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Abstract 

BioWardrobe is an integrated platform that empowers users to store, visualize and analyze epigenomics 

and transcriptomics data, without the need for programming expertise, by using a biologist-friendly web-

based user interface. Predefined pipelines automate download of data from core facilities or public 

databases, calculate RPKMs and identify peaks and display results via the interactive web interface. 

Additional capabilities include analyzing differential gene expression and DNA-protein binding and 

creating average tag density profiles and heatmaps.  
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The recent proliferation of next-generation sequencing (NGS) –based methods for analysis of gene 

expression, chromatin structure and protein-DNA interactions has opened new horizons for molecular 

biology. These methods include RNA sequencing (RNA-Seq)1, chromatin immunoprecipitation sequencing 

(ChIP-Seq)2, DNase I sequencing (DNase-Seq)3, micrococcal nuclease sequencing (MNase-Seq)4, assay for 

transposase-accessible chromatin sequencing (ATAC-Seq)5, and others. On the “wet lab” side, these 

methods are largely well established and can be performed by experienced molecular biologists; however, 

analysis of the sequenced data requires bioinformatics expertise that many molecular biologists do not 

possess. Re-utilizing published datasets is also challenging: although authors usually comply with the 

longstanding requirement to deposit raw data files into databases such as Sequence Read Archive (SRA) 

or Gene Expression Omnibus (GEO), it is impossible to analyze these datasets without special expertise. 

Even when processed data files (e.g., gene expression values) are available, direct comparison between 

datasets is ill advised because different laboratories use different pipelines (or different software 

versions). This situation means that biologists require the help of bioinformaticians even for the simplest 

of tasks, such as viewing their own data on a genome browser, putting these exciting techniques beyond 

the reach of many laboratories. Even when bioinformaticians are available, differences in priorities within 

collaborations can result in delays and misunderstandings that are damaging to the research effort. An 

optimal way to mitigate these problems is to enable biologists to perform at least basic tasks without the 

help of bioinformaticians by providing them with a user friendly data analysis software.  

Multiple stand-alone programs and web services are available for the analysis of NGS data. However, the 

majority of currently available tools have a command-line interface, solve one specific and typically 

require file conversions between them. The commercial programs Genespring 6, Partek 7 and Golden Helix 

8 can be run on regular desktop computers and allow analysis of gene expression or genetic variation. 

However, users have to load the data manually and store it on their desktop computers; given the sheer 

volume of NGS datasets, this set up makes data analysis complicated at best. Furthermore, these tools do 
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not allow for seamless integration of multiple, published or locally produced datasets. Illumina Basespace 

9 and Galaxy server 10 allow for both storage and analysis of data and have integrated viewing tools. 

However, they require transfer of data outside the institution (which may be prohibited by HIPAA 

regulations in some cases) and provide only limited storage space for user data. Although Galaxy provides 

the opportunity to run tools without using a command-line interface, users still have to manage file type 

conversions and select detailed parameters each time, which requires a deep understanding of each tool 

and file format. Absence of stable pipelines may result in inexperienced users comparing “apples to 

oranges”. In summary, few of the available tools provide a biologist-friendly interface, and none integrate 

such an interface with data storage, display and analysis.  

We therefore developed BioWardrobe—a biologist-friendly platform for integrated acquisition, storage, 

display and analysis of NGS data, aimed primarily at researchers in the epigenomics field. BioWardrobe 

features include download of raw data from core facilities or online databases (e.g., GEO), read mapping 

and data display on a local instance of the UCSC genome browser 11, quality control and both basic and 

advanced data analysis (Fig. 1a). In basic analysis (Supplementary Fig. 1a), automated pipelines are used 

to process each experiment. The pipelines are selected on the basis of biologist-friendly experimental 

parameters (e.g., RNA/ChIP-Seq, paired/single, genome, stranded/unstranded, antibody) and combine 

the tools developed by ourselves and by others (e.g., Bowtie 12, STAR 13, FASTX 14 and MACS2 15) with 

wrappers that enhance the output of original software by offering additional information, provide 

experimentally meaningful quality controls and display results in a graphical user interface. The quality 

controls produced during basic analysis were chosen to facilitate troubleshooting of experimental 

procedures. Customizable advanced analysis can combine multiple experiments and includes tools for 

comparing gene expression (DESeq1/2 16) and genome occupancy (MAnorm 17) profiles between samples 

or groups of samples and creating principal component analysis plots, gene lists, average tag density 

profiles and heatmaps using a graphical user interface (Supplementary Fig. 1b). Incorporating additional 
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custom scripts is facilitated by a built-in interface for the R programming language. All of the precomputed 

data are stored in an SQL database and can be accessed via a convenient web interface by biologists. 

