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Abstract

High-throughput sequencing has revolutionized biology by enhancing our ability to perform genome-
wide studies. However, due to lack of bioinformatics expertise, technologies are still beyond the
capabilities of many laboratories. Herein, we present Wardrobe server, which allows users to store,
visualize and analyze epigenomics and transcriptomics data using a biologist-friendly GUI without the
need for programming expertise. Predefined pipelines allow users to download data from core facilities
or public databases, visualize data on a genome browser, calculate RPKMs and identify islands.
Advanced capabilities include differential gene expression and binding analysis, and creation of average

tag density profiles and heatmaps. Wardrobe is available at https://code.google.com/p/genome-tools/.
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Introduction

The recent proliferation of next-generation sequencing (NGS)-based methods for analysis of gene
expression, chromatin structure and protein-DNA interactions has opened new horizons for molecular
biology. These methods include RNA sequencing (RNA-Seq)[1], chromatin immunoprecipitation
sequencing (ChIP-Seq)[2], DNase | hypersensitive sites sequencing (DNase-Seq)[3], micrococcal nuclease
sequencing (MNase-Seq)[4], global run-on sequencing (GRO-Seq)[5], assay for transposase-accessible
chromatin sequencing (ATAC-Seq)[6], and others. On the “wet lab” side, these methods are more or less
well established and can be performed by experienced molecular biologists; however, analysis of the
resulting data requires computational expertise that many molecular biologists do not possess or have
access to. Another difficulty is re-utilization of published datasets: although authors comply with the
longstanding requirement to deposit raw data files into databases such as Sequence Read Archive (SRA)
or Gene Expression Omnibus (GEQ), it is impossible to analyze these datasets without special expertise.
Even when processed data files (e.g. gene expression values) are available, direct comparison between
datasets is ill advised because different laboratories use different pipelines (or different software
versions). This situation means that biologists require the help of bioinformaticians even for simple
tasks, such as viewing their own data on a genome browser, and thus places these exciting techniques
beyond the reach of the majority of scientists. Even when bioinformaticians are available, differences in
priorities can result in delays and misunderstandings that are damaging to the research effort. An
optimal way to mitigate these problems is by creating user-friendly tools that can help biologists

perform at least some of the tasks without the help of bioinformaticians.

Several stand-alone programs and web services are available for the analysis of NGS data. However, the
majority of currently available tools are command line or R based and only a few tools have graphical
user interfaces that do not require Linux or programming skills. The programs Genespring [7], Partek [8]

and Golden Helix [9] can be run on regular desktop computers and allow analysis of gene expression or
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genetic variation. However, users have to load the data manually and store it on their desktop
computers; given the sheer volume of NGS datasets, this makes data analysis complicated at best.
Furthermore, these tools do not allow for seamless integration of multiple, published or locally
produced datasets. Though Illumina Basespace [10] and Galaxy server [11] allow for both storage and
analysis of data and have integrated viewing tools. However, they require transfer of data outside the
institution (which may be prohibited by HIPAA regulations in some cases) and provide only limited
storage space for user data. Although Galaxy provides the opportunity to run analysis without command
lines, users still need to select parameters each time, which requires a deep understanding of each tool.
Absence of highly formalized pipelines may result in inexperienced users comparing “apples to oranges”.
In summary, few of the available tools provide biologist-friendly interfaces, and none integrate data

storage, display and analysis with a user-friendly interface.

We therefore developed Wardrobe, a biologist-friendly solution for integrated acquisition, storage,
display and analysis of NGS data, primarily for use in epigenomics research. Wardrobe allows for
download of raw data from core facilities or databases (e.g. GEO), read mapping and display on an
integrated mirror of the University of California, Santa Cruz (UCSC) genome browser [12], quality control
and basic and advanced data analysis. The automated basic analysis pipeline incorporates both widely
used tools developed by others (e.g. Bowtie[13], STAR [14], FASTX [15] and MACS [16]) and several of
our own programs. Customizable advanced analysis includes tools for comparing gene expression DESeq
[17] and ChIP-Seq (MAnorm [18]) profiles between samples or groups of samples and creating gene lists,
average tag density profiles and heatmaps. Most of the data are precomputed and stored in an SQL
database and can be accessed via a convenient web interface by biologists. Bioinformaticians can also
access the data via Python or R interfaces on the server or even on the web via third-party tools like

RStudio. Wardrobe can be run on Linux or MacOSX systems with attached storage. Source code and
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installation instructions are available at https://code.google.com/p/genome-tools/. A limited-

functionality demo version is available at http://demo.wardrobe.porter.st/ems.

