only 1% (529 exons) show any junction reads
skipping the exon in any of the 30 tissue samples, while 35.0% of those exons annotated as alternatively
spliced have such junction reads. This strongly suggests that the implicit removal of exons with no skipping
junctions is preferentially removing exons that are not alternatively spliced, which ultimately can increase
the power (Bourgon et al., 2010). There is no natural way to exclude such exons in the linear model analysis
of exon counts, since the constitutive exons are actually important in building the gene model – though a
post-analysis filtering could be implemented to eliminate exons that were never skipped.

Clearly this implicit filtering can also be a disadvantage if many alternatively spliced exons are excluded
because of a lack of sufficient reads to detect the skipping event. We view this as less of a practical dis-
advantage because we find that in practice practitioners are likely to want evidence in the form of junction
reads skipping an exon in order to have faith in the call of an exon as alternatively spliced or to design an
experiment to test the result. But a more general concern is that because the inclusion-exclusion paradigm
relies heavily on reads that span the junctions of exons, which are a small percentage of all reads, it relies on
a lower number of reads and could have lower power.

3 Modeling the Dispersion
There are several different distributional choices for a dispersion model for the binomial. A very common
choice is the beta-binomial model which places a beta prior on the standard binomial distribution proportion
parameter. This distribution is not a member of the exponential family and there is not a closed-form solution
for the MLE. This model has been used recently in the setting of methylation data (Sun et al., 2014; Feng
et al., 2014; Dolzhenko and Smith, 2014), but less so in that of gene expression settings (with Zhou et al.
(2011) and Hardcastle and Kelly (2013) being exceptions). In a related fashion, the MATS method of Shen
et al. (2012) creates a dispersed model by placing a uniform prior on the proportion parameter of the binomial
which is a specific example of a beta prior where the beta parameters (and thus dispersion) are set in advance;
unlike the other methods previously cited, MATS was actually developed for the setting of measuring PSI
and detecting alternative splicing from mRNA-Seq data.

Another common approach is to use quasi-likelihood methods; the estimates for the proportion (mean)
remain the same as that found from a binomial model, but the distribution of the estimate of the mean depends
on a dispersion parameter and thus results in greater estimates of variability in the presence of over-dispersion
(or less if under-dispersed) than the standard binomial model in the case of a quasi-binomial. An existing
method of analyzing proportions in a genomic setting in this fashion is the modified extra-binomial (EB2)
method of Yang et al. (2012) which follows an alternative quasi-likelihood approach given in Williams (1982)
where the variance is aligned to match that of a beta-binomial; again this was not developed for differential
exon splicing, but for comparing allele frequencies between populations.

We focus our methods on the double exponential family (Efron, 1986), which is a full probability model
that results in estimates closely related to the quasi-likelihood method. This class of distributions, which we
will describe in detail below, adds a dispersion parameter to any member of the exponential family. This
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distribution has the advantage of being closely related to the quasi-likelihood approach and yet still provides
a likelihood platform for the development of shrinkage methods. Furthermore, the distribution is itself in
the two-parameter exponential family, making calculations and approximations straightforward. Because our
method of shrinkage for dispersion estimates applies beyond just the binomial distribution, we will describe
the development in general terms using the entire double exponential family of distributions rather than
concentrating on the binomial setting (which we will refer to as the “double binomial” distribution).

Notation In what follows, the data from every exon consists of an entry Yij andmij . Yij refers to the count
of the number of times there was inclusion of the event j for sample i. For the setting of exon inclusion,
Yij would be the number of fragments overlapping exon j. mij gives the total possible number of counts
related to event j; in the exon setting this would be the total number of fragments given by the sum of those
expressing exon j and those skipping exon j. The value Yij/mij is the “percent spliced in” (PSI) value and
is the standard binomial estimate of the probability of inclusion. For concreteness, we will assume that the
PSI is per exon, with the understanding that the same methods could be applied to other ways of defining
“included” and “excluded” fragments. The mij we will call the total count, meaning the total number of
reads both including and skipping the exon.

For the rest of this section, we will focus on the modeling of the distribution of Yij for just a single exon
j, and therefore we will drop the subscript j when the meaning is clear.

3.1 The double exponential family of distributions
The double exponential family of distributions of Efron (1986) generalizes any distribution in the exponential
family of distributions by including an over-dispersion parameter. Specifically, assume that the naive choice
for the distribution of Yi is a distribution in the exponential family, such as Binomial or Poisson. We also
assume that for each Yi there is a corresponding mi, which might be all equal in some settings. For the
binomial, mi is clearly the total number of trials. For other distributions, mi might be taken as 1 for all
samples. We follow the notation of Efron (1986) so that we transform Yi into a random variable Zi whose
mean µ under the naive distribution is independent of the sample size mi, e.g. Zi = Yi/mi for the binomial
family. We write the pdf of the naive distribution in canonical exponential family form by

gmi(zi) = exp(mi(ηzi − ψ(µ)))dGmi(zi),

where η = η(µ) is the link function relating the mean µ to the canonical parameter η, and ψ(µ) is the
normalizing function. For the case of binomial, the link function is the standard logit function, η(µ) =

log
(

µ
1−µ

)
and the normalizing function ψ is given by ψ(µ) = − log(1−µ). We can also define the standard

deviance residual of Zi from the mean µ in terms of the canonical parameters of the exponential family,

D(Zi, µ) = 2mi

{
(η(Zi)− η(µ))Zi − (ψ(Zi)− ψ(µ))

}
.

Note that D(Zi, µ) is the deviance based on the naive (non-dispersed) model.
Efron (1986) proposes adding a dispersion parameter φ to any distribution in the exponential family so

that the the dispersed distribution has a pdf given by

c(µ, φ,mi)√
φ

exp

{
−D(zi, µ)

2φ

}
dFmi

(zi),

where c(µ, φ,mi) is a normalizing constant. The role of φ is reminiscent of the role of the variance parameter
in a normal distribution where φ > 1 implies over-dispersion and φ < 1 implies under-dispersion.

Approximating c(µ, φ,mi) The normalizing constant c(µ, φ,mi) can be computationally expensive to
calculate, especially in the context of genomic studies where the maximization routines will need to be
calculated for every exon. Efron shows that

c(µ, φ,mi)
mi→∞−−−−→ 1.
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Note that this approximation is as mi is large. In our exon setting mi is the total number of reads for the exon
in a particular sample and exon – including both the reads overlapping the exon and the junctions skipping
the exon – and is not the number of samples.

Approximating c(µ, φ,mi) with 1 results in the mean of Zi remaining approximately µwhile the variance
of Zi from the over-dispersed distribution becomes approximately

V ar(Zi) ≈ φ
V (µ)

mi
,

where V (µ) is the variance function for the naive (non-dispersed) distribution from the exponential family. If
the naive distribution is the binomial distribution, the corresponding over-dispersed distribution has variance
approximately φµ(1−µ)mi

, while for a Poisson, the over-dispersed distribution has variance approximately φµ.

Comparison of Double Binomial to Beta-binomial By analogy, the beta-binomial distribution can be
parameterized in terms of the mean µ and dispersion parameter ρ ∈ (0, 1), which represents the correlation
between the mi Bernoulli draws. Then the variance of Zi from a beta-binomial is given by

1

mi
µ(1− µ)(1 + (mi − 1)ρ) =

V (µ)

mi
(1 + (mi − 1)ρ).

Note that beta-binomial only allows for over-dispersion, unlike the double binomial, though that is not of
great concern in most genomic studies where over-dispersion is expected.

