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Brief Summary

Why do species’ ranges often end when no obvious change in the environment suggests they should?
Our theory explains that there is an inherent limit to adaptation arising in any (finite) natural population,
and identifies the key parameters that determine this limit to a species’ range. Two observable param-
eters describe the threshold when adaptation fails: i) the loss of fitness due to dispersal to a different
environment, and ii) the efficacy of selection relative to stochastic effects in finite populations.

Abstract

Why do species not adapt to ever-wider ranges of conditions, gradually expanding their ecological niche
and geographic range? Gene flow across environments has two conflicting effects: while it increases
genetic variation, which is a prerequisite for adaptation, gene flow may swamp adaptation to local con-
ditions. In 1956, Haldane proposed that when the environment varies across space, “swamping” by gene
flow creates a positive feedback between low population size and maladaptation, leading to a sharp range
margin. Yet, current deterministic theory shows that when variance can evolve, there is no such limit.
Using simple analytical tools and simulations, we show that genetic drift can generate a sharp margin
to a species’ range, by reducing genetic variance below the level needed for adaptation to spatially vari-
able conditions. Aided by separation of ecological and evolutionary time scales, the identified effective
dimensionless parameters reveal a simple threshold that predicts when adaptation at the range margin
fails. Two observable parameters determine the threshold: i) the effective environmental gradient, which
can be measured by the loss of fitness due to dispersal to a different environment, and ii) the efficacy
of selection relative to genetic drift. The theory predicts sharp range margins even in the absence of
abrupt changes in the environment. Furthermore, it implies that gradual worsening of conditions across a
species’ habitat may lead to a sudden range fragmentation, when adaptation to a wide span of conditions
within a single species becomes impossible.
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Introduction

Why a species’ range sometimes ends abruptly, even when the environment changes smoothly across
space, has interested ecologists and evolutionary biologists for many decades [1–8]. Haldane [2] pro-
posed that when the environment is spatially heterogeneous, a species may be unable to adapt and expand
its range because gene flow from the centre swamps the populations at the range margins, preventing their
adaptation. Theory showed that when genetic variance is fixed, adaptation indeed fails if the environment
changes too steeply across space [9], and a sharp margin to the species’ range forms. The population
remains well adapted only in the centre of the range, and gene flow swamps variants adapted to the
margins, preventing range expansion.This result also elucidates range margins in the presence of com-
petitors: then, interspecific competition in effect steepens the environmental gradient [10]. Yet, this limit
to adaptation assumes that local genetic variation is fixed.

Current deterministic theory states that when genetic variance can evolve, there is no sharp limit to a
species’ range [11]. The genetic mixing caused by gene flow inflates the genetic variance and facilitates
further divergence. Gene flow across a phenotypic gradient maintained by the environment can generate
much more variance than would be maintained by mutation alone [12, 13]. This rise of genetic variance
with environmental gradient can allow species to adapt to an indefinitely wide geographic range – and
hence an indefinitely wide ecological niche. Adaptation only fails when the local load due to genetic
variance becomes so large that the population is no longer sustainable because the mean Malthusian
fitness (growth rate) declines below zero. On constant environmental gradients, this leads to extinction
everywhere. On gradually steepening gradients, we would see a gradual decrease in density due to the
rising genetic variance and the associated standing load.

The interface between ecology and evolution is critical for understanding the evolution of the species’
range. Yet until now, no predictive theory has included the fundamental stochastic processes of genetic
drift and demographic stochasticity. Genetic variation is often measurably lower in peripheral popula-
tions [4, 14] and experimental evidence suggests that low genetic variance coupled with high gene flow
can prevent adaptation at the edge of a species’ range in nature [15–17]. Thus, there is clear evidence
that low genetic variation may limit adaptive range expansion. This may be because genetic drift reduces
local variance [18,19] and hence the potential of the population to adapt [20]. Studies of range expansion
with genetic drift are few, and limited to simulations [21–24]. By manipulating dispersal and carrying
capacity, these studies demonstrated that genetic drift may be important to theory of species’ range evo-
lution. However, without establishing the key parameters, no quantitative predictions can be made that
generalise beyond specific simulation models.

The goal of this study is to examine how finite population size, through its effect on genetic drift,
and in combination with demographic stochasticity, affects the limits of a species’ range. We give the
combination of parameters that describes the dynamics of evolution of a species’ range and especially, its
limits, when genetic variance can evolve, the environment is heterogeneous, and populations are finite.
We assume that as the environment changes across space, there is a corresponding change in the optimal
value of some phenotypic trait. Deviation from the optimum reduces fitness, and so range expansion
requires adaptation to this environmental gradient. Demography and evolution are considered together,
and both genetic variance and trait mean can freely evolve via change in allele frequencies. Crucially, we
include both genetic and demographic stochasticity. The model is first outlined at a population level, in
terms of coupled stochastic differential equations (Materials and Methods: Evolutionary and ecological
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dynamics). Using this formalisation, we can identify the effective dimensionless parameters that de-
scribe the dynamics: these parameters are measurable, and predict when adaptation to an environmental
gradient fails. After separation of the time-scales of ecology (fast) from evolution (slow), these reduce
to just two key observable parameters – a major simplification for a model whose initial formulation
requires seven parameters. Next, individual based simulations (SI: Individual-based model) determine
the driving relationship between the key parameters, and test its robustness.

Results

Deterministic limit

First, to both validate and illustrate the model, we show that the individual-based model matches the
predictions at the deterministic limit [11], where the species’ range expands indefinitely. Fig. 1 illustrates
the joint evolution of population size and trait mean and variance via change in allele frequencies, when
genetic drift is weak – when Nσ

√
s � 1 [25, 26], where population size within a dispersal distance σ

is Nσ, and s is the strength of selection per locus. N represents size of each deme, which corresponds
to population density in continuous space. Genetic variance, VG, evolves, and is generated primarily by
gene flow due to mixing of genes from individuals with different phenotypes, well adapted to the diverse
environments (Fig. 1D); the contribution from mutational variance is negligible.