Bioinformaticians, on the other hand, can access the data from R using a provided R library or using other 

programming languages with standard MySQL frameworks. BioWardrobe can be run on Linux or MacOSX 

systems (e.g., a Mac Pro desktop). Source code and installation instructions are available at 

http://biowardrobe.com. A limited-functionality demo version that contains the two dataset discussed 

below is available at http://demo.biowardrobe.com.  

To demonstrate the utility of the included quality controls and the ability of BioWardrobe to integrate and 

analyze data from various sources, we have performed re-analysis of two published datasets. The first 

study examined gene expression and chromatin changes during differentiation of human naïve T cells 

(Thn) into T helper type 1 (Th1) cells (SRA082670 18). The dataset included Helicos RNA-Seq performed in 

triplicates for both resting Thn cells and cells differentiated in Th1 conditions for 72 hours (Th1 cells) and 

histone 3 lysine residue 4 trimethlation) (H3K4me3) ChIP-Seq data of Th1 cells. In order to identify 

differentiation-related chromatin changes, we also included our own H3K4me3 ChIP-Seq data for Thn 

cells. After we entered sample information into the system (Supplementary Fig. 2a), BioWardrobe 

downloaded the dataset and performed basic analysis (Supplementary Fig. 2b). ChIP-Seq data 

demonstrated the expected percentage of reads mapped and base frequency (Supplementary Fig. 3a-d), 

average tag density profiles showed high enrichment at promoters (Supplementary Fig. 3ef) and MACS2 

identified large number of islands, the majority of which (68-77%) were located at promoters 

(Supplementary Fig. 3g-j). However, RNA-Seq results demonstrated poor mapping to the human 

transcriptome, poor coverage and potential DNA and ribosomal RNA contamination (Supplementary Figs. 

2 and 4, left side). Keeping these problems in mind, we continued with data analysis and performed 

comparison of gene expression using DESeq2. Replicates were defined, genes were grouped by common 

transcription start site (TSS) and differentially expressed genes were identified. These results were used 
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to define lists of genes that were expressed or silent in both Thn and Th1 cells or induced during 

differentiation. Next, H3K4me3 average tag density profiles were created for these three gene lists (Fig. 

1b). As demonstrated in the graphs and Mann-Whitney-Wilcoxon (MWW) statistical analysis (Fig. 1c), 

genes that are expressed in both Thn and Th1 cells have higher levels of H3K4me3 at their promoters than 

genes that are silent in both cell types. Interestingly, differentiation-induced genes had intermediate 

levels of this modification in naïve cells, in which they were silent, suggesting that H3K4me3 poises 

inducible genes for expression during differentiation.  

We used a second, published dataset to examine the role of KDM5B in regulating H3K4me in mouse 

embryonic stem (ES) cells (GSE53093 19). The dataset includes RNA-Seq data for embryonic stem cells 

transfected with short hairpin RNA against luciferase (Control, shLuc) and against Kdm5B (shKdm5b) RNA. 

ChIP-Seq was performed for KDM5B and against H3K4 dimethylation and trimethylation (H3K4me2/3) in 

both shLuc- and shKdm5b ES cells. Basic analysis showed good quality datasets (Supplementary Fig. 4, 

right and not shown) for both ChIP-Seq and RNA-Seq. KDM5B was enriched at the promoters of expressed 

genes (Fig. 2a). H3K4me3 tag density profiles showed that Kdm5b knock-down resulted in a statistically 

significant redistribution of H3K4me3 tag density from promoters to the bodies of expressed genes (Fig. 

2b). This was confirmed by heatmap analysis that showed spreading of both H3K4me2 (Fig. 2c) and me3 

(not shown) into the gene bodies upon Kdm5b knockdown. Further, we compared H3K4me3 levels 

between individual H3K4me3 islands in shLuc- and shKDM5B-expressing cells using MAnorm. 