We compare their density functions in Supplemental Figure S1 after aligning their first two moments (i.e.
choosing ρ so that φ = (1 + (mi − 1)ρ)). Not surprisingly, for low levels of dispersion, the double binomial
and beta-binomial are quite similar since they both converge to a binomial distribution as the dispersion
vanishes. For large dispersion parameters or for the mean near the boundary of values of 0 and 1, they show
the greatest differences. When the dispersion is extremely large (log(φ) = 3), the double binomial puts more
mass on the boundary values compared to the beta-binomial. This is a rare dispersion value in the data we are
examining (Supplemental Figure S2), though when we look at the number of zeros in real data, it matches
simulations from a double-binomial more closely than that of a beta-binomial (Section 4.3). More applicable
for our data is the differences between the two when µ is near 0 (or 1), where the beta binomial concentrates
the mass much closer to 0 while the double binomial allows for more variability.

Over the rest of the range of parameters, their distributions are relatively similar, but the distribution of
the beta-binomial is more difficult to work with analytically than the double binomial, particularly when we
use the approximation of c(µ, φ,mi) = 1 for the double binomial.

Multiple Groups For applications, we are interested in the case where there are covariates that results in
different µ for different samples i. We focus on the common case in genomic studies where the covariates
simply defineK separate groups of samples and we want to compare the mean proportion between the groups
for every exon. The most common example of this is the two group comparison where K = 2. For example
the two groups might be disease and normal samples, or samples with a gene knocked-out versus those
without; more generally any setting where there is comparison of treatment samples versus control samples.
Higher values of K can be found, for example, in time course data, where each group might correspond to
observations observed at the same time point, or just generally where there are multiple sets of treatments for
each sample.

In the case of multiple groups, we have a separate mean µk for each group k; when the meaning is
clear we can refer to this vector of means as µ. Maximizing the joint likelihood with the approximation that
c(µk, φ,mi) = 1 gives simple analytical MLE estimates for µ and φ,

µ̂k =
∑
i∈k

mi

Mk
zi, φ̂ =

1

n

∑
k

∑
i∈k

D(zi, µ̂k)

whereMk =
∑
i∈kmi is the total coverage of all samples in group k. Thus the approximation c(µk, φ,mi) =

1 results in the standard estimates of µk from the non-dispersed distribution and estimates of the dispersion
based on deviance residuals. These estimates are the same as those in the quasi-likelihood setting, giving a
likelihood-based method that closely resembles the results of the quasi-likelihood method (Efron, 1986).
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This approximation leads to enormous computational savings as well as alignment with the standard
quasi-binomial approach, and the methods we develop rely on this approximation.

3.2 Distribution of φ̂
A key component of our methods of shrinkage is that we can find a statistic that relies solely on the parameter
φ and is independent of µ. This allows us the opportunity to shrink the estimates of φ based on shared
information across exons independently of the value of µ for a particular exon.

Distributions from the double exponential family are also members of the two-parameter exponential
family. This implies that the conditional distribution of φ̂|µ̂ defines a conditional likelihood independent of
µ and that the conditional distribution can be easily approximated using a modified profile likelihood (see
Pawitan (2001) for a review). This conditional likelihood can be used for shrinkage of the estimates φ̂ as in
Robinson and Smyth (2007).

However, if we further make use of the approximation c(µk, φ,m) = 1, it can be shown that φ̂ is asymp-
totically independent of the vector of sample means, µ̂. Furthermore, φ̂ is asymptotically Gamma distributed,

φ̂
L→ Gamma(

n−K
2

,
2

n
φ)

where 2
nφ is the scale parameter of the Gamma (see Supplementary Text, Section 1).

This result does not depend on the form of the naive distribution that formed the starting point of the
analysis, though we will use the binomial distribution since we are analyzing percentages (PSI). For example,
it could similarly be used for an over-dispersed Poisson distribution for gene expression analysis, which
we discuss in the conclusion. However, in this setting, unlike the more commonly used negative binomial
distribution, the relationship between the mean and variance would be linear, not quadratic.

4 Development of Empirical Bayes Methods
We now will develop the methodology underlying our two shrinkage methods for the dispersion, as well as
test statistics for comparing differential skipping between groups.

Our methods rely on an empirical bayes strategy for shrinkage of the dispersion parameter. Empirical
bayes strategies are widely used, for example in, EBSeq (Leng et al., 2013) and DSS (Wu et al., 2013)
for differential gene expression detection. In addition, empirical bayes methods are used in a wide range
of problems, in particular for gene expression analysis of microarrays where the widely used limma method
(Smyth, 2005) provides empirical bayes shrinkage of the variance parameter of a linear model. We develop an
empirical bayes method for the family of double exponential distributions, which we call DEB-Seq (Double
exponential Empirical Bayes with application to Sequencing).

We also consider the weighted likelihood approach which is implemented for the negative binomial dis-
tribution in the widely-used gene expression method edgeR (Robinson and Smyth, 2007). We show that
when applied to the approximate likelihood of φ̂ based on the double exponential family of distributions, it
gives an estimator of a similar form as our empirical bayes estimator, except with a different parameterization
of the prior distribution. To distinguish the method with this form of parameterization we refer to this as the
WEB-Seq method (Weighted Empirical Bayes shrinkage with application to Sequencing).

We also compare our methods to other existing methods that provide shrinkage of the dispersion pa-
rameter in comparing proportions across groups. These methods perform shrinkage of dispersion in slightly
different ways. The modified extra-binomial shrinkage method (EB2) (Yang et al., 2012) was developed to
test for differences in allele frequencies, though it can be easily applied to the setting of differential exon
usage. The method employs shrinkage by reparameterizing the variance function in terms of two global
parameters that are estimated via linear regression by combining data across all SNPs. MATS (Shen et al.,
2012), mentioned above, was developed for detecting differences in PSI and assumes a uniform prior for the
proportion parameter of a binomial and further adds a correlation between the two conditions being com-
pared; this parameter is assumed shared by all the exons and thus provides implicit shrinkage. BBSeq (Zhou
et al., 2011) is a method developed for gene expression studies that shrinks the dispersion parameter of a
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beta-binomial model. Their shrinkage method fits a cubic polynomial to the independently estimated, logit-
transformed dispersion parameters as a function of the fitted values of the observed data. The method of
Feng et al. (2014) provided in the DSS package was developed for DNA methylation data and also provides
shrinkage of the dispersion parameter of a beta-binomial distribution. They do so by fitting an empirical
bayes model that assumes the dispersion parameter has a log-normal prior distribution and their computa-
tions are based on method of moments estimators for the beta-binomial. For convenience, we will refer to
this as the DSS method, though DSS actually refers to the corresponding gene expression technique that the
same authors developed earlier in Wu et al. (2013).

4.1 Double exponential Empirical Bayes
Empirical bayes estimation of the dispersion parameters via an explicit likelihood formulation is a natural
way to provide shrinkage estimators of the dispersion parameter. By this we mean the following general
strategy for estimating a parameter θ: formulate a Bayesian model Y |θ ∼ F and θ ∼ Gα, let the estimate
θ̂α be given by Eα(θ|Y ), and then choose the parameter α by estimating α from the marginal distribution of
Y |α. This results in an estimate θ̂α̂ which has the desirable shrinkage properties of Bayesian estimators but
also has an explicit method for estimating the parameter α.

Many distributions, including the distributions in the double exponential family, do not have a prior
that gives a tractable form for the marginal distribution of Y to permit easy estimation of α from the data.
However, if we make the approximation that the normalizing constant c(µk, φ,mi) is equal to 1, we show in
Section 1 of the Supplementary Text that φ̂ is approximately independent of the group means and Gamma
distributed with known shape parameter (n−K)/2, and scale parameter equal to 2

nφ.
This suggests a simple bayesian model of φj for each exon j. A conjugate prior for the scale parameter

of a gamma distribution with a known shape parameter is the inverse gamma distribution, IG(α0, β0) 1.
Applying this conjugate prior to the scale parameter φj , we can formulate the Bayesian model

φ̂j |φj ∼ Γ(
n−K

2
,

2

n
φj), φj ∼ IG(α0, β0).