Scaling and separation of time scales

We now proceed by reducing the number of parameters (Table 1) in the model, including stochasticity
(Materials and Methods: Rescaling). We seek a set of dimensionless parameters that fully defines the
dynamics of a system, with a preference for those that are empirically measurable. Rescaling space, time,
trait, and population density reveals that three dimensionless parameters fully describe the system, ne-
glecting mutation and assuming linkage equilibrium between loci. The first parameter carries over from
the phenotypic model of [9]: i) the effective environmental gradient,B = bσ

r∗
√
2VS

, where b is the gradient
in the optimum, Vs the width of stabilising selection, and r∗ gives the strength of density-dependence.
Two additional dimensionless parameters come from including stochasticity: ii) the efficacy of popula-
tion regulation relative to demographic stochasticity, Nσ

√
r∗; and iii) the efficacy of selection relative to

the strength of genetic drift, Nσ
√
s.

The dynamics of evolution of species’ range simplifies further because selection per locus s is typ-
ically much smaller than the rate of return to equilibrium population density r∗ (see [27] and [28, Ap-
pendix D]; Fig. S1 for values used here). This has two consequences. First, the ecological dynamics
∂N/∂t are faster than the evolutionary dynamics ∂p/∂t of the individual loci (where p denotes the allele
frequency and t denotes time). Importantly, the genetic variance evolves slower than the mean: whereas
the trait mean changes with the product of strength of selection and the genetic variance, the directional
change in the variance is slower by the inverse of the number of locally polymorphic loci (precisely,
the “effective number of loci” [29]). Genetic drift only slowly degrades expected heterozygosity 〈pq〉 at
each locus (Fig. S2), reducing the variance. Hence, over ecological time scales, genetic variance can
be treated as constant. Second, the effect of fluctuations due to genetic drift, scaling in one-dimensional
habitat with 1/(Nσ

√
s) (see Fig. S2), is expected to dominate over the effect of demographic fluctua-

tions, that rise with 1/(Nσ
√
r∗). Hence, we expect that the conditions determining whether adaptation

to an environmental gradient is sustainable within a single species’ will be described by just two of the
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dimensionless parameters. These are the effective environmental gradient B and the efficacy of selection
relative to the strength of genetic drift Nσ

√
s. We thus propose that the dynamics of species’ range evo-

lution can be understood based on bulk parametersB andNσ
√
s, rather then by focusing on asymmetric

gene flow near the range margins. Later, we show that the prediction holds even when B and Nσ
√
s

change steadily across space.

Threshold for collapse of adaptation

First, we simulated the basic model with a linear gradient, assuming equal phenotypic effects α of each
allele, and including both genetic and demographic stochasticity. Parameters were drawn at random from
distributions consistent with our knowledge of the range of parameters expected in nature [28, Discus-
sion] and ensuring that without genetic drift, all ranges would expand (see Fig. S1). Then, we performed
additional runs to test whether the threshold obtained from the linear gradient applies when parameters
are changing gradually across space. Namely, we tested whether a stable range margin forms at the
predicted value when the environmental gradient varies across space or when the carrying capacity is
non-uniform. Last, we tested the model assuming that allelic effects αi are exponentially distributed.

Fig. 2 shows our key result: the effective environmental gradient, B, and the efficacy of selection
relative to the strength of genetic drift, Nσ

√
s, determine the threshold for collapse of adaptation. This

is because the genetic variance evolves primarily in response to Nσ
√
s and B, whilst the effect of de-

mographic stochasticity, Nσ
√
r∗, is relatively weak. When B & 0.15Nσ

√
s, genetic drift strongly

degrades adaptation to a steeply changing environmental optimum, and the species’ range contracts. The
constant 0.15 is obtained as the best fitting threshold for the data in Fig. 2. At the start of all simulations,
the population is perfectly adapted in the central part of the available habitat. As both environmental gra-
dient and carrying capacity are uniform across the habitat, populations either steadily expand or contract.
Typically, populations contract from their margins and ultimately (over times much longer than 5000
generations of the simulation runs) collapse to a state with no or very little clinal variation. However,
when genetic drift is very strong, populations collapse abruptly or even fragment (Fig. S3): this second
threshold, based on a “critical gradient” of a phenotypic model, is explained later. This model with an
idealised linear gradient and uniform carrying capacity is used to identify the relationship between the
driving parameters Nσ

√
s and B, which determine whether a population can adapt to an environmental

gradient.

In reality, the environment does not vary precisely linearly, and the carrying capacity is not uni-
form. When the steepness of the environmental gradient varies steadily across space, this threshold,
B∗ ≈ 0.15Nσ

√
s, indicates where a stable range margin forms (Fig. 3). Without genetic drift, the

genetic variance would steadily inflate with increasing environmental gradient, gradually reducing local
population size due to an increasing number of maladapted individuals (see dashed lines in Fig. 3D).
With genetic drift, the variance is pushed below the level necessary to maintain adaptation, the trait
mean abruptly fails to match the optimum, and so a sharp margin to the range forms. Similarly, a sharp
range margin forms when B & 0.15Nσ

√
s, if carrying capacity declines across the habitat for extrinsic

reasons (Fig. S4). Species’ range is more robust to spatial fluctuations in carrying capacity within the
occupied habitat. Whilst range expansion stops at the predicted threshold, a (locally) large fall in density
below the threshold is necessary for the range to fragment within a previously occupied habitat: see Fig.
S5.
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A sharp range margin forms not only when all loci have equal allelic effects (i.e., the trait changes
by a fixed value due to every substitution), but also when allelic effects are exponentially distributed.
Then, range expansion slows down progressively around the threshold (Figs. S6 and S7), described by
B∗ = 0.15Nσ

√
s, where the mean selection coefficient is s ≡ α2/(2Vs). The mean selection coeffi-

cient gives an estimate for the expected range margin because clines at weakly selected loci are degraded
by genetic drift (Fig. S2 and [26]), reducing the genetic variance. For the population to expand further
beyond the threshold, positively selected alleles with increasingly large effect need to arise (Fig. S7; see
also [30]). In natural populations, these become ever rarer; and for any finite distribution of allelic effects
(as in our model), are exhausted.