Interestingly, the majority of islands that have significantly (p < 0.01, fold > 2) gained H3K4me3 upon 

Kdm5b knock-down were located in gene bodies (Fig. 2d), confirming the results obtained from average 

tag density profiles and reported in the original publication.  
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In summary, we have developed a semi-automated system for storage, visualization and analysis of NGS 

data. BioWardrobe has been used to analyze data in several publications20–24. The system can be installed 

on Mac or Linux computers and can provide a data analysis solution for an entire laboratory or institution.  
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Online Methods 

System overview 

BioWardrobe allows users to upload, store and analyze NGS data. The workflow consists of two parts: 

basic and advanced analysis (Supplementary Fig. 1). The basic analysis includes operations that do not 

require comparison of samples: data download, quality control, calculation of RPKMs (reads per kilobase 

of transcript per million reads mapped), peak identification and upload to an integrated mirror of the 

UCSC genome browser. Advanced analysis includes comparing gene expression or chromatin 

immunoprecipitation sequencing (ChIP-Seq) profiles between samples. BioWardrobe can work with 

multiple genomes (our instance currently uses human, mouse rat, fly and frog) and additional genomes 

are easy to add, especially if the genome of interest is represented on UCSC genome browser. A flexible 

data ownership system is implemented: though all users can see all experiments on a local mirror of the 

UCSC genome browser, only members of the laboratories that own the data can access and analyze 

datasets within the BioWardrobe web interface or download it. Laboratory-level administrators can elect 

to share data with other laboratories. However, trusted bioinformaticians can have access to all datasets 

outside of BioWardrobe interface—e.g., via RStudio. We believe that this setup strikes a balance between 

maintaining data ownership and encouraging collaborations. 

Basic analysis 

Basic analysis includes operations that are performed on a single library (Supplementary Fig. 1a). Analysis 

starts by entering the experiment description into Wardrobe. This information will be used to select the 

appropriate genome and analysis pipeline. Raw data can be directly downloaded by BioWardrobe via 

hypertext transfer protocol (http) or file transfer protocol (ftp) from core facilities or internet databases 

such as Gene Expression Omnibus (GEO) or Sequence Read Archive (SRA). Compressed or uncompressed 
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FASTQ (.fastq) and SRA (.sra) files can be used. We elected not to use the prealigned BAM (.bam) files to 

ensure uniform alignment of samples. 

For ChIP-Seq and similar experiments, reads are aligned to the genome with Bowtie 12, quality control 

analysis is conducted and data are summarized in a table (Supplementary Fig. 2b). In addition to basic 

statistics (percentages of mapped/unmapped/non-uniquely mapped reads and average fragment length), 

BioWardrobe displays several other quality control measures. Base frequency plots are used to estimate 

adapter contamination—a frequent occurrence in low-input ChIP-Seq experiments (Supplementary Fig. 

3c). Average tag density profiles can be used to estimate ChIP enrichment for promoter proximal histone 

modifications (e.g., histone 3 lysine residue 4 trimethylation [H3K4me3], Supplementary Fig. 3ef). The 

genome browser can be used to visually compare results to other experiments in the database 

(Supplementary Fig. 3gh). ChIP-Seq results are displayed on the genome browser as coverage per million 

reads mapped. For paired-end reads, coverage is calculated as the number of fragments covering each 

base pair (bp). To obtain coverage for single-read experiments, average fragment length is calculated by 

model-based analysis of ChIP-Seq (MACS) 15, and individual reads are extended to this length in the 3’ 

direction. Islands (areas of enrichment) identified by MACS are displayed both on the browser 

(Supplementary Fig. 3gh) and as a table together with the nearest genes. The Island table can be used to 

select a cut-off for significant peaks that will be used in the downstream analysis. Additionally, the fasta 

sequences of peaks can be obtained with the click of a button and used with third-party tools (e.g., MEME-

ChIP25) to produce sequence logos. Use of different parameters or pipelines for different antibodies (e.g., 

“broad peaks” MACS option for H3K27me3) is possible. Additionally, users can elect to use one of the 

experiments in the database as an “input” control for MACS. The distribution of the islands between 

genomic areas (promoters, exons, etc.) is displayed as a stacked bar graph (Supplementary Fig. 3ik).  
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For RNA sequencing (RNA-Seq) analysis, reads are aligned to the genome using RNA STAR (spliced 

transcripts alignment to a reference) 13 provided with the appropriate National Center for Biotechnology 

Information Reference Sequence (RefSeq) transcriptome. Other annotations can also be installed. The 

quality control tab displays the number of reads aligned within and outside the transcriptome. The 

percentage of the reads mappable to ribosomal DNA are displayed to estimate the quality of ribosomal 

RNA depletion (Supplementary Fig. 2b). Interpretation of quality control data is shown in Supplementary 

Fig. 4. Data are deposited on the browser, and RPKMs are calculated for each transcript (algorithm to be 

described elsewhere). Depending on the application, RPKM values can be presented for each transcript 

or summed up for each transcription start site (TSS) (for gene expression studies) or for each gene (for 

functional studies, e.g., Gene Ontology).  