This gives the posterior distribution of φj |φ̂j as a Inverse-Gamma distribution with shape parameter n−K2 +α0

and rate parameter n
2 φ̂j + β0. Then a standard Bayesian point estimate of φj is given by the mean of the

posterior distribution,
nφ̂j + 2β0
n−K + 2α0

.

To give an empirical bayes solution, we estimate α0 and β0 from the marginal distribution of the φ̂j
across all exons, making the assumption that the φ̂j are independent across exons. Critically, the approximate
distribution of φ̂j is independent of the individual total counts, mij , per exon and sample. This means
that under the Bayesian model above, the φ̂j are marginally identically distributed and we can use the joint
likelihood of φ̂j to find estimates α̂0 and β̂0. Because the Inverse Gamma prior for φ is a conjugate prior this
results in an analytical expression for the marginal density of φ̂j given by the generalized beta distribution
(Raiffa and Schlaifer, 1961) with density,

p(xj) =
(n2xj)

(n−K)/2−1βα0
0

(n2xj + β0)(n−K)/2+α0B((n−K)/2, α0)
.

We estimate α̂0 and β̂0 by maximum likelihood estimation.
Then the empirical bayes estimate of φj is given by

φ̂jDEB = E(φj |φ̂j) =
nφ̂j + 2β̂0
n−K + 2α̂0

. (1)

We call this estimation procedure Double exponential Empirical Bayes with application to Sequencing (DEB-
Seq).

1recall that if X ∼ IG(α0, β0) this implies that 1/X ∼ Γ(α0, β0) where β0 is the rate parameter
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4.2 Empirical Bayes based on Weighted likelihood
Wang (2006) gives a general strategy for combining likelihoods by creating a (weighted) average of the log-
likelihoods of all the experiments. Robinson and Smyth (2007) adapt this idea to the gene-expression setting
to make it gene-centric, and this procedure is implemented in the edgeR package. Each gene j is given a
separate weighted log-likelihood `jWL(φ) which is the weighted sum of the individual gene log-likelihoods
for gene j, `j(φ), and a common log-likelihood which is the sum of the individual gene log-likelihoods for
all genes `CM (φ),

`jWL(φ) = `j(φ) + δ`CM (φ), `CM (φ) =
1

p

p∑
j=1

`j(φ).

Then for each gene j, the shrunken estimate φ̂j is given by maximizing `jWL(φ). The weight δ given to the
common log-likelihood `CM (φ) is a tuning parameter that must be chosen. McCarthy et al. (2012) suggest
that it be chosen so that it is proportional to sample size adjusted by degrees of freedom, with the edgeR
package assigning a fixed value for δ in the gene expression setting by default equal to 20

n−K .
In order to apply this to the dispersion parameter of a negative binomial, Robinson and Smyth (2007)

use the conditional likelihood of φ̂ given the sufficient statistic
∑p
i=1 Yi to define the log-likelihood `j(φ).

For the negative binomial, this requires that the total count parameter mi be equal for all samples, which is
not the case in typical RNA-Seq experiments, so Robinson and Smyth (2008) provide a method of getting
pseudo-totals by implementing what they call a quantile-adjusted conditional maximum likelihood procedure
(qCML). Essentially, the observed data is adjusted via an iterative algorithm to simulate pseudo-data that is
distributed from a negative binomial with equal library sizes.

We can follow the same weighted likelihood strategy to create a weighted likelihood for a distribution
from the double exponential family. Again, if we assume that c(µk, φ,m) = 1 we have that φ̂j is approx-
imately distributed Gamma(n−K2 , 2

nφ). Unlike the negative binomial distribution, the approximate likeli-
hood of φj does not depend on the mij , eliminating the need to create pseudo-data in the implementation.
Furthermore, the resulting estimate from maximizing the weighted log-likelihood has an analytical solution
unlike the case of the negative binomial,

φ̂jWL =
n

n−K
φ̂j + δφ̄

1 + δ
,

where φ̄ = 1
p

∑p
j φ̂j is the average of the φ̂j over all exons in the data.

WEB-Seq One major advantage of the empirical bayes method in estimating the dispersion is that the
amount of shrinkage performed is entirely determined from the data, unlike the weighted likelihood method.
It is not known, especially in the context of exon usage, if a single default δ will perform adequately across a
range of differing experiments.

It is clear from comparing the weighted likelihood estimate with that of the empirical bayes estimate that
the weighted likelihood estimate takes on the same form as that of the empirical bayes estimate in our case
where we use dispersed distributions from the double exponential family. Specifically,

α0 = δ
n−K

2
, β0 = δ

n

2
φ̄.

This implies the weighted likelihood method can be written as an empirical bayes solution where the prior is
parameterized by a single variable δ rather than the two parameters α0 and β0, (We are implicitly treating φ̄
as a fixed value, rather than explicitly conditioning on it, but φ̄ will normally be the average of thousands, if
not tens-of-thousands, of exons). Note that in the weighted likelihood approach, δ is assumed to be strictly
positive, and φ̄ will similarly be positive, therefore satisfying the assumptions for α0 and β0 to yield a true
density.

This naturally suggests an estimator based on this alternative parameterization to fuse these two methods
together, which we call a Weighted Empirical Bayes shrinkage with application to Sequencing, or WEB-Seq.
Using this parameterization and maximizing the density as described above for the empirical bayes method
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gives us an estimate δ̂ and represents the amount of shrinkage that should be performed in the weighted
likelihood method as determined by the data. The resulting dispersion estimates are then,

φ̂jWEB =
n

n−K
φ̂j + δ̂φ̄

1 + δ̂
(2)

(for details concerning estimation of δ see Supplementary Text, Section 2).
We will see that WEB-Seq has similar performance to the original empirical bayes approach, though it is

more conservative and as a result slightly less powerful. Both methods perform well, and we choose to focus
on this method largely because it appears to be more robust in simulations to violations of the model due to
being more conservative (Section 5).

4.3 Estimates of under-dispersion near the boundary
We found in initial simulations that estimated proportions lying on the boundary (i.e. either exactly 1 or
0, corresponding to an exon that is either never skipped or always skipped in the sample) have a large and
adverse effect on the false discovery rate (FDR) as the sample size increases (see Supplementary Figure S3).
This is particularly detrimental for the exon skipping application, since many exons may be close to being
never skipped or never expressed, particularly if introns are included in the analysis.

This behavior is because the method estimates under-dispersion for such exons, leading to a large number
of false discoveries. Ironically, the effect is worse with larger sample sizes: the effect becomes noticeable
around 5-10 samples per group and for increased sample sizes the FDR grows without control. The reason
for the increase with larger sample sizes is that exons with proportions all 1 or all 0 across all samples get
a p-value of one, which results in an implicit filter of the data. For exons whose true proportion is near the
boundary, the observed data is more likely in low sample sizes to have observed proportions entirely on the
boundary and therefore assigned a p-value of one and removed from consideration. In larger sample sizes,
there is an increased chance that a non-boundary sample will be observed, allowing the exon to remain in the
analysis and have an effect on the FDR results.

There are several ad hoc approaches to this issue. One is to filter exons with mean proportion close to
the boundary. While a successful filtering procedure can result in a positive impact on the power of a test
(Bourgon et al., 2010), in this case it is unsatisfactory to have a test-statistic that is so sensitive to the degree
of filtering. Another approach is to not allow under-dispersion by setting the dispersion in such cases to one,
i.e. binomial variance (see also the most recent version of DESeq that does not allow the dispersion estimate
to be decreased via shrinkage).