In the absence of genetic drift, low dispersal can enhance adaptation by reducing swamping by gene
flow [11,16]. However, with genetic drift, this is no longer true. To a first approximation, both the efficacy
of selection relative to genetic drift Nσ

√
s and the effective environmental gradient B = bσ/(

√
2Vsr

∗)
increase at the same rate with dispersal. Only a weak dependence on dispersal remains via r∗ (because
N̂ = Kr∗/rm and r∗ decreases with increased genetic load due to mixing across the gradient), which
favours low to intermediate dispersal: see Fig. S9. This beneficial effect of intermediate dispersal [23]
can be much stronger in one-locus models where gene flow brings both new targets for mutation and pos-
itively selected mutants but does not directly swamp adaptation: the fitness decreases due to crowding
in the new habitat [31] and mutation of the advantageous mutants back to the old habitat [32]. Increased
dispersal can thus be beneficial even in the absence of inbreeding depression – c.f. [33].

A second threshold, above which the population collapses abruptly, can be understood from a de-
terministic phenotypic model with fixed genetic variance [9]. This theory showed that when genetic
variance VG is fixed, there is a critical environmental gradient Bc ∼

√
2A (where A = VG/(r

∗Vs)),
above which the trait mean fails to track the spatially changing optimum, and the population is well
adapted only in the centre of its range (see [9, p.6] and [28, Fig. 3]). However, such a limit does not exist
when genetic variance evolves due to gene flow across environments [11] in the absence of genetic drift.
We show that genetic drift can reduce the variance such that the “critical gradient” Bc is reached, despite
the variance evolving: then, population abruptly loses most of its genetic variation and suffers a demo-
graphic collapse (Fig. 4). This demographic collapse may lead to either a rapid extinction from most of
the species’ range or to range fragmentation, when a species cannot maintain adaptation throughout the
whole range, yet multiple isolated populations persist (Fig. S3).

Discussion

We are just becoming to be able to assess the genomics of local adaptation across a species’ range [34].
Hence, there is a great need for a theory that integrates both genomic and demographic data. It would
be exciting to see how our prediction improves experimental tests of the causes of range limits in one-
dimensional habitats such as along a deep valley or a river, such as [16], that assumed fixed genetic
variance [9]. The predictive parameters can in principle be measured: transplanting individuals exactly
one standard deviation along the environmental gradient gives a loss of fitness B2/r∗. The parameter
r∗, which describes the rate of return of population to equilibrium can be estimated (eg., following [35]).
Neigbourhood size in a one-dimensional habitat,

√
πNσ, can be estimated from neutral markers [36, Eq.

2]. The efficacy of selection relative to genetic drift, Nσ
√
si, will vary across loci. The selection co-

efficients si = αi
2/(2Vs) can then be estimated either by mapping allelic effects αi from the QTLs
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(quantitative trait loci) underlying an adaptive trait and measuring the strength of stabilising selection
1/(2Vs), or by estimating the selection per locus directly from the steepness of the clines in allele fre-
quencies across space. Steepness of clines gives the desired si even under pleiotropy, whereas the first
measure gives the stabilising selection due to all pleiotropic effects. Given a fixed (finite) distribution of
selection coefficients si, we can predict when adaptation is expected to fail: for example, when, given a
reduction in population size, a species’ range would become prone to fragmentation.

Our main result, that adaptation fails when the effective environmental gradient is large relative to the
efficacy of selection versus genetic drift, B = bσ/(r∗

√
2Vs) & 0.15Nσ

√
s, can be rephrased to a form

that is closely related to Haldane’s cost of selection [37]. Haldane showed that in a single population,
each substitution requires a certain number of selective deaths (i.e., reduction in mean fitness relative to
the maximum possible), which is nearly independent of the strength of selection per locus. In our model
with a spatially varying environment, b/α substitutions are required per unit distance: as we assume hard
selection, these substitutions need to also arise via selective deaths. If too many selected substitutions
are needed relative to births in the population, such that b/α & 0.15N r∗, adaptation fails (Fig. S8).
However, this failure is due to stochastic fluctuations, and so depends on the effective number of deaths
per generation, Nr∗. Note that a sharp range margin cannot form when selection is soft – when K fittest
phenotypes are always selected, a population spreads as long as its fitness is above zero.

This intrinsic limit to adaptation was found by analysing one-dimensional habitats: whilst initial sim-
ulations show that all driving parameters are preserved for a narrow two-dimensional habitat, as habitats
become wide (& 100σ), the effect of genetic drift changes: stochastic fluctuations of allelic frequencies
become only weakly dependent on selection [38]. The range limits for broad two-dimensional habitats
will be the subject of a future paper.

Our theory shows that there is an inherent limit to adaptation arising in any (finite) natural population,
and identifies the key parameters that determine this limit to a species’ range. It explains that a sharp
range margin forms when fitness cost, induced by a spatially varying environment, becomes too high
relative to the efficacy of selection in the presence of genetic drift – even in the absence of fixed genetic
constraints, such as insufficient genetic variance [9, 39] or rigid fitness trade-offs between traits [40, 41].
Because the threshold depends only on the fitness cost of dispersal and the efficacy of selection per locus
relative to genetic drift, it readily generalises to many traits. It gives an upper limit: even in the absence
of trade-offs (whether transient or rigid), adaptation fails at the estimated threshold. Throughout, we
have assumed additivity between the allelic effects: that is consistent with the experimental evidence,
suggesting that statistical epistasis is typically weak [42].

Within an already occupied habitat, small fluctuations in carrying capacity below the predicted
threshold do not lead to range fragmentation. Nevertheless, the coherence of the species’ range is sen-
sitive to habitat fragmentation: a local but large fall in carrying capacity facilitates extinction from its
boundaries wherever the threshold has been crossed (Fig. S5). Swamping by gene flow at the existing
margins, as emphasised by [2], is important for the formation of a sharp range edge – even though the
local bulk parameters B and Nσ

√
s predict where the range margin forms. Our theory is entirely con-

sistent with the lack of evidence for an abundant centre [43] and with only a small decrease in neutral
diversity in peripheral populations [14]: we show that even a small decrease in the attainable equilibrium
density (carrying capacity) can lead to a sharp range margin.
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The theory also implies that gradual decrease in carrying capacity can lead to a collapse of adaptation
as genetic drift erodes the genetic variation, causing a sudden collapse or a fragmentation of a species’
range. When the effective environmental gradient B varies across space, steeper sections would act as
barriers to a species’ spread – in contrast to the deterministic model [11].This is important for manage-
ment of biological invasions when adaptation is required [44, 45] and for biological conservation [46]:
a species’ range may collapse due to genetic drift well before demographic factors (emphasised in [47])
become significant [46]. Understanding species’ range limits in a constant environment is also essential
before extending the model to account for temporally changing environments, such as when modelling
joint adaptation and range expansion in species’ responding to climate change [48]. Furthermore, the
predicted emergence of inherent limits to species’ ranges across steadily varying environments offers ex-
tensions to the theory of ecological speciation, and eventually, may help us to elucidate macroecological
patterns of biodiversity.