Advanced analysis 

If satisfied with the quality of data obtained from sequencing, a user can proceed to advanced analysis, 

which involves integration of information from multiple experiments. For gene expression analysis, the 

typical task is identifying differentially expressed genes. We elected to incorporate the DESeq1/2 

algorithm 16,26 for this purpose because it does not require recreating transcript models and does not make 

many assumptions. In order to perform gene expression profiling, a user can define replicates and utilize 

the DESeq algorithm to calculate p-values and fold changes for all genes. On the basis of DESeq results, 

lists of genes whose expression changes can be created within BioWardrobe using expression levels, fold 

change, or p/q-values, as well as other parameters, and downloaded, if needed, in a table form for further 

analysis (e.g., gene set enrichment analysis).  

The gene sets can also be used to create average tag density profiles and heatmaps within BioWardrobe 

(Fig. 1b). Average tag density profiles are used to compare the enrichment of histone modifications or 

other proteins around the TSS or the gene bodies between different gene sets. Often gene bodies used to 
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estimate enrichment, for instance when comparing the levels of positive marks, such as H3K4me3, 

between expressed and silent genes. Heatmaps provide similar information but allow comparisons of 

modifications between individual genes. Statistical comparison of tag densities between groups of genes 

using Mann-Whitney-Wilcoxon (MWW) test can be performed by highlighting the area of interest with a 

mouse (Fig. 1b, insert). All graphs can be downloaded in publication-quality scalable vector graphics (SVG) 

format. 

For ChIP-Seq, the task is usually the identification of areas that have different levels of binding between 

samples. The difficulty here is that the signal-to-background ratio (enrichment) is usually slightly different 

between ChIP-Seq experiments; thus, several assumptions have to be made in order to compare islands 

of enrichment. BioWardrobe uses the MAnorm algorithm 17, which assumes that modifications do not 

change in the majority of areas. This allows MAnorm to adjust for differential levels of enrichment 

between experiments. The lists of islands, fold changes and accompanying p-values are presented in table 

form, and islands can be viewed in the browser with the push of a button.  

R interface 

Although, we sincerely believe that the set of quality control measurements and tools that we provide is 

the most useful, this may be a matter of personal preference. In order to allow for easy addition of custom 

analysis, we have incorporated R language script editing into BioWardrobe web interface for both basic 

and advanced analysis steps. System administrators can add custom R scripts in the R tab, and biologists 

can run these scripts via graphical web interface. In the basic analysis, customized R scripts can be run for 

each sample automatically or for selected samples. As an example, we have added scripts that provide 

the histogram of read pile-up or island length for ChIP-Seq data or gene body coverage and RPKM 

histogram for RNA-Seq data (Supplementary Fig. 5). In the advanced analysis R interface, customized 

scripts can be provided by system administrators. Users can select records of interest via the graphical 
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user interface and run the customized scripts as needed. As an example, we provide a principal 

component analysis (PCA) script that can be used for analysis of RNA-Seq data (see 

http://demo.biowardrobe.com for output).      

Implementation 

BioWardrobe is accessible via Google Chrome, Safari and Firefox browsers. The user interface is web based 

and utilizes HTML5 and JavaScript technologies. To speed up the development process, EXTJS and D3 

JavaScript frameworks were used. On the server, Apache with PHP is used to process user’s requests. 

Linux or MacOSX native job schedulers are used to run Python pipelines. For stability, all pipelines have 

separate queues and process statuses. Pipeline output is stored in the SQL database with the exception 

of BAM files. These precomputed data are accessible by third-party software, like RStudio, that allows 

analysis that is not included in BioWardrobe. There are no specific hardware limitations for BioWardrobe. 

We have installed it on both a Linux server and Mac Pro desktop and laptop computers. An average Intel 

Core i7 computer with 32 gigabytes of RAM and a SATA HDD (more than 100 Mb read/write speed 

preferred) will analyze a typical ChIP-Seq or RNA-Seq experiment within less than 2 hours. 