We obtained better results by defining an effective sample size, neff , defined as the maximum of the
number of non-boundary samples and K + 1, where K is the number of groups being compared. We use this
neff to adjust the degrees of freedom, n−K, that appears in the Gamma prior, changing it to be neff −K
instead. Note that this means that each exon has a slightly different effective sample size. A similar difference
in effective sample size can result when a sample has mij = 0 in which case the sample cannot be included
in the analysis of that exon (see Supplementary Section 2 for details).

The result of using these effective degrees of freedom is that it becomes less likely to erroneously esti-
mate under-dispersion on the boundary, though it remains possible to estimate under-dispersion. With this
adjustment no under-dispersion is in fact estimated at any sample size for any exon in our simulated or real
data sets, while previously exons with proportion parameters near the boundary were frequently estimated
to be under-dispersed and thus given inflated significance. Further, a continuous range of dispersion values
φ are estimated for these boundary exons which we find to be more natural than forcing them all to have no
dispersion, which would be the case if we arbitrarily set those with under-dispersion estimates to have φ̂ = 1.

In Supplementary Table S1 we compare the proportion of exons that are affected by our adjustment to
the degrees of freedom, for data simulated under either a double binomial or beta-binomial distribution, as
well as the real data. We see that 78% of the exons are affected by these changes, with 43% having a large
reduction of 5 or more. This highlights the importance of boundary control in the exon skipping problem.
Interestingly, we see that the real data more closely follows the double binomial simulations in this respect,
rather than the beta-binomial.
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4.4 Comparison of conditions
After obtaining estimates of φ for each exon based on shrinkage across the exons, we then return to our
question of testing differences of inclusion between conditions. These can be formulated in the form of
contrasts on the vector η, and we can test the significance of the contrast per exon. In our implementation,
we focus on the common two group comparison, though all of the methods carry through to the more general
setting of contrasts of groups. In the setting of comparing two groups, we reparameterize so that β1 = η2−η1
is the value of the contrast defined by the difference of the two groups (and β0 = η1). We test the null
hypothesis H0 : β1 = 0 .

Let φ̂∗ be an estimator of φ (e.g. DEB-Seq or WEB-Seq, or the MLE φ̂). Then for testing the specific
null hypothesis β1 = 0, the standard GLM approach defines the likelihood ratio statistic as

Wφ̂∗ = log
L(β̂H0

0 , β1 = 0; φ̂∗)

L(β̂0, β̂1; φ̂∗)
=
SH0
− S

φ̂∗
,

where S and SH0
are one half of the sum of the deviance residuals of the full or null model, respectively (i.e.

1/2
∑
k

∑
iD(Zi, µ̂k) for µ̂k estimated under the full or null model, respectively) and φ̂∗ is the estimate of φ

under the full model. For WEB-Seq or DEB-Seq, we use the shrunken estimates of φ given by the shrinkage
methods outlined above (φ̂jEB or φ̂jWEB).

Because our shrinkage methods give analytical solutions for the estimates of φ, we can easily compare
the effect of using the shrinkage estimator φ̂jWEB instead of the original MLE φ̂j on the statistic W . Wφ̂j

WEB

will be smaller than Wφ̂j
if φ̂j is less than φ̄, the mean of the φ̂j across all exons. Therefore, those exons with

small estimates of variability will become less significant after shrinkage. If the distribution of φ̂j is roughly
gamma this implies that the majority of test statistics are reduced in significance since the gamma distribution
is skewed right and therefore the median is less than the mean.

Asymptotically, Wφ̂ should follow a F distribution with (K − 1) and (n − K) degrees of freedom
(Jorgensen, 1997). Based on our simulations, we find that this approximation is poor for small sample sizes,
e.g. when the size of each group is five or less, leading to poor control of Type I errors. Instead we propose
an alternative statistic, which re-estimates φ under the null and alternative, that has much better performance
in small sample sizes,

Wφ̂,φ̂H0
= log

L(β̂H0
0 , β1 = 0; φ̂H0)

L(β̂0, β̂1; φ̂)
=
SH0

φ̂H0

− S

φ̂
+
n

2
log

(
φ̂H0

φ̂

)
,

This means the likelihoods are not strictly nested, so that Wφ̂,φ̂H0
can technically take on negative values.

Here, φ̂H0
and φ̂ are estimates of φ based on the null (K = 1) and the alternative (K = 2) models, re-

spectively. For our shrinkage estimates of φ in equations (1) and (2), this means that the value of K and the
unshrunken estimate φ̂j change. We also re-estimate the shrinkage values of α̂0, β̂0 and φ̄, which are based
on all exons’ unshrunken estimates of φ estimated under the assumption that K = 1 or K = 2 accordingly.

We also find that the shrinkage methods result in less variability in the estimate of φ̂, with the result that
the likelihood ratio statistic more closely follows a χ2

n−K distribution than the standard F distribution for
unshrunken estimates.

5 Evaluation of Methods
We evaluate WEB-Seq and DEB-Seq on simulated and real data sets, and compare them to other methods
currently existing in the literature.

5.1 Description of the Simulation
Exon count simulations were created under a two group comparison setting. For the purpose of imitating
real data, we chose simulation parameters based on fitting models to 170 Acute Myeloid Leukemia samples
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generated by the Cancer Genome Atlas project (Cancer Genome Atlas Research Network, 2011), see Sup-
plementary Text, Section 3 for details. We generated data under a double binomial distribution and also a
beta-binomial distribution for evaluation of the robustness of our techniques, all of which were developed
assuming the data come from a double binomial distribution. Either 1% or 10% of the exons were randomly
selected to show differential usage between the groups; for these non-null exons, the treatment effect, β1,
was picked uniformly from the union of [-3,-0.5] and [0.5,3] , accounting for both decreased and increased
exon usage. Otherwise, exons were given a treatment effect of 0, comprising our null set of exons. For
each simulation, 85,373 exons were simulated and a basic filtering process was applied to remove exons with
proportions all equal to 1 or all equal to 0 across the samples (i.e these result in p-values of 1).

We used the simulated data to evaluate the methods developed above: 1) the empirical bayes method
with a single parameter prior (WEB-Seq) 2) the general two-parameter empirical bayes method for the prior
parameters (DEB-Seq), and 3) the weighted likelihood method with δ fixed to be equal to the default value
implemented in edgeR ( 20

n−K ). In addition to our dispersion-shrinkage methods, we implemented the shrink-
age methods of BBSeq, EB2 and DSS, briefly described in Section 4.1. The MATS method described earlier
does not take as input inclusion and exclusion count matrices, but rather creates its own from BAM alignment
files, and thus could not be compared on the simulated data.

We also implemented three methods that fit a dispersion parameter per exon but with no shrinkage across
exons: quasi-binomial GLM estimation as implemented in the glm function in R (R Core Team, 2013), max-
imum likelihood estimation based on a beta-binomial distribution implemented using the betabin function
from the aod package in R, and maximum likelihood estimation based on an approximate double binomial
distribution where the normalizing constant is set to 1. The quasi-binomial GLM and the double binomial
MLE are closely connected, as described in Section 3.1, and are both non-shrinkage counterparts to our
methods. However, the quasi-binomial estimation by default uses Pearson residuals to estimate the disper-
sion, rather than deviance residuals. The beta-binomial maximum likelihood method is the non-shrinkage
counterpart of the BBSeq and DSS methods that rely on the beta-binomial distribution.