Materials and Methods

Evolutionary and ecological dynamics

We model the joint evolution of i) population size and ii) trait mean and its variance via change in allele
frequencies. The fitness of an individual declines quadratically with the deviation of the trait z from an
optimum θ that changes linearly across space: θ = b x, where b is the gradient in the environment and x
is the distance in one dimension. The phenotypic trait z is determined by many additive di-allelic loci,
so that genetic variance can evolve. For simplicity, we use a haploid model: for additive allelic effects,
the extension to a diploid model is straightforward.

The Malthusian fitness of a phenotype z is r(z,N) = re(N)+rg(z), where re(N) is the growth rate
of a perfectly adapted phenotype, and includes density dependence; rg(z) ≤ 0 is the reduction in growth
rate due to deviation from the optimum. N is the population density.

The ecological component of growth rate re can take various forms: we assume that regulation is
logistic, so that fitness declines linearly with density N : re = rm(1 − N/K), where rm is the maxi-
mum per capita growth rate in the limit of the local population density N → 0. The carrying capacity
K (for a perfectly adapted phenotype) is assumed uniform across space. Stabilising selection on the
optimum θ has strength 1/(2Vs). Hence, for any individual, the drop in fitness due to maladaptation is
rg(z) = − (z−θ)2

2Vs
. The genetic component of the local mean fitness is then rg(z) = − (z−θ)2

2Vs
− VP

2Vs
,

where VP = VG + VE is the phenotypic variance. The loss of fitness due to environmental variance
VE can be included in r∗m = rm − VE/(2VS); hence in this model, VE is a redundant parameter. We
assume that selection is hard: the mean fitness – and hence attainable equilibrium density – decreases
with increasing maladaptation: r(z,N) = re(N)+rg(z). I.e., we assume that resources become scarcer
as maladaptation increases.

For any given additive genetic variance VG (assuming a Gaussian distribution of breeding values),
the trait mean z satisfies:

∂z

∂t
=
σ2

2

∂2z

∂x2
+ σ2

∂ ln(N)

∂x

∂z

∂x
+ VG

∂r

∂z
+ ζ (1)

The first term gives the change in the trait mean due to migration with mean displacement of σ, the
second term describes the effect of the asymmetric flow from areas of higher density and the third term

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2015. ; https://doi.org/10.1101/012690doi: bioRxiv preprint 

https://doi.org/10.1101/012690
http://creativecommons.org/licenses/by-nc-nd/4.0/


gives the change due to selection [49, Eq. 2]. The last term ζ gives the fluctuations in the trait variance
due to genetic drift (following [25], and using VG,LE =

∑
i α

2
i piqi): ζ =

√
VG,LE/N dWζ(x, t), where

dW∗ represents white noise in space and time. VG,LE denotes genetic variance assuming linkage equi-
librium – see SI: Linkage equilibrium.

The trait mean is z =
∑

i αipi for a haploid model,where pi is the i-th allele frequency, qi = 1− pi
and αi is the effect of the allele on the trait – the change of the trait mean z as frequency of locus i
changes from 0 to 1. For both haploid and diploid models, the allele frequencies pi change as:

∂pi
∂t

=
σ2

2

∂2pi
∂x2

+ σ2
∂ log(N)

∂x

∂pi
∂x

+ piqi
∂r

∂pi
− µ(pi − qi) + ε (2)

The expected change of allele frequency due to a gradient in fitness and local heterozygosity is
piqi

∂r
∂pi

= si piqi(pi− qi−2∆i), where selection at locus i is si ≡ α2
i /(2Vs) and ∆i = (z− bx)/αi [11,

two-allele model, Appendix 3]. Here, the fourth term describes the change due to (symmetric) mutation
at rate µ. The last term ε describes genetic drift (following [25]: ε =

√
piqi
N dWε(x, t).

Equation 2 is only exact at linkage equilibrium (i.e., neglecting covariance between allele frequen-
cies): but we will see that this is a good approximation for unlinked loci. Whereas migration across the
habitat generates positive linkage disequilibrium between any pair of loci, stabilising selection drives
negative disequilibrium, and these cancel precisely unless selection per locus is strong. The derivation,
which generalizes an ingenious but little known argument by Felsenstein [50], is given in SI: Linkage
equilibrium.

Population dynamics reflect diffusive migration, growth due to the mean Malthusian fitness r, and
stochastic fluctuations. The number of offspring follows a Poisson distribution with mean and variance
of N . Fluctuations in population numbers are given by ξ =

√
N dWξ(x, t) (e.g. [51]):

∂N

∂t
=
σ2

2

∂2N

∂x2
+ rN + ξ (3)

Rescaling

The model can be further simplified by rescaling time t relative to the strength of density dependence
r∗, distance x relative to dispersal σ, trait z relative to strength of stabilising selection 1/(2Vs) and lo-
cal population size N relative to equilibrium population size with perfect adaptation N̂ = Kr∗/rm; as

in [9, 11]: T = r∗t, X = x
√

2r∗
σ2 , Z = z√

r∗Vs
, Ñ = N/N̂ .

The rescaled equations for evolution of allele frequencies and for demographic dynamics are:

∂Ñ

∂T
=

∂2Ñ

∂X2
+RÑ +

√
Ñ

N̂σ
√
r∗
dWξ̃(X,T ) (4)

∂p

∂T
=

∂2p

∂X2
+ 2

∂ log(Ñ)

∂X

∂p

∂X
+

s

r∗
(pq − 2

Z −BX
α∗

)−

− µ

r∗
(p− q) +

√
pq

ÑN̂σ
√
s
dWε̃(X,T ) (5)
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where R ≡ r/r∗ = 1− Ñ − (BX − Z)2/2.
The rescaled equations 4 and 5 show that four parameters fully describe the system. The first two are
i) the effective environmental gradient, B ≡ bσ/(r∗

√
2Vs) and ii) the strength of genetic drift relative

to selection, near the equilibrium Ñ = 1, 1/(N̂σ
√
s). As a third parameter, one can either take iii)

demographic stochasticity relative to strength of density-dependence 1/(N̂σ
√
r∗) or the ratio of N̂σ

√
s

to N̂σ
√
r∗, which is the strength of selection relative to density dependence, s/r∗. (The scaled effect of

a single substitution, α∗ ≡ α/
√
r∗Vs =

√
2s/r∗.) The effect of this third parameter is small, because

s ≪ r∗. The fourth parameter, µ/r∗, will typically be very small, and hence we will neglect it. Note
that N̂ gives population density, where population is still well adapted: N = N̂ throughout most of the
species’ range away from sink regions near the existing margins. Table 1 (bottom) summarises the full
set that describes the system.
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[48] Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470: 479–485.