Current code and setup instructions are available at http://biowardrobe.com . A limited-functionality 

demo version is available at http://demo.biowardrobe.com. 
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List of abbreviations used 

ATAC-Seq  assay for transposase-accessible chromatin sequencing 

ChIP  chromatin immunoprecipitation  

ChIP-Seq  chromatin immunoprecipitation sequencing  

D3  data-driven documents 

DNase-Seq DNase I hypersensitive sites sequencing 

EXTJS  extension JavaScript 

ftp  file transfer protocol 

GEO  Gene Expression Omnibus 

GRO-Seq  global run-on sequencing 

HIPAA  Health Insurance Portability and Accountability Act of 1996 

HTML  hypertext markup language 

MACS  model-based analysis of ChIP-Seq 

MAnorm  a model for quantitative comparison of ChIP-Seq datasets 

MNase-Seq  micrococcal nuclease sequencing 

MWW  Mann-Whitney-Wilcoxon 

NGS  next-generation sequencing 

PHP  PHP: hypertext preprocessor 
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RAM  random-access memory 

RefSeq  National Center for Biotechnology Information Reference Sequence 

RPKMs  reads per kilobase of transcript per million reads mapped 

RNA-Seq  ribonucleic acid sequencing  

SATA HDD  serial ATA hard disk drive 

SRA  Sequence Read Archive (formerly known as Short Read Archive) 

STAR  spliced transcripts alignment to a reference 

SVG  scalable vector graphics 

TSS  transcription start site(s) 

Th1  T helper type 1 

Thn  naïve T helper cells 

UCSC  University of California, Santa Cruz 
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Figure legends 

Figure 1. BioWardrobe overview and poising of genes in T cells. (a) The BioWardrobe server can be set 

up on a Linux or Mac computer attached to a consumer-class storage array, typically within a local 

institutional network. Researchers can use BioWardrobe to upload data from a sequencing core or a public 

database and promptly receive quality control data, view the results in the browser and perform some of 

the analysis without the assistance of bioinformaticians. Bioinformaticians can access the precomputed 

data in Wardrobe’s SQL database to perform further analysis. (b) Shown are the H3K4me3 average tag 

density profiles for the gene body in naïve T cells for genes that are expressed or silent in both Thn and 

Th1 cells and those that induced during Thn to Th1 transition. The box plot window shows the distribution 

of H3K4me3 tag densities for the three gene sets within the area shaded in the plot (Silent, Expressed, 

Induced). MWW p-values are shown below the box plot. Here and in other figures the plot was produced 

in BioWardrobe, saved as an .svg and adjusted in Illustrator. 

Figure 2. Role of KDM5B in the regulation of H3K4me3. (a) Tag density profile shows that KDM5B is 

recruited to promoters of expressed rather than silent genes in mouse ES cells. (b) Kdm5b knock-down 

results in the increase of H3K4me3 levels in the gene bodies and the corresponding loss of H3K4me3 at 

the TSSs of expressed genes. Box plots windows for the shaded areas are shown. (c) Heatmaps show that 

Kdm5b knock-down causes spreading of H3K4me2 into the gene bodies, but not upstream, of the 

expressed genes. (d) Genomic distribution of H3K4me3 peaks. Top graphs show data for all peaks in 

control (shLuc)- and shKdm5b-expressing cells; bottom graphs show distribution for those areas where 

occupancy was significantly (p < 0.01, fold > 4) increased or decreased upon Kdm5b knockdown.   
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Supplementary Figure Legends 

Supplementary Figure 1. BioWardrobe pipelines. (a) Basic analysis pipelines. The flow diagram shows the 

tools used in the basic analysis pipelines for RNA-Seq and ChIP-Seq data. (b) Advanced analysis allows the 

user to identify differentially expressed genes using DESeq, create gene lists and use these lists to generate 

average tag density profiles and heatmaps. Differentially bound areas can be identified with MAnorm. QC, 

quality control.  

Supplementary Figure 2. Experiment entry form and quality control window. (a) Experiments can be 

entered into Wardrobe by providing basic experimental details and a link to .fastq or .sra files. 

BioWardrobe will download the data, select the appropriate analysis pipeline and perform quality control. 