For each method, the estimation routines were performed and the p-values were adjusted to control the
FDR to a 0.05 level using the standard Benjamini-Hochberg FDR procedure (Benjamini and Hochberg, 1995)
implemented in the p.adjust function in R (R Core Team, 2013). The final measures of performance
were the methods’ ability to control false discoveries and their power to detect non-null exons over the 100
simulations.

5.2 Comparison of double binomial methods on simulated data
We first compare the performance of WEB-Seq and DEB-Seq to other methods that also rely on the double
binomial distribution, particularly those without shrinkage. As hoped, the shrinkage methods improve upon
the estimation of the dispersion parameter, reducing the mean squared error (MSE) significantly from the
unshrunken versions of the double binomial (Supplementary Figure S5). DEB-Seq had the smallest MSE,
followed by WEB-Seq, and both were a significant reduction compared to double binomial estimation meth-
ods with no shrinkage.

We compare their ability to control the false discovery rate across a range of sample sizes for a fixed FDR
cutoff (Figure 2) and see that WEB-Seq and DEB-Seq were also superior in control of FDR across a range
of samples sizes. For data simulated as double binomial, they both control the FDR well, while unshrunken
methods have high rates of FDR compared to the target 5%. Weighted likelihood shrinkage for the double
binomial with a pre-determined tuning parameter (based on edgeR default) is erratic in its control of FDR for
small sample sizes (5 or less in each group), but then adequately controls FDR. However, the pre-determined
tuning method becomes over-conservative for large sample sizes and the result is a large drop in power for
weighted likelihood for large sample sizes.

To evaluate the robustness of the methods, we consider data that do not follow the double binomial
distribution, but rather the beta-binomial distribution. Again, in small sample sizes (4 per group or less)
both WEB-Seq and DEB-Seq control the FDR accurately. For moderate sample sizes (10 per group or less),
the more conservative WEB-Seq maintains control of the FDR; DEB-Seq still has greater power, but has an
increase of FDR to about 10% for these moderate sample sizes. For large sample sizes (10 or more per group),
there also appears to be an underlying bias due to the p-values being calculated under the wrong model so
that the FDR of both WEB-Seq and DEB-Seq start growing well beyond the 5% target.
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Figure 2: Double Binomial Methods compared across different sample sizes for a fixed 5% FDR cutoff
Plotted is the average Power (y-axis) against FDR (x-axis) over various sample sizes across 100 simulated
data sets with 1% of exons differentially used, based on p-values adjusted to provide a 5% FDR level. The
results for a single method across different sample sizes are connected by a line. The numbers that overlay
a method denote the power and FDR for that specific sample size (per group) in a 2 group comparison. The
5% FDR boundary is given by the dotted vertical line. The data are simulated under (a) a double binomial
distribution and (b) a beta-binomial distribution. The methods shown are all based on a double binomial to
account for over-dispersion: 1-parameter empirical bayes (WEB-Seq); 2-parameter empirical bayes (DEB-
Seq); weighted likelihood shrinkage with fixed parameter; estimation of a single dispersion parameter φ for all
exons (common likelihood); the double binomial ML estimate (Joint-MLE); and the approximate conditional
ML estimate (ACML). The joint MLE, ACML and common likelihood are not shown in the beta-binomial
simulation because their FDR values were beyond the limits of the plot.
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Figure 3: Control of FDR: Plotted is the true FDR level against the reported FDR for different methods,
indicated by different colors. The reported FDR refers to the cutoff used for calling exons significant based
on FDR-adjusted p-values. The true FDR is calculated for those exons called significant by knowing which
exons are truly false discoveries in our simulations. The dotted line is the y = x line. The data are simulated
under (a) a double binomial distribution and (b) a beta-binomial distribution. Here the percent of non-null
exons was 1%. For 10% non-null and other sample sizes, see Supplementary Figures S7-S14.

5.3 Comparison to other methods on simulated data
FDR Control In Figure 3, we compare how WEB-Seq controls the FDR in small sample sizes (5 samples
per group) compared to other existing methods. WEB-Seq shows superb control of the FDR, while all of the
other methods – both those that use shrinkage and those that do not – have FDR rates far beyond what their
adjusted p-values would indicate.

This pattern holds for different distributions of the data (double binomial or beta-binomial), for different
choices of sample sizes, for unbalanced sample sizes, and for different choices of the percent of non-null
exons (Supplementary Figures S7-S12). All of the specific numbers given in what follows are assuming a 1%
non-null exons; the same lack of control hold for 10%, though with different specific values.

Among the alternative methods, the beta-binomial MLE with no shrinkage performs the best in control-
ling the FDR under both count distributions, but still has an FDR much larger in small sample sizes than that
indicated by their adjusted p-values, even when the data is distributed according to a beta-binomial distribu-
tion (e.g. 10-15% FDR instead of the target rate of 5%). The performance is even worse for double binomial
distributed data, indicating a lack of robustness to the modeling assumptions.

Quasi-binomial (also with no shrinkage) appears to perform similarly to the beta-binomial MLE in Figure
3, but evaluations of other sample sizes (Supplementary Figure S6-S10) shows that its FDR performance is
erratic and can be much larger than its target value; similarly, the double binomial GLM (not plotted) fails to
control the FDR at any sample size we explored and converges to an FDR at around 40%.

The remaining methods that perform shrinkage (EB2, BBSeq, and DSS) also rely on beta-binomial dis-
persion models, but do quite badly in FDR control even for beta-binomial data. The true FDR rates for BBSeq
and EB2 range from 0.96 and 0.98 (n = 3) to 0.27 and 0.41 (n = 75) when the target FDR control was 0.05.
DSS is slightly better since it eventually controls the FDR, but it only does so starting at sample sizes that are
quite large for genomic studies (> 20 per group); for n = 3 and n = 5 per group, the true FDR rates are 0.53
and 0.28 respectively, when the target rate is 0.05.

In contrast, WEB-Seq controls the FDR at the desired level for the double binomial data and beta-binomial
data in small sample sizes, and only shows poor control of the FDR for fairly large sample sizes (> 10 per
group), and even then only for beta-binomial distributed data.

Due to multiple testing corrections, the comparative performance of the various methods hinges on the
distributional behavior of their test statistics far in the tails of the distribution. At standard levels of individual
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(per exon) Type I error control (e.g. 0.01-0.05), the p-values of all of the methods do a reasonable job of
controlling the false positive rate. However, after controlling for multiple testing, the effective raw p-value
cutoff for significance at a target FDR rate of 5% is around 0.0001 if only 1% of the exons are non-null (and
0.001 if 10% are non-null). In this tail of the distribution, the test statistics can perform quite differently with
respect to Type I error control and their resulting power. In our simulations, WEB-Seq controls Type I error
even far into the tails of the distribution, unlike any other method (Supplemental Figures S25-S28) indicating
that it is the performance of the methods in the tail of the distribution (and not the p-value adjustment method)
that leads to this discrepancy.

We would also note that for exon analysis, the number of exons evaluated can be quite high compared to
gene expression analysis (easily 50,000-100,000 exons), and in many studies we would not expect the percent
of exons that are skipped emphdifferentially between groups to be very large: even 1% translates to hundreds
of differentially spliced exons. With an even smaller percentages of true non-nulls, which could be common
in real studies, control of the FDR will become even worse for these other methods.

Power For comparison of the power of the methods, we must similarly focus on the small levels of Type I
error relevant for multiple testing corrections. Traditional ROC curves show that WEB-Seq results in greater
power than all the other methods except DSS when the data comes from a double binomial distribution; for
data distributed under a beta-binomial, it still has slightly greater or equivalent power to all the methods
except DSS (Supplementary Figures S15 - S18). This again illustrates the robustness of WEB-Seq to the
modeling assumptions. DSS is the only method that has clearly improved power, mainly in small samples
sizes (e.g. power of 3% for WEB-Seq versus 8% for DSS for 3 samples per group); however, as we have seen
DSS also shows very poor control of the FDR for those sample sizes.