System overview

Wardrobe allows users to upload, store and analyze NGS data. The workflow consists of two parts: basic
and advanced analysis (Fig. 1). The basic analysis includes operations that do not require comparison of
samples: data download, quality control, calculation of RPKMs (reads per kilobase of transcript per
million reads mapped), island identification and upload to a built-in mirror of the UCSC genome
browser. Advanced analysis includes comparing gene expression or ChIP-Seq profiles between samples.
A flexible data ownership system is implemented: while all users can see all datasets on a local mirror of
the UCSC genome browser, only members of the laboratories that own the data can access and analyze
datasets within Wardrobe web interface or download it. Laboratory-level administrators can elect to
share data with other laboratories. However, trusted bioinformaticians can have access to all datasets
outside of web-interface—e.g. via RStudio. We believe that this setup strikes a balance between

maintaining data ownership and encouraging collaborations.

Basic analysis

Basic analysis includes operations that are performed on a single library (Fig. 1B). Analysis starts by
entering the experiment description into Wardrobe. This information will be used to select the
appropriate genome and analysis pipeline. Raw data can be directly downloaded by Wardrobe via

hypertext transfer protocol (http) / file transfer protocol (ftp) or from core facilities or internet
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databases such as GEO or SRA. Compressed or uncompressed FASTQ (.fastq) and SRA (.sra) files can be

used. We elected not to use the prealigned BAM (.bam) files to ensure uniform alignment of samples.

For ChIP-Seq and similar experiments, reads are aligned to the genome with Bowtie [13], quality control
analysis is conducted and data are summarized in a table (Fig. 2A). In addition to basic statistics
(percentages of mapped/unmapped/non-uniquely mapped reads and average fragment length),
Wardrobe displays several other quality control measures. Base frequency plots are used to estimate
adapter contamination — a frequent occurrence in low-input ChIP-Seq experiments (Fig. 2B). Average tag
density profiles can be used to estimate ChIP enrichment for promoter proximal histone modifications
(e.g. histone 3 lysine residue 4 trimethylation [H3K4me3], Fig. 2F). The genome browser can be used to
visually compare results to other experiments in the database (Fig. 2C). ChIP-Seq results are displayed
on the genome browser as coverage per million reads mapped. For paired-end reads, coverage is
calculated as the number of fragments covering each base pair (bp). To obtain coverage for single-read
experiments, average fragment length is calculated by MACS [16], and individual reads are extended to
this length in the 3’ direction. Islands of enrichment identified by MACS are displayed both on the
browser (Fig. 2C) and as a table (Fig. 2D) together with the nearest genes. Use of different parameters or
pipelines for different antibodies (e.g. “broad peaks” MACS option for H3K27me3) is possible. The
distribution of the islands between genomic areas (promoters, exons, etc.) is displayed as a stacked bar

graph (Fig. 2E).

For RNA-Seq analysis, reads are aligned with RNA STAR [14] using the appropriate RefSeq transcriptome.
The quality control tab displays the number of reads aligned within and outside the transcriptome. The
percentage of the reads mappable to ribosomal (r)DNA is displayed to estimate the quality of rRNA
depletion (Fig. 2G). Data are deposited on the browser, and RPKMs are calculated for each transcript

(algorithm to be described elsewhere) (Fig. 2H,1). Depending on the application, RPKM values can be
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presented for each transcript or summed up for each TSS (for gene expression studies) or for each gene

(for functional studies, e.g. Gene Ontology).

Advanced analysis

If satisfied with the quality of data obtained from sequencing, a user can proceed to advanced analysis,
which involves integration of information from multiple experiments. For gene expression analysis, the
typical task is identifying differentially expressed genes. We elected to incorporate the DESeq1/2
algorithm [17, 19] for this purpose because it does not require recreating transcript models and does
not make many assumptions. In order to perform gene expression profiling, a user can define replicates
and utilize the DESeq algorithm to calculate p-values and fold changes. On the basis of DESeq results,
lists of genes whose expression changes can be created within Wardrobe using expression levels, fold
change, or p/g-values, as well as other parameters, and downloaded, if needed, in a table form for

further analysis (e.g., gene set enrichment analysis) (Fig. 3A).

The gene sets can also be used to create average tag density profiles and heatmaps within Wardrobe
(Fig. 3B-F). Average tag density profiles are used to compare the enrichment of histone modifications or
other proteins around the TSS or the gene bodies between different gene sets. Often gene bodies used
to estimate enrichment, for instance when comparing the levels of positive marks, such as H3K4me3
between expressed and silent genes. Heatmaps provide similar information but allow comparisons of
modifications between individual genes. Statistical comparison of tag densities between groups of genes
can be performed using Mann-Whitney-Wilcoxon (MWW) tests (Fig. 3C and D). All graphs can be

downloaded in publication-quality SVG format.