[49] Pease C, Lande R, Bull J (1989) A model of population growth, dispersal and evolution in a changing environment.
Ecology 70: 1657–1664.

[50] Felsenstein J (1977) Multivariate normal genetic models with a finite number of loci. In: Pollak E, Kempthorne O,
Bailey Jr T, editors, Proceedings of the International Conference on Quantitative Genetics, Iowa State University Press.
pp. 227–245.

[51] Lande R, Engen S, Sæther BE (2003) Stochastic population dynamics in ecology and conservation. Oxford University
Press.

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2015. ; https://doi.org/10.1101/012690doi: bioRxiv preprint 

https://doi.org/10.1101/012690
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

0 50 100 150 200 250
0

5

10

15

20

Space

O
p

ti
m

u
m

Θ
,

T
ra

it
z
,

z B

0 50 100 150 200 250
0

50

100

150

200

250

300

350

Space

P
o

p
u

la
ti
o

n
s
iz

e
N

C

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

Space

A
lle

le
fr

e
q

u
e

n
c
ie

s
p

i D

0 50 100 150 200 250
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Space

V
G

,
V

L
E

Figure 1: Illustration of the individual based model at the limit of weak genetic drift, when the species’
range keeps expanding as predicted by the deterministic model [11]. (A) Trait mean z matches the
optimum θ = b x (dashed line), shown for the starting population (light blue) and after 5000 generations
(dark blue). The spread of the trait values z for all individuals is shown with dots. (B) Local population
size is close to the deterministic prediction (dashed line) N̂ = Kr∗/rm = K(1 − σb

2
√
Vsrm

), where K
gives the carrying capacity for a well adapted phenotype. (C) Clines for allele frequencies are shown
by thin black lines; the predicted clines (dashed) have widths ws = 4σ/

√
2s and are spaced α/b apart.

(D) Total genetic variance is shown in blue, the linkage-equilibrium component in black; the dashed line
gives the prediction VG = VLE = bσ

√
Vs: each cline contributes genetic variance VG,i = αi σ

√
Vs

and per unit distance, there must be b/α clines if the trait mean matches into the optimum [11, p. 378].
Parameters, defined in Table 1: b = 0.1, σ2 = 1/2, Vs = 2, rm = 1.025, K = 300, α = 1/

√
20,

µ = 10−6, 5000 generations.
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Figure 2: Species’ range starts to contract when the effective environmental gradient is steep compared
with the efficacy of selection relative to genetic drift: B & 0.15Nσ

√
s, where B = bσ/(r∗

√
2Vs). This

threshold is shown by a dashed line. The rate of expansion increases from light to dark blue and rate of
range contraction increases from orange to red. Grey dots denote populations for which neither expansion
nor collapse is significant at α = 2%. Open dots indicate fragmented species’ ranges (illustrated by Fig.
S3). The ranges of the underlying (unscaled) parameters are in the following intervals: b = [0.01, 1.99],
σ = [0.5, 4.8], Vs = [0.006, 8.4], K = [4, 185] , rm = [0.27, 2] and α = [0.01, 0.39], µ = [10−8, 8 ·
10−5]; the number of genes is between 7 and 3971. The selection coefficient per locus is hence in the
interval of s = [3 · 10−4, 0.66], with median of 0.007. Parameter distributions are shown in Fig. S1.
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Figure 3: With a steepening environmental gradient, a stable range margin forms when B & 0.15Nσ
√
s

(red dots). (A) The gradient in trait mean follows the environmental optimum (dashed line) until the
gradients steepens so that B & 0.15Nσ

√
s, where expansion stops. (B) Population density drops off

sharply when the predicted threshold (red dots) is reached. Dashed line gives the predicted population
size assuming variation is not eroded by genetic drift. (C) Three representative clines are shown in black,
other clines form the gray background. (D) Adaptation fails when genetic variance fails to increase fast
enough to match the steepening environmental gradient (total variance VG in black, linkage-equilibrium
component VLE in blue). For all subfigures, dashed lines give deterministic predictions ( [11] and Fig.
1). Parameters: central gradient b0 = 0.12, σ2 = 0.5, Vs = 0.5, rm = 1.06, K = 53, µ = 2 · 10−7.
Time = 100 000 generations; expansion stops after 40 000 generations; (A) also shows the initial stage
in light blue.
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Figure 4: The phenotypic model predicts a second sharp transition in the dynamics (Bc, dashed
curve). As the effective environmental gradient B ≡ bσ/(r∗

√
2Vs) increases, the scaled variance

A ≡ VG/(r
∗Vs) increasingly deviates from the deterministic prediction with evolvable variance ( [11],

gray dotted line). The variance decreases due to the combined forces of genetic drift (see Fig. S2 A) and
selection on small transient deviations of the trait mean from the optimum. Once Bc &

√
2A (dashed

curve), the population collapses abruptly. Furthermore, no adaptation is maintained beyond the solid
line Be = (2 + A)/

√
2, where the phenotypic model [9] predicts extinction. Open dots (lower right)

denote fragmented species’ range (Fig S3). The colours are as in Fig. 2, the threshold when range starts
to contract, B ∼ 0.15Nσ