Many biological studies focus on the top performing exons for validation and followup analysis, espe-
cially when there are large numbers of significant results; this is clearly related to power, but specifically
oriented to top ranking exons. We find that the WEB-Seq method also provides p-values that do well at
prioritizing the truly non-null exons in small sample sizes. However, the DSS method is also competitive in
raw rankings, which is not surprising given the general power performance discussed above. In Figure 4, we
plot the average proportion of false discoveries in the top-ranked exons for simulations with n = 3 samples
per group. We see that for this small sample size, the alternative methods have a much higher proportion of
false positives in the top-ranked exons compared to WEB-Seq, regardless of whether the data is distributed
beta-binomial or double binomial. For slightly larger sample sizes (e.g. 5 vs 5), however, DSS outperforms
our method in ranking the exons. Beta-binomial MLE performs clearly worse in rankings for small sample
sizes, even when the data is distributed according to a beta-binomial. For much larger sample sizes (e.g. 10 vs
10), the difference between the DSS, beta-binomial, and WEB-Seq methods is minimal and they all perform
better than any of the other competing methods (Supplementary Figures S19-S22).

In summary, WEB-Seq is much superior in giving accurate FDR adjusted p-values across the ranges of
sample sizes that correspond to those frequently seen in practice, while every other method performs poorly,
and often dramatically so. WEB-Seq also shows high power compared to the other methods and performs
well at prioritizing exons. For some ranges of sample sizes the DSS method has more power than WEB-Seq,
but at those same sample sizes, DSS has highly inaccurate p-values for assessing significance. The main
competitor in small sample sizes when considering both FDR control and power is the beta-binomial MLE
with no shrinkage, but it still has poor FDR control, less power, and worse rankings of the exons in small
sample sizes – even when the data is actually simulated from the beta-binomial distribution.

5.4 Comparison of methods on TCGA data
In order to have a reasonable setting for detecting differential alternative splicing we downloaded RNA-Seq
data from two different tumor types also sequenced by the TCGA: Stomach and Ovarian. For comparisons
between these two sets of tumors, we expect that there should be large differences in alternative splicing due
to the simple fact that the tumors originated from two different tissue types, and tissue-specific alternative
splicing is well documented (Pan et al., 2008). We note that the differences in tissue types is a rather extreme
example since in this case we do expect a large number of significant exons. The RNA-Seq data was realigned
using TopHat v1.4.1 (Trapnell et al., 2010), and exon inclusion and exclusion counts were calculated for exons

18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 22, 2015. ; https://doi.org/10.1101/012823doi: bioRxiv preprint 

https://doi.org/10.1101/012823


Rank by p−Value

A
ve

ra
ge

 F
D

R

0 10 20 30 40 50 60 70

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

(a) Double Binomial Simulation

Rank by p−Value

A
ve

ra
ge

 F
D

R

0 10 20 30 40 50 60 70 80 90

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Average Rank of
1st False Discovery

WEB−Seq
DEB−Seq
EB2
DSS
Quasi−binomial
Beta−binomial
BBSeq

(b) Beta-binomial Simulation

Figure 4: False Discoveries by Rank. Plotted is the average proportion of false discoveries (y-axis) in the
top x exons (x-axis) for a 3 versus 3 comparison with 1% of exons alternatively spliced. For each method,
the 2.5% and 97.5% percentiles of the rank of the first false discovery across the 100 simulations is given by
the horizontal lines, with the average rank of the first false discovery marked by an asterisk.

annotated by ENSEMBL version 66 (Flicek et al., 2013). See Supplementary Text, Section 4 for more details
about the processing of the data.

We create a ‘null’ situation to compare the methods, where the two groups that are compared are both of
the same tissue type. We note that these are tumor samples, so there may be differential alternative splicing in
the different tumors even though they are the same tissue type, but since these samples are randomly assigned
to the two groups this is unlikely to be a significant factor.

We ran the double binomial methods, as well as the other methods on the TCGA data sets (Table 1).
MATS could only be run in the null setting, as the stomach and ovarian samples were of different read types
and the MATS software did not support this.

We compare the proportions of exons called significant in the null setting across methods based on FDR
adjusted p-values. Note that this is not a measure of FDR nor traditional Type I error; in fact, if we believe
that there are no significant exons, any discoveries in an all-null setting would technically imply that the rate
of false discoveries is 1.

Focusing on just our double binomial based shrinkage methods, WEB-Seq and DEB-Seq, we see that
these call essentially 0% of exons significant in the null case (see Supplementary Table S2). Examining
individual simulations rather than the average of 100 simulations shows that indeed there are truly zero exons
called significant the majority of the time in every sample size. As in the simulations, WEB-Seq has slightly
less ‘power’ than DEB-Seq in that it makes fewer significant calls under the real setting where we compare
the different tissue types.

Turning to the alternative methods, the average false positive rates (based on FDR corrected p-values)
from the null analysis in Table 1 suggest BBSeq and EB2’s poor control of the FDR in the simulated data is
echoed in the real data. Across the samples sizes, EB2 finds roughly 7% of the exons significant and BBSeq
finds 4-6% significant in the null setting. DSS shows better performance in the null analysis with less than
1% false calls (except for n = 2); but in the exon setting where there are many exons to evaluate, this still
ranges from around 700 exons (3 vs 3) to 170 exons (7 vs 7) incorrectly called significant compared to only
4 and 1 exon calls for WEB-Seq in those same sample sizes, respectively (see Supplementary Tables S4 and
S3). For comparison with MATS, we applied WEB-Seq to the inclusion-exclusion count matrices produced
by MATS. In the null setting, MATS appears to have a call rate between 1.8% and 3.9% (646 to 1,557 exons
called significant), while WEB-Seq makes at most one call for any given sample size.

These false positive rates based on FDR adjusted p-values do not directly give FDR rates like those in
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Table 1: Comparison to Alternative Methods. Shown in the table below are the average percentage of
exons called significant based on FDR corrected p-values from the Tissue Data under 100 simulations of
the null and real scenarios described above. DEXSeq was post-filtered to have the same set of exons as the
inclusion-exclusion setting. For all the results shown below, except for MATS, the total number of starting
exons is 412, 002 but the rates are percentages out of only those exons that had at least one skipping event,
a number which varies with sample size but is roughly 1/4 of all exons. The results from MATS are based
on a different set of exon data produced internally by MATS, roughly 35,000 exons; WEB-Seq results are
not shown on this set of exons, but WEB-Seq makes at most one significant call on the MATS set of exons
(for sample sizes 3, 5 & 7) and zero for other sample sizes. Furthermore, MATS was run on a single random
sample because of the time involved in processing a single run of the data (see Section 5.6). See Supplemental
Table S4 for the precise number of exons called and the results from the non-shrinkage methods.