For ChIP-Seq, the task is usually the identification of areas that have different levels of binding between
samples. The difficulty here is that the signal-to-background ratio (enrichment) is usually slightly

different between ChIP-Seq experiments; thus, several assumptions have to be made in order to
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compare islands of enrichment. Wardrobe uses the MAnorm algorithm [18], which assumes that
modifications do not change in the majority of areas. This allows MAnorm to adjust for differential levels
of enrichment between experiments. The lists of islands, fold changes and accompanying p-values are

presented in table form, and islands can be viewed in the browser with the push of a button (Fig. 3G).

Epigenetic changes during Th1 differentiation of human T cells

To demonstrate the ability of Wardrobe to integrate data obtained from different sources and using
different sequencing technologies, we have performed analysis of gene expression and chromatin
environment changes during differentiation of human naive T cells into T helper type 1 (Th1) cells. For
this purpose, we utilized a gene expression and chromatin dataset published by Hawkins et al.
(SRA082670)[20]. The study included RNA-Seq data for resting naive T cells (“T helper precursor cells
[Thp]” in the paper) and T cells activated in Th1 conditions for 72 hours in triplicate and ChlP-Seq data
for T cells activated in Th1 conditions. We wanted to identify chromatin changes that occur during Th1
differentiation of T cells, but the Hawkins et al. study did not include chromatin profiles for resting naive
cells. For this reason, we used H3K4me3 ChlP-Seq data for resting naive T cells obtained for a separate
project in our laboratory. In this study, RNA-Seq data was obtained using a Helicos platform, whereas

ChlP-seq libraries were sequenced on lllumina.

After entering the sample descriptions and links to .sra files from the SRA database into the system,
Wardrobe downloaded the dataset and performed basic analysis (Fig. 2A). ChIP-Seq data demonstrated
the expected percentage of reads mapped (Fig. 2B), average tag density profiles showed high
enrichment at promoters (Fig. 2F), MACS identified ~48 thousand and 79 thousand islands (naive T cells
and Th1 cells, respectively, Fig. 2D), the majority of which (68-77%) were located at promoters (Fig. 2E).
However, RNA-Seq results demonstrated poor mapping to the human transcriptome, especially for

naive T cell samples (2-6%) (Fig. 2G), whereas 35% of reads were mapped outside the annotated
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transcriptome. Altogether, these quality control measurements led us to conclude that the RNA-Seq
libraries were severely contaminated by genomic DNA and that the RPKM values are likely to be inflated
by several RPKMs, in particular in the naive samples. Nonetheless, we proceeded with the advanced

analysis.

We next performed comparison of gene expression using DESeq2. Replicates were defined, genes were
grouped by common TSS and differentially expressed genes were identified. DESeq results (Fig. 3A) were
used to define lists of genes that were expressed or silent in both Thp and Th1 cells or that were induced
during differentiation. These lists were used to create average tag density profiles in both naive and Thl
cells (Fig. 3B,D,E). As demonstrated in the graphs and from MWW statistical analysis (Fig. 3D), expressed
genes have higher levels of H3K4me3 at their promoters than the silent genes. Inducible genes had
intermediate levels of this modification in naive cells, in which these genes were silent, suggesting that
H3K4me3 poises inducible genes for expression. The same conclusion can be made upon examining tag
density heatmaps (Fig. 3B). Upon induction, the H3K4me3 levels of the genes in the induced list

increased to the level of the genes in the expressed list.

The H3K4me3 ChIP-Seq experiments worked well in both naive and Th1 cells; however, if we compare
the height of the TSS peaks of H3K4me3 between naive and Th1 cells (Fig. 2D and data not shown), we
can conclude that the enrichment in the naive experiment is slightly higher. This difference in
enrichment would affect the peak calling, meaning that the peaks cannot be compared directly between
the two cell types. To overcome this obstacle, Wardrobe uses the MAnorm algorithm, which compares
the read numbers between islands while adjusting for enrichment [18]. MAnorm produces fold changes

and p-values for the peaks, and the areas of interest can be viewed on the browser (Fig. 3F).
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Implementation

Wardrobe is accessible via Google Chrome, Safari and Firefox browsers. The user interface is web based
and utilizes HTML5 and JavaScript technologies. To speed up the development process, EXTJS and D3
frameworks were used. On the server, Apache with PHP is used to process user’s requests. Linux or
MacOSX native job schedulers are used to run Python pipelines. For stability, all pipelines have separate
gueues and process statuses. Pipeline output is stored in the SQL database with the exception of BAM
files. These precomputed data are accessible by third-party software like RStudio that allows analysis
that is not included in Wardrobe. There are no specific hardware limitations for Wardrobe. We have
installed it on both a Linux server and Mac Pro desktop and laptop computers. An average Intel Core i7
computer with 32 gigabytes of RAM and a SATA HDD; more than 100 M read/write speed) will analyze

one ChIP-Seq or RNA-Seq experiment within 2 hours.