√
s, is illustrated by the short steep dashed line. Parameters: b increases from

0.025 to 1.25, σ2 = 1/2, Vs = 1/2, K = 50, α = 1/10, rm = 1.06, 5000 generations. Ten replicates
are shown for each B.
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parameter dimension description

b Z/D gradient in the environmental optimum

Vs Z2T variance of stabilising selection

σ D/
√
T standard deviation of dispersal distance per generation

K T/D carrying capacity for a well adapted phenotype

rm 1/T maximum exponential growth rate

α Z allelic effect

µ 1/T mutation rate

s 1/T selection per locus: s ≡ α2/(2Vs)

r∗ 1/T rate of return to equilibrium pop. size: r∗ = rm − VG

2Vs

B – effective environmental gradient,
√

dispersal load / r∗: B = bσ/(r∗
√

2Vs)

Nσ
√
s – efficacy of selection relative to the strength of genetic drift

Nσ
√
r∗ – efficacy of population regulation relative to demographic stochasticity

Table 1: Three scale-free parameters: B, Nσ
√
s and Nσ

√
r∗ describe the system. Top section

gives seven parameters of the model before rescaling, middle section gives important composite parame-
ters. Denoting the dimensions, T stands for time, D for distance and Z for trait. Note that with a Poisson
number of offspring, the effective population sizeNe (which measures rate of genetic drift / coalescence)
is identical to the N that regulates population growth due to crowding: hence both carrying capacity K
and population size N have units of T/D. Mutation rate µ is set to be small, with minimal contribution
to the dynamics, and hence µ/r∗ is neglected in the rescaled parameterization (bottom).
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Supplementary text contains SI: Individual-based model, SI: Linkage Equilibrium, Supplementary Figures

SI: INDIVIDUAL-BASED MODEL

We test the predictive power of the derived key parameters using individual based simulations. Individuals are

distributed among demes that form a one-dimensional habitat, with the phenotypic optimum varying along the

habitat, and experience a life cycle consisting of selection, mutation, recombination, and then dispersal. Distance

is measured in demes, time in generations. Every generation, each individual mates with a partner drawn from the

same deme, with probability proportional to its fitness, to produce a number of offspring drawn from a Poisson

distribution with mean of Exp[r], where r is the individual’s Malthusian fitness in continuous time. Generations

are non-overlapping. Individual fitness declines due to deviation of the phenotypic trait (z) from the optimum

and due to crowding (fitness is density-dependent). The trait is determined by a number of additive di-allelic loci,

which permits genetic variation to evolve. All parameters are described in Table 1. The model is derived as a limit

to continuous time, and so applies to a wide range of models that reduce to this limit. In this limit, the rate of

spatial dispersal depends only on the variance of distance moved, and the effective population density (for both

allele frequency and demographic fluctuations) depends only on the variance of offspring number.

Life cycle: Discrete-time individual based simulations are set to correspond to the model with continuous time

and space. The life-cycle is selection→ mutation→ recombination→ migration.

Dispersal: The habitat is formed by a one-dimensional array of demes. With deme spacing δx = 1, the population

size per deme corresponds to the population density. We assume diffusive migration with a Gaussian dispersal

kernel. The tails of the dispersal kernel need to be truncated: we choose truncation at two standard deviations of

the dispersal kernel throughout, and adjust the dispersal probabilities following [1, p. 1209] so that the discre-

tised dispersal kernel sums to 1, and the variance of dispersal is adjusted correctly. For dispersal per generation

at σ =
√

1/2, dispersal reduces to a nearest neighbour migration with a probability of migration left and right of

m = 1/4.

Selection: Every generation, each individual produces a Poisson number of offspring with mean of the individual’s

fitness Exp[(r)]; where r = rm(1−N/K)− (z−θ)2
2Vs

, as defined earlier.

Mutation: Mutation rate is set to be small so that its contribution to genetic variance is negligible, but large

enough to in principle enable expansion of a species’ range over the total time of 5000 generations. Specifically,

it is set to one substitution per the whole population and generation. Genetic variance maintained in a population

due to dispersal across environments can be substantially larger than genetic variance maintained by mutation-

selection balance in uniform environments. In uniform environments, mutational variance Vm =
∑nl

i µα2
i (where

αi are the allelic effects, and nl is the number of loci) is robustly estimated to be between about 5 · 10−5VE and

5 · 10−3VE [2]. Taking a heritability h2 ≡ VG/(VG + VE) = 1/3 we get Vm between 10−4VG and 10−2VG. In

our model, genetic variance is inflated due to dispersal across environments, and so Vm/VG must be yet smaller.
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Taking the higher limit of Vm = 10−2VG, follows that µ should be smaller than about 4 · 10−3. It turns out that in

general, the increase of genetic variance due to mutation cannot be fully included in the predictions, as the contri-

bution of mutation–selection balance cannot be robustly separated from the clinal variation. A considerably higher

genetic variance than VG,mut = 2µnl Vs (up to the limit of 1/4α2nl) can arise due inflation of the variance by

mutation along existing clines. Therefore, we concentrate on a parameter range where the contribution of mutation

to genetic variance is low, which is a biologically plausible range. In our model, genetic variance is maintained by

gene flow across the environment.

Reproduction, recombination: The mating partner is drawn from the same deme, with the probability propor-

tional to its fitness. Selfing is allowed at no cost. The genome is haploid with unlinked loci (the probability of

recombination between any two loci is 1/2); the allelic effects αi of the loci combine in an additive fashion.

Simulation runs: Evolution starts with a well adapted population at the centre of the habitat. The habitat is about

10 cline widths wide; the number of genes is chosen so that with all genes adapted, the population spans the whole

habitat, and that there are enough genes to maintain the “optimal” variance VG = bσ
√
VS at the central part of

the habitat. At the start of the simulation, half of the genes are adapted: their clines take the form and spacing as

assumed for the deterministic model under linkage equilibrium.

The population evolves for 5000 generations; in total, we recorded over a thousand runs where without genetic drift

the local population density would be greater than 4 assuming uniform adaptation (such that trait mean matches

the optimum). We a-priori eliminated very small local population sizes (N < 4) so that the population size within

a generational dispersal is not excessively small. The parameters were first varied one at a time, and then we tested

the threshold drawing the parameters from distributions consistent with our knowledge of the range expected in

nature (see [3, Discussion]). The latter will be referred to as the “random” set, with 1000 runs. The Mathematica

code for the simulations, including the distributions used to draw the unscaled parameters for the “random” set

is provided in FileS1. Fig. S1 shows the realised distributions for both the unscaled parameters and compound

parameters.
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SI: LINKAGE EQUILIBRIUM

Stabilising selection on a quantitative trait generates negative linkage disequilibrium, whereas dispersal generates

positive linkage disequilibrium. Felsenstein’s [4] analysis of variance components showed that at equilibrium, the

linkage disequilibrium generated by dispersal cancels out with the negative linkage disequilibrium generated by

stabilising selection.