Sample DEXSeq EB2 BBSeq MATS DSS Beta-bin. WEB-Seq

Size Real Null Real Null Real Null Null Real Null Real Null Real Null

2 vs 2 13.50 1.46 11.08 7.47 18.78 6.56 3.45 10.43 1.31 5.06 0.00 0.89 0.00
3 vs 3 17.17 0.62 11.56 7.20 24.95 7.37 1.77 12.19 0.58 9.70 0.00 2.82 0.00
4 vs 4 21.77 0.12 11.94 6.85 28.90 6.20 2.45 14.50 0.19 13.73 0.00 6.73 0.00
5 vs 5 26.63 0.08 12.67 6.54 31.28 6.02 2.74 17.37 0.16 17.73 0.00 12.16 0.00
6 vs 6 30.00 0.11 13.27 6.26 32.62 5.73 3.93 19.44 0.18 20.41 0.01 15.94 0.00
7 vs 7 33.86 0.06 14.08 6.00 33.82 4.98 3.39 22.03 0.14 23.42 0.00 20.26 0.00

the simulations, and because it is a null setting where there are no truly significant values, the FPR should
technically be exactly 0 to achieve FDR control. For comparison, if 10% of the exons were truly non-null
and the method had 100% power, the percentage of false positives would have to be 0.6% to get an FDR at
the target level 5%; 1% of exons non-null would require the percentage of false positives to be .05%. And in
practice the false positive rate would need to be much lower since no method has anywhere near 100% power
(in fact the power is quite low for these small sample sizes). A 3-7% false positive rate would then mean a
minimum FDR of 21-38% and in practice much higher. This indicates that the lack of control of FDR shown
in our simulations appears to be supported by implementation on the real data.

The only other method that gives comparable results to WEB-Seq is the beta-binomial MLE method.
However, since the needed false positive rate based on adjusted p-values has to be so small in many real
settings, it is difficult to compare these two on just these evaluations. Instead, we directly compare the
false positive rate based on the uncorrected p-values in the null setting as we vary the cutoff (see Figure 5
and Supplementary Figure S29); we see that the performance directly echoes that seen in the simulations
(Supplementary Figures S25-S28). Only WEB-Seq (and DEB-Seq) control Type I error in the tails of their
distributions for small sample sizes. As in the simulations, beta-binomial is the next best, but still has an
increase in its Type I error comparable to that of the simulations, which resulted in FDR rates of around 15%
rather than the target 5%. All of these analyses strongly suggest that the problems we see in controlling the
FDR in simulations are real and will appear in analyzing real data sets.

For the comparison in the real setting where the two different tissue types are compared, we see many
more calls made by the other methods compared to WEB-Seq. Given the problems these methods have in
obtaining accurate FDR control in both the null setting and our simulations, we expect that some portion of
these additional calls in the real setting are due to a much higher level of false discoveries than reported. We
compare the overlap in these calls via Venn diagrams (Figure 5 and Supplementary Figure S29), and we see
that almost all of the calls made by WEB-Seq are also found significant by another method. If we look at
the overlap of WEB-Seq with the six alternative methods we considered here (DEXSeq, DSS, EB2, BBSeq,
beta-binomial MLE, and quasi-binomial), we see that 85% of WEB-Seq’s calls are supported by at least four
other methods for a 3 samples per group comparison (Figure 6 and Supplementary Figures S30-S31). Beta-
binomial MLE is the next best candidate yet only has 20% of its calls so strongly supported, in spite of the
fact that two of the other methods (DSS & BBSeq) are also based on the beta-binomial distribution.
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Figure 5: Evaluation on TCGA data, n = 3. (a) Type I error on of TCGA “null” setting where we plot the
percent of exons found significant in the null setting as a function of the p-value cutoff based on uncorrected
pvalues. (b) We show Venn diagrams of the analysis of differences between tissues for WEB-Seq (black),
DEXSeq (blue), Beta-binomial MLE (yellow), and DSS (red). DEXSeq is limited to only those exons also
found to have skipping events and so also considered by the other methods. Numbers in the Venn diagrams
are based on overlapping counts averaged over the 100 simulations.

5.5 Comparison to relative exon usage
We made a further comparison of the performance of our method to another popular method of finding differ-
ential alternative splicing in exons, DEXSeq (Anders et al., 2012). The DEXSeq method relies on the relative
exon usage framework described above in Section 2.3 and only uses exon counts, without using information
about how the junctions skip exons. Therefore, DEXSeq is not just an alternative statistical method, but also a
fundamentally different summarization of the mRNA-Seq data as compared to the inclusion-exclusion setting
for which our methods are developed. For these reasons, it is not clear that you can make a reasonable com-
parison between WEB-Seq and DEXSeq. However, DEXSeq is a popular method for detecting alternative
splicing with just exon counts, so we attempt some basic comparisons.

As we discussed in Section 2.3, relative exon usage evaluates all the exons, not just those showing skip-
ping. Because of the difference in exons evaluated between the methods, we concentrate on comparing the
performance of DEXSeq for just those exons that show skipping in the samples being analyzed; this means
we run DEXSeq on all 412,002 expressed exons, as required by the algorithm, and subsequently filter down
to the set of exons that show junction reads, and then finally calculate adjusted p-values based only on these
exons. For this set of exons the false positive rate of DEXSeq is similar to that of DSS, particularly for the
smaller sample sizes (Table 1), as is its control of the Type I error rate on the ‘null’ setting (Figure 5 and
Supplementary Figure S29). This suggests that DEXSeq will have similar problems as DSS in having much
higher rates of false discoveries than indicated by the adjusted p-values.

DEXSeq clearly calls more exons significant in the real setting than any of the methods based on junction
counts, even when limited to the same set of exons. This could be a sign of increased power when using the
exon counts, as mentioned above. When we look at the Venn diagrams in Figure 5, we see that this increase
constitutes tens of thousands of additional exons called significant, and 30%-40% of the calls of DEXSeq are
not supported by any of the junction count methods, regardless of sample size (Supplementary Figures S30-
S31). Furthermore, as we explained in Section 2.3 (and has been noted by the authors of DEXSeq), relative
exon usage does not always reliably indicate the right exon within the gene that has differential usage. The
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Figure 6: Percentage overlap with calls by other methods, n = 3. (a) For WEB-Seq we calculate what
percent of significant calls made by WEB-Seq were called significant with the other six methods. An exon
called significant by WEB-Seq could be called significant by one to seven other methods, one signifying
only WEB-Seq called it significant, while seven indicates that all methods call the exons significant. Plotted
are the percentages called significant for 1-7 other methods (given as both black text as well as a barplot
corresponding to the method’s color). Within each category of number of overlapping methods, we further
indicate which of the other methods are actually overlapping, with a barplot indicating the percentage of
those exons that are called significant by each method, colored according to corresponding method. Only for
overlap=2 will the percentages of the other methods add up to the overall overlap percentage. The figures
for the seven methods are split over two pages. In (b) we repeat the exercise for exons called significant by
beta-binomial MLE. For all seven methods and for n = 6, see Supplementary Figures S30-S31.

additional calls may also be a reflection of this problem, as well as increased power.
We also consider DEXSeq’s performance more broadly and consider their calls on all exons, even those

without skipping reads. About 12% of constitutive exons are called significant by DEXSeq (Table S6).
This is roughly their total representation in the data so DEXSeq does not appear to be preferentially finding
exons annotated to be alternatively spliced. If we instead compare only exons that are the sole exon called
significant in their gene, following the theory they are more likely to be targeting the correct exon, even a
larger percentage are annotated as constitutive and furthermore have no reads skipping them in the data for
any of the 30 samples (18%-46%, Table S6). In comparison, in WEB-Seq, 0.2% of the significant exons (or
76 exons) are annotated as constitutive and all of them, by definition, have reads skipping them to at least
justify the call of significance.