Current code and setup instructions are available at https://code.google.com/p/genome-tools/. A

limited-functionality demo version is available at http://demo.wardrobe.porter.st/ems .

In summary, we have developed an automated system for storage and analysis of NGS data. The
Wardrobe system can be easily installed on Mac or Linux computers and provides data analysis solutions

for the whole laboratory or institution.
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List of abbreviations used

ATAC-Seq

Chlp

ChIP-Seq

D3

DNase-Seq

Ext JS

ftp

GEO

GRO-Seq

HIPAA

HTML

MACS

MAnorm

Me3

MNase-Seq

MWW

NGS

11

assay for transposase-accessible chromatin sequencing

chromatin immunoprecipitation

chromatin immunoprecipitation sequencing

data-driven documents

DNase | hypersensitive sites sequencing

extension JavaScript

file transfer protocol

Gene Expression Omnibus

global run-on sequencing

Health Insurance Portability and Accountability Act of 1996

hypertext markup language

model-based analysis of ChIP-Seq

a model for quantitative comparison of ChIP-Seq datasets

trimethylation

micrococcal nuclease sequencing

Mann-Whitney-Wilcoxon

next-generation sequencing
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PHP PHP: hypertext preprocessor

RAM random-access memory

RefSeq National Center for Biotechnology Information Reference Sequence
RPKMs reads per kilobase of transcript per million reads mapped

RNA-Seq ribonucleic acid sequencing

SATA HDD serial ATA hard disk drive

SRA Sequence Read Archive (formerly known as Short Read Archive)
STAR spliced transcripts alignment to a reference

SVG scalable vector graphics

TSS transcription start site(s)

Thl T helper type 1

Thp T helper precursor cells

ucscC University of California, Santa Cruz
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Figure legends

Figure 1. Wardrobe overview and pipelines. A. The Wardrobe server can be set up on a Linux or Mac
computer attached to a consumer-class storage array, typically within a local institutional network.
Biologists can use Wardrobe to upload data from a sequencing core or a public database and promptly
receive quality control data, view the results in the browser and perform some of the analysis without
the assistance of bioinformaticians. Bioinformaticians can access the precomputed data in Wardrobe’s
SQL database to perform further analysis. B. Basic analysis pipelines. The flow diagram shows the tools
used in the basic analysis pipelines for RNA-Seq and ChlIP-Seq data. C. Advanced analysis allows the user
to identify differentially expressed genes using DESeq, create gene lists and use these list to generate

average tag density profiles and heatmaps. Differentially bound areas can be identified with MAnorm.

Figure 2. Basic analysis. A. The laboratory data table shows the list of experiments available to the user.
B. Shown is the quality control tab for a ChIP-Seq experiment; the spiky base frequency plot indicates
minor adapter contamination. C. Shown is the ChIP-Seq browser shot for the CD4 gene, visible on the
genome browser tab. D. The island list tab shows locations of islands and the nearest genes. E. The
island distribution bar graph, visible from the islands distribution tab, shows that the majority of
H3K4me3 islands are located at promoters. F. The average tag density profile, visible from the average
tag density tab, shows enrichment around the TSS. G. Shown is the quality control tab for an RNA-Seq
experiment. The base frequency plot shows an AT bias, suggesting DNA contamination and read-length
variation characteristic of Helicos sequencing. H. Shown is the RPKM table available from the RPKM list
tab for an RNA-Seq experiment. I. Shown is the RNA-Seq browser for the CD4 gene, visible from the

genome browser tab.

Figure 3. Advanced analysis. A. The table displays the results of DESeq2 differential gene expression

analysis, showing induction of TNF upon Th1 differentiation. B. The heatmaps show expression and
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H3K4me3 tag density in the three examined sets of genes (Silent, Expressed, Induced) in naive T cells
and Thl-differentiated T cells. C,E,F Shown are the H3K4me3 average tag density profiles for the gene
body (C) or around the TSS (E,F) in naive T cells and Th1l-differentiated T cells. D. The box plot shows the
distribution of H3K4me3 tag densities for the three gene sets within the area shaded in panel C (Silent,
Expressed, Induced). MWW p-values are shown below the box plot. G. Shown is identification of
differentially modified areas using MAnorm. Notice the appearance of modifications (“description”

column) at Th1 characteristic cytokine IFNG.
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