The argument extends to a quantitative trait determined by many di-allelic loci, here demonstrated for a haploid

genome. The genetic variance is VG =
∑
α2
i pi(x)qi(x) + 2

∑
i 6=j αiαjDij . The increase of linkage disequilib-

rium at QLE [5, quasi-linkage equilibrium] between dispersal with variance σ2 and recombination rij is given by

Dij|disp = σ2

rij

dpi
dx

dpj
dx [7]. With allele frequencies at equilibrium, the linkage disequilibrium generated by stabilis-

ing selection alone is Dij|sel =
−r+
√
r2ij+4(1−rij)αiαj/Vs piqipjqj

2(1−rij) ∼ −αiαj/(rijVs) piqipjqj for Dij small.

In this first order approximation, the terms cancel for each pair of loci when the cline shape is the same as

that under linkage equilibrium [6, two-allele model] – independently of the cline spacing across space: Dij ≡
Dij|disp +Dij|sel = 0. This is because dpi

dx = piqi 4/wi, and the cline width at linkage equilibrium is wi = 4σαi√
Vs

.

It may be that the cline width wi or the linkage disequilibrium is distorted by additional forces, and/or by strong

selection – then the linkage disequilibrium components due to dispersal and selection may not cancel. However,

unless selection is strong, the first order approximation gives a simple prediction for the pairwise disequilibrium:

Dij = Dij|disp + Dij|sel = σ2

rij
piqipjqj16/(wiwj) − αiαj/(rijVs) piqipjqj . For example, we can expect that

positive linkage disequilibrium Dij , generated by long-range dispersal, would drive steeper clines.

SUPPLEMENTARY FIGURES
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Figure S1: Distribution of parameters used in the “random set”, as described in Table 1. Grey: all unscaled

parameters. Light blue: Composite parameters. Dark green: Scale-free parameters (both s/r∗ and 1/(N̂σ
√
r∗)

are given for a reference though one of them is always redundant; see Materials and Methods: Rescaling).
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Figure S2: Cline width decreases as genetic drift gets stronger relative to selection. (A): Cline width, defined

as a measure of total heterozygosity across space (w ≡ 4
∫
p q), is approximated by w = ws(1− 0.392/(Nσ

√
s))

(thick dotted line; method from [3, supplementary text]). Dots give the median cline width across loci with their

positive and negative standard deviations. The dashed horizontal line gives the deterministic cline width, ws =

4σ/
√

2s [8, 9]. As the genetic drift gets very strong relative to selection, the predictions diverges (bottom right):

for very weak selection, the neutral limit 〈w0〉 → 4σ2N is approached (solid diagonal line; from [10]). Note that

genetic variance decreases with the same factor as cline width. (B): The decrease in cline width can be understood

from the rise in fluctuations of each cline – as fluctuations increase, allele frequencies fix locally and the cline

steepens. Fluctuations in clines 〈F 〉 rise approximately with 〈F 〉 = 0.392/(Nσ
√
s), shown by a dashed line.

〈F 〉 is the variance in allele frequencies scaled by the expected allele frequency, averaged across space, therefore

ranging between 0 and 1: 〈F 〉 ≡
∫∞
−∞ var(p(x,t))dx∫∞
−∞〈p(x,t)〉〈q(x,t)〉dx

[3, p. 228]. Note that these formulae apply only to one-

dimensional habitats: as the width of the second (selectively neutral) spatial dimension of the habitat increases,

the predictions will start to differ because the effect of genetic drift on a cline depends only weakly on selection

in two-dimensional habitats; see [11]). Parameters: b = 0.1, σ2 = 1/2, Vs = 2, rm = 1.025, α = 1/
√

20,

µ = 10−4, carrying capacity K increases from 4 to 260.
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Figure S3: Species range can fragment when B > 0.15Nσ
√
s (Fig. 2), and additionally, B >

√
2A (Fig.

4). Exact conditions that always lead to range fragmentation were not determined. Fragmented populations are

shown in open circles in Figs. 2 and 4. (A) Typically, the gradient in trait mean is zero within each fragment.

(B) Populations are disjunct, and across the habitat, the population size is considerably smaller than predicted for

“perfect” adaptation. (C) Typically, there is no clinal variation although transiently, a few clines are maintained.

(D) Correspondingly, local genetic variance is mostly near zero. Parameters: b .
= 1.18; σ2 .

= 1, Vs
.
= 0.44,

rm = 1.97, K = 29.2, µ = 6 · 10−8, α = 0.0093, time = 5000 generations (shown at generation 4800). Note,

that this fragmentation is not driven by edge effects that arise when population at the carrying capacity reaches the

edge of the available habitat, where there is less maladaptive gene flow, which leads to local increase of density,

followed by suppression of nearby populations towards the centre – and the effect propagates [12]. This effect is

explained in [1]. Here, the simulations are set up such that the population never reaches the margins of the available

habitat.
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Figure S4: Non-uniform carrying capacity generates a stable range margin. (A) The optimum changes across

the environment with a constant gradient b = 0.3 – the population starts well adapted at the more central part of

the habitat (lighter blue). (B) The population density declines away from the centre - red dots give the predicted

failure of the adaptation, based on B∗ = 0.15Nσ
√
s. (C) Three representative clines are shown in black, other

clines form the gray background (every tenth cline displayed). (D) Genetic variance is substantially lower than the

deterministic prediction (black dashed line). The dashed green line gives the predicted V ∗LE including the effect of

genetic drift: V ∗LE = VLE(1− 0.392/(N̂σ
√
s)) (see Fig. S2). Parameters: b = 0.3, σ2 = 1/2, Vs = 1, rm = 1.1,

µ = 10−7. Population is shown after a stable range margin is reached at time = 100 000 generations (with the

exception of the initial distribution of trait values, shown in light blue).
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Figure S5: Species’ range is more robust within the already occupied habitat. A drop in the density to or below

the predicted threshold B∗ = 0.15Nσ
√
s (dashed red line in (B)) prevents range expansion. Yet, a considerably

larger drop in the density is necessary before the range fragments within the occupied habitat (A, C). In this

example, species’ range contracted from a local drop in the density right in the middle of the range (arrow in