We can also evaluate the data properties of the significant exons to evaluate whether they demonstrate data
characteristics that would lead us to trust the call. We compare the density of the log-Fold-Change between
the groups of the odds-ratio of skipping an exon for the significant calls made by both methods (Supplemen-
tary Figure S24). WEB-Seq clearly has a much stronger tendency to find exons with large differences in the
skipping proportion, which is not surprising given that that is the basis of its test statistic, unlike DEXSeq.
More striking is that for DEXSeq there are significant peaks at 0, indicating many of the exons found signifi-
cant by DEXSeq do not show evidence of differential exon usage in the form of a difference in the proportion
of skipping counts. The constitutive exons found by DEXSeq, in particular, are completely centered at zero.
This could be because of the lack of identification of the correct exon, explained above; when we examine
the “single-exon” genes which are presumed to target the appropriate exon, these exons show slightly greater
propensity to be removed from zero (Supplementary Figure S23c).
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Ultimately, we find the inclusion-exclusion paradigm concentrates the analysis on those exons with tangi-
ble evidence of alternative splicing as well as directly highlighting the specific exons of interest. We suspect
this will also be an effective way of preventing a large source of false discoveries as well as being robust to
the behavior of the other exons in the gene.

5.6 Computation Time
In an exon usage analysis, the method used needs to potentially be able to handle all exons, a number which
for the human genome can be in the hundreds of thousands. Under the inclusion-exclusion paradigm there is
an automatic filter of exons with either no skipping reads or no overlapping reads, which significantly reduces
the set of exons under analysis. After this automatic filter we see ranges between 40K and 200K exons in this
scenario for real RNA-Seq experiments when looking at just protein coding exons. Because we have exact
analytical solutions for our estimators of WEB-Seq, the only numerical optimization involves the calculation
of the estimates of the prior parameters of the gamma distribution. In a 5 versus 5 setting, analyzing a total
of 105,275 exons, WEB-Seq required only 25 seconds on a single core computer running an AMD Opteron
6272, 2.1 GHz processor. WEB-Seq can be run for any size experiment on a single core, personal laptop in
under a minute.

Some of the other methods that we compared require much greater computation time. BBSeq is time
intensive requiring 4.3 hours to complete the analysis; calculating the MLE for beta-binomial for each exon
similarly took 2.8 hours. Quasi-binomial took 30 minutes, and EB2 and DSS only require 2 minutes. With
the MATS algorithm, it is difficult to compare computational times directly since it is only implemented in a
format that requires processing of all of the raw sequences to create the counts, which in the 5 vs 5 example
took a total of 35 hours, as well as needing approximately 150GB of available space for intermediate files.

For the relative exon usage example of DEXSeq, filters of the exons are not appropriate and therefore
the number of exons being analyzed range between 300K and 400K exons for the human genome, while the
inclusion-exclusion setting automatically filters out those without any skipping reads and results in roughly
100K exons. Analyzing the full set of the 412,002 expressed exons took the newest version of DEXSeq 4.5
hours to complete on a single core (DEXSeq allows the use of multiple cores, but for comparison purposes we
restricted it to a single core). When we artificially set the number of exons to be the same 105,275 analyzed
in WEB-Seq, DEXSeq required 1.1 hours compared to 25 seconds using WEB-Seq, but we note this was for
timing comparison only, since filtering them in this way would invalidate the DEXSeq analysis.

6 Discussion
We have developed a novel method for providing shrinkage estimators for the dispersion parameter of a
dispersed exponential family of distributions. We rely on a dispersion model that is closely connected to the
common quasi-likelihood method for providing over-dispersion to a binomial, which are widely used and
numerically robust. By making use of the distributional form of Efron (1986), we have shown that there is
a simple formulation of the approximate distribution of the dispersion parameter and that this form provides
a straightforward empirical bayes method to estimate shrinkage. In effect, we provide a likelihood-based
empirical bayes method for quasi-likelihood estimation of the dispersion parameter. By further relating this
empirical bayes method to weighted likelihood shrinkage methods (Robinson and Smyth, 2007), we give
a non-standard parameterization of the Gamma prior that leads to an alternative estimator in this class of
estimators that demonstrates some areas of improved performance. Further, our distributional form and the
empirical bayes method that results do not require any tuning parameters, unlike the weighted likelihood
methods of edgeR.

In comparison to other methods for analyzing exon-skipping events, we showed in both simulated and
real data that our method is the only one that can accurately control the FDR in the sample sizes that are
commonly seen in genomic studies (often less than 5 samples per treatment group), with the other methods
having very large false discovery rates compared to their reported rate. We also show that our method has
good power and the ability to prioritize truly significant genes.

For detecting differential alternative splicing, we have discussed that there are alternative summaries
of the data that require different statistical techniques than those presented here. The percent spliced in
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statistic may not be the most appropriate for every setting. We compared directly to the relative expression
approach – using only exon counts without using the information in the junction reads – and we illustrated
that reliance on junction reads naturally filters the problem to those exons most likely to be differentially
used. Another alternative approach relies on estimating the expression levels of individual isoforms, and
this may give more insight into alternative splicing particularly when there is a great deal of information
about the transcriptome that is being sequenced. However, in our experience there are still many cases where
researchers find themselves without a well constructed annotation of the transcriptome and would have to
rely on de-novo methods to construct genes and/or transcripts. This is an extremely complicated problem,
and these de-novo methods can be unreliable and unstable if used on a single, small experiment or without
significant depth (see also Anders et al. (2012) for a discussion of isoform versus exon analysis). In contrast,
inclusion-exclusion counts rely on detection of exons and splice sites, which are much simpler problems. In
short, inclusion-exclusion counts provide useful, interpretable information about the undergoing of alternative
splicing within the organism, and our method gives a reliable technique for the statistical analysis of such data.

While our shrinkage method is quite general, we have focused on our motiving example, detecting differ-
ential usage of exons between conditions in order to detect group-specific alternative splicing. In particular,
our data examples were drawn from mRNA-Seq data, and the simulations were based on parameters estimated
from that same data. There are other settings that require the comparison of a large number of proportions
between groups, for example in the setting of comparing allele frequencies or differential methylation, and it
is possible that the performance would differ in those settings due to differences in the properties of the data.

Similarly, our evaluation of the shrinkage method is based on the binomial distribution as our starting
point because of our interest in exon inclusion rates, but our entire methodological development is com-
pletely general and can be applied to any distribution from the exponential family. While every type of data
should have careful development for its unique properties, it is useful to have a single framework that can
be the starting point for so many settings. Possible examples could be that of analyzing differential gene
expression data (based on the Poisson distribution) or differential proportions of isoforms (based on multi-
nomial distribution). Indeed, we tested a Poisson-based version of our WEB-Seq on gene expression data
along with fourteen other gene expression techniques from the literature and found that on simulated data
that our method performed well compared to the other methods across the range of distributions we tried.
WEB-Seq ranked the significant genes better than most other methods (Supplemental Figures S32,S33). Its
control of the FDR was also better than many common methods, particularly in small sample sizes (Supple-
mental Figure S34), but definitely not giving accurate FDR control like we presented in the exon setting (with
true FDR for 5 vs 5 of around 7% rather than target of 5%). Furthermore, these conclusions hold true with
data simulated under the negative binomial distribution which is the distribution for which most of the other
methods (except ours) were developed. The only methods that did equivalent or better in both FDR control
and power were voom (Law et al., 2014) and baySeq (Hardcastle and Kelly, 2010); notably the popular
edgeR (Robinson et al., 2010) and DESeq (Anders and Huber, 2010) methods did not do as well in either
power or control of FDR. We find this particularly encouraging for the general use of our shrinkage method
in other settings, since we did not change or adjust the method in any way for the gene expression setting,
other than switching the choice of distribution within the exponential family.

In summary, our method gives reliable and robust improvement to the analysis of exon splicing, which
is a straightforward but important approach to analyzing the complicated structure of alternative splicing.
Furthermore, because the shrinkage ideas apply generally to exponential family of distributions and have
close links to the common GLM approach for analyzing data, it has the potential to be relevant for other
applied problems.
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