(b) Quality control tab shows basic mapping statistics. The arrow points to the high number of reads 

mappable to a ribosomal DNA repeat unit, suggesting incomplete removal of ribosomal RNA from the 

sample. This will not affect the results, but the experiment will require more sequencing since a large 

number of reads will be unproductively used on ribosomal RNA. Interpretation of other quality control 

measures is discussed in Supplementary Figures 3 and 4.  

Supplementary Figure 3. ChIP-Seq quality controls and interpretation. Data for H3K4me3 in Naïve (left) 

and Th1 cells (right) are displayed. (a,b) Pie charts show acceptable mapping statistics. (c,d) The absence 

of AT bias in these base frequency plots suggests enrichment of H3K4me3 in the vicinity of genic areas 

(also see g). The spiky plot in (c) is characteristic of adapter contamination in the library and suggests that 

the adapter/insert ratio during ligation needs to be decreased. This problem will not affect results, but 

the experiment will require more sequencing since a fraction of the reads will be unproductively used on 

adapter-dimers. (e,f) Average tag density profiles around the transcription start sites (TSSs) of all genes 

suggests that H3K4me3 is enriched around the TSS as expected. The experiment in (e) has slightly better 

enrichment, whereas the experiment in (f) has a better resolution due to a much shorter fragment size 
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(estimated by MACS as 287 vs. 146 for e and f, respectively). (g,h) Representative browser images show 

H3K4me3 peaks at the PPIA promoter. Coverage by estimated fragments (top) and islands identified by 

MACS are shown. (i,j)  BioWardrobe graphs show the distribution of H3K4me3 islands between genomic 

areas graphically and numerically (number of islands, percentage). Note that H3K4me3 is present 

primarily in promoter areas.  

Supplementary Figure 4. RNA-Seq quality controls and interpretation. RNA-seq data for Thn (left) and 

control mouse ES cells (right) are shown. (a,b) Pie charts show mapping statistics. In (a), note the poor 

mapping to transcriptome (high unmapped), large percentage of multi-mapped reads and reads mapping 

outside the annotation. These confirm insufficient ribosomal RNA removal (see also Supplementary 

Figure 2b) and suggest sample contamination with genomic DNA (or, less likely, a large amount of 

unannotated transcription). The latter is likely to inflate RPKM values for low expressed and non-

expressed genes by a few units. (c,d) Base frequency plot.  The general shape of the plot in (c) is 

characteristic of sequencing methods that produce reads of different lengths, such as Helicos. Also note 

a strong AT bias in (c). This bias is characteristic of genomic sequence but is not expected for transcripts, 

confirming the presence of DNA contamination in the sample. (e,f) Browser images show RNA-Seq 

coverage of ACTB/Actb genes. Note that the 5’ end of ACTB in (e) has a higher tag density (also see (g)). 

(g,h) Transcript coverage plots. Note that in (g) coverage is biased towards the 5’ end, suggesting either 

an inherent bias of the library construction method or RNA degradation.  

Supplementary Figure 5. Example of plots produced by customizable R scripts. (a) Plots for RNA-Seq: 

gene body coverage and RPKM histogram. (b) Plots for ChIP-Seq: Rank vs. pile-up plot and Island length 

distribution plot.  
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Figure 1. BioWardrobe overview and poising of genes in T cells. (a) The BioWardrobe server can be set 

up on a Linux or Mac computer attached to a consumer-class storage array, typically within a local 

institutional network. Researchers can use BioWardrobe to upload data from a sequencing core or a 

public database and promptly receive quality control data, view the results in the browser and perform 

some of the analysis without the assistance of bioinformaticians. Bioinformaticians can access the 

precomputed data in Wardrobe’s SQL database to perform further analysis. (b) Shown are the H3K4me3 

average tag density profiles for the gene body in naïve T cells for genes that are expressed or silent in 

both Thn and Th1 cells and those that induced during Thn to Th1 transition. The box plot window shows 

the distribution of H3K4me3 tag densities for the three gene sets within the area shaded in the plot 