(B)), where locally, genetic drift depleted genetic variance to zero. Predicted segregating genetic variance V ∗LE =

VLE(1 − 0.392/(N̂σ
√
s)) is given by green dashed line in (D). Note that segregating genetic variance VLE =

∑
i α

2
i piqi (connected black dots, D) changes over scales of σ/

√
s, whereas population size (B) changes over

much smaller scales σ. Species’ range is more robust to fluctuations within the already occupied habitat because

migration from the neighbouring populations stabilizes the species’ range; the threshold (dashed red line) predicts

when on a linear gradient, species’ range would collapse from the margins. Subplot descriptions and deterministic

predictions (black dashed lines) are the same as in Fig. 1. Parameters: b = 0.3, σ2 = 1/2, Vs = 1, α =
√

1/50,

rm = 1.1, µ = 3 · 10−7, time = 40 000 generations. At the start of the simulation, population is adapted to the

central half of the available habitat. Carrying capacity is generated from a Gaussian distribution centred around the

threshold (N∗, dashed red line) with a standard deviation ofN∗/3; the width of the patches is uniformly distributed

between 1 and 30 demes.
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Figure S6: Sharp margin to a species’ range forms even when allelic effects αi are non-uniform. With

exponentially distributed allelic effects αi, the expansion slows down after 40 000 generations (see Fig. S7 A), at

the threshold predicted by mean selection per locus B∗ = 0.15Nσ
√
s = 0.34 (red dots). As in this example the

allelic effects are not bounded, over very long times, as rare alleles with large effect are recruited (see Fig. S7 B,C),

the species’ range slowly stretches beyond the threshold B∗. Parameters and subplot descriptions are the same as

in Fig. 3 – with the exception that the allelic effects are exponentially distributed, with mean α =
√

1/100. (C)

Note that when allelic effects vary across loci, occasionally a cline may establish in a reverse direction, correcting

a substitution with a large effect on the trait mean. (D) As genetic variance VG increases towards the margins, it

evolves to match the ever steeper environmental gradient: VG = bσ
√
Vs, prediction shown in dashed line. Gradient

in the central habitat is b = 0.12; σ2 = 1/2, Vs = 1/2, rm = 1.06, K = 50, µ = 2 · 10−7, time = 100 000

generations (with the exception of the initial distribution of trait values, shown in light blue).
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Figure S7: (A) Range expansion slows down near the threshold based on mean selection coefficient even when

the allelic effects αi are non-uniform (black). Yet, over very long times, further alleles with large effects can be

recruited as they are under stronger selection, and species’ range expands a little further. (Example from Fig. S6.)

The extent of range expansion is only fully bounded by the substitution with the largest selection coefficient that

can arise over a given time. For comparison, the rate of range expansion with equal allelic coefficients with αi = α

is given in gray (keeping all other parameters same, example from Fig. 3). (B, C) Over time, genetic drift degrades

clines with small allelic effects α. As more alleles with larger effect α contribute to adaptation, clines become

narrower and under stronger selection. Parameters as in Fig. S6. Note that the average selection coefficient is

s ≡ α2

2Vs
and in this example, s = α.
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Figure S8: Alternatively, the threshold for range collapse can be expressed as b/α & 0.15Nr∗. The

threshold holds well unless spacing between the clines, α/b, is smaller than about 1/10 - this reflects the limits of

our simulation system rather than a biological boundary – the deme-spacing is fixed to ∆x ≡ 1. Data and their

depiction are the same as in Fig. 2.
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Figure S9: Adaptation may suddenly fail if dispersal is too large. The threshold for collapse of adaptation

(dashed line, B ∼ 0.15Nσ
√
s) is weakly dependent on dispersal: to the first order, the effect cancels. Yet, for

our model, the strength of density dependence r∗ decreases with genetic variance (r∗ = VG/(2Vs)), which in

turn increases with σ; (r∗ → bσ/(2
√
Vs)). When r∗2/rm becomes smaller than 1, further increase in dispersal

is detrimental as it brings the population closer to the predicted threshold. This is because both B = bσ√
2Vsr∗

and Nσ
√
s = Kr∗/rm σ

√
s are both dependent on r∗ – and the effects multiply. The scale for the colouring

is adjusted (different to Fig. 2) so that the differences in the rate of range expansion (light to dark blue) and

contraction (orange to red) are visible; gray dots again denote population that expanded less than one deme over

5000 generations. Parameters: σ = [0.1, 4.24], b = 0.45, Vs = 1, r∗ ≡ 1 hence rm = [1.02, 1.95]; K = 28,

µ = 4 · 10−7, α =
√

1/35, time = 5000 generations.
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Figure S10: Effect of mutation rate on the rate of range expansion and local genetic variance. (A) Rate of

range expansion increases about linearly with mutation rate µ per locus and generation (5 · 10−8 < µ < 10−3).

When mutation becomes too high, then the rate of expansion first decelerates, and for yet higher mutation rates

(µ & 10−2), the population starts to collapse (c.f. [13]). Note that in general, mutation rate per locus and generation

is expected to be lower than about 10−4 (see Supplementary Text 3). (B) Local genetic variance VG increases with

mutation rate. For low to moderate mutation rates, genetic variance is maintained by mixing across the phenotypic

gradient, VG = bσ
√
Vs. The dashed curve gives the prediction bσ

√
Vs + 2µnlVs, which assumes the components

of genetic variance due to gene flow (first term) and mutation-selection balance (second term) combine additively,

whilst all nl loci are at linkage equilibrium: the mismatch between the dashed curve and the realised genetic

variance implies that with clinal variation, µ� s is not a sufficient condition for the contribution of mutation to be

negligible. The top dashed line gives the maximum variance possible, 1/4nl α
2 (where α is a phenotypic effect of

a single substitution). With increasing variance, population density drops steadily (not shown): eventually, species’

range starts to contract and population collapses. Parameters: b = 0.4, σ2 = 1/2, Vs = 1/2, rm = 1.06, K = 50,

α = s = 0.01, 800 genes. Initial population spans over 100 demes, population evolves over 5000 generations. For

both plots, error bars give the standard deviations.
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