(Silent, Expressed, Induced). MWW p-values are shown below the box plot. Here and in other figures the 

plot was produced in BioWardrobe, saved as an .svg and adjusted in Illustrator. 
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Figure 2. Role of KDM5B in the regulation of H3K4me3. (a) Tag density profile shows that KDM5B is 

recruited to promoters of expressed rather than silent genes in mouse ES cells. (b) Kdm5b knock-down 

results in the increase of H3K4me3 levels in the gene bodies and the corresponding loss of H3K4me3 at 

the TSSs of expressed genes. Box plots windows for the shaded areas are shown. (c) Heatmaps show 

that Kdm5b knock-down causes spreading of H3K4me2 into the gene bodies, but not upstream, of the 

expressed genes. (d) Genomic distribution of H3K4me3 peaks. Top graphs show data for all peaks in 

control (shLuc)- and shKdm5b-expressing cells; bottom graphs show distribution for those areas where 

occupancy was significantly (p < 0.01, fold > 4) increased or decreased upon Kdm5b knockdown.   
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Supplementary Figure 1. BioWardrobe pipelines. (a) Basic analysis pipelines. The �ow 
diagram shows the tools used in the basic analysis pipelines for RNA-Seq and ChIP-Seq data. 
(b) Advanced analysis allows the user to identify di�erentially expressed genes using DESeq, 
create gene lists and use these lists to generate average tag density pro�les and heatmaps. 
Di�erentially bound areas can be identi�ed with MAnorm. QC, quality control. 
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Supplementary Figure 2. Experiment entry form and quality control window. (a) Experiments can be entered 
into Wardrobe by providing basic experimental details and a link to .fastq or .sra �les. BioWardrobe will download the 
data, select the appropriate analysis pipeline and perform quality control. (b) Quality control tab shows basic map-
ping statistics. The arrow points to the high number of reads mappable to a ribosomal DNA repeat unit, suggesting 
incomplete removal of ribosomal RNA from the sample. This will not a�ect the results, but the experiment will 
require more sequencing since a large number of reads will be unproductively used on ribosomal RNA. Interpreta-
tion of other quality control measures is discussed in Supplementary Figures 3 and 4. 
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Supplementary Figure 3. ChIP-Seq quality controls and interpretation. Data for H3K4me3 in Naïve (left) and 
Th1 cells (right) are displayed. (a,b) Pie charts show acceptable mapping statistics. (c,d) The absence of AT bias in 
these base frequency plots suggests enrichment of H3K4me3 in the vicinity of genic areas (also see g). The spiky 
plot in (c) is characteristic of adapter contamination in the library and suggests that the adapter/insert ratio 
during ligation needs to be decreased. This problem will not a�ect results, but the experiment will require more 
sequencing since a fraction of the reads will be unproductively used on adapter-dimers. (e,f) Average tag density 
pro�les around the transcription start sites (TSSs) of all genes suggests that H3K4me3 is enriched around the TSS 
as expected. The experiment in (e) has slightly better enrichment, whereas the experiment in (f ) has a better reso-
lution due to a much shorter fragment size (estimated by MACS as 287 vs. 146 for e and f, respectively). (g,h) Rep-
resentative browser images show H3K4me3 peaks at the ACTB promoter. (i,j)  BioWardrobe graphs show the 
distribution of H3K4me3 islands between genomic areas graphically and numerically (number of islands, 
percentage). Note that H3K4me3 is present primarily in promoter areas. 
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Supplementary Figure 4. RNA-Seq quality controls and interpretation. RNA-seq data for Thn (left) and control 
mouse ES cells (right) are shown. (a,b) Pie charts show mapping statistics. In (a), note the poor mapping to tran-
scriptome (high unmapped), large percentage of multi-mapped reads and reads mapping outside the annotation. 
These con�rm insu�cient ribosomal RNA removal (see also Supplementary Figure 2b) and suggest sample 
contamination with genomic DNA (or, less likely, a large amount of unannotated transcription). The latter is likely 
to in�ate RPKM values for low expressed and non-expressed genes by a few units. (c,d) Base frequency plot.  The 
general shape of the plot in (c) is characteristic of sequencing methods that produce reads of di�erent lengths, 
such as Helicos. Also note a strong AT bias in (c). This bias is characteristic of genomic sequence but is not expected 
for transcripts, con�rming the presence of DNA contamination in the sample. (e,f ) Browser images show RNA-Seq 
coverage of ACTB/Actb genes. Note that the 5’ end of ACTB in (e) has a higher tag density (also see (g)). (g,h) Tran-
script coverage plots. Note that in (g) coverage is biased towards the 5’ end, suggesting either an inherent bias of 
the library construction method or RNA degradation. 
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Supplementary Figure 5. Example of plots produced by customizable R scripts. (a) Plots for RNA-Seq: 

gene body coverage and RPKM histogram. (b) Plots for ChIP-Seq: Rank vs. pile-up plot and Island length 

distribution plot.  
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