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We present a new statistical test of association between a trait (either quantitative or

binary) and genetic markers, which we theoretically and practically prove to be robust

to arbitrarily complex population structure. The statistical test involves a set of pa-

rameters that can be directly estimated from large-scale genotyping data, such as that

measured in genome-wide associations studies (GWAS). We also derive a new set of

methodologies, called a genotype-conditional association test (GCAT), shown to pro-

vide accurate association tests in populations with complex structures, manifested in

both the genetic and environmental contributions to the trait. We demonstrate the pro-

posed method on a large simulation study and on the Northern Finland Birth Cohort

study. In the Finland study, we identify several new significant loci that other methods

do not detect. Our proposed framework provides a substantially different approach to

the problem from existing methods. We provide some discussion on its similarities and

differences with the linear mixed model and principal component approaches.

INTRODUCTION

Performing genome-wide tests of association between a trait and genetic markers is one of

the most important research efforts in modern genetics [1–3]. However, a major problem to

overcome is how to test for associations in the presence of population structure [4]. Human

populations are often structured in the sense that the genotype frequencies at a particular

locus are not homogeneous throughout the population. Rather, there are latent variables

(such as geography or ancestry) that directly affect the allele frequencies of the genotypes. At

the same time, there may be other loci and non-genetic factors that also correlate with these

latent variables, which in turn are correlated with the trait of interest. When this occurs, genetic

markers become spuriously statistically associated with the trait of interest despite the fact that

there is no biological connection.

The importance of addressing association testing in structured populations is evidenced

by the existence of a large literature of methods proposed for this problem [5, 6]. The well es-

tablished methods all take a similar strategy in that the trait is modeled in terms of the genetic

markers of interest, while attempting to adjust for genetic structure. Two popular approaches

are to correct population structure by including principal components of genotypes as adjust-
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ment variables [7, 8] or by fitting a linear mixed effects model involving an estimated kinship

or covariance matrix from the individuals’ genotypes [9, 10]. Previous work investigating the

limitations of these two methods include Wang, et al. (2013) [11]. These two approaches have

been shown to be based on a common model that make differing assumptions about how the

kinship or covariance matrices are utilized in the model [5]. This common model does not allow

for non-genetic (e.g., environmental) contributions to the trait to be dependent with population

structure. The linear mixed effects model requires that the genetic component is composed

of small effects that additively are well-approximated by the Normal distribution. The model

itself is therefore an approximation, and it is not yet possible to theoretically prove that a test

based on this model is robust to structure for the more general class of relevant models that

we investigate.

By taking a substantially different approach that essentially reverses the placement of the

trait and genotype in the model, we formulate and provide a theoretical solution to the problem

of association testing in structured populations for both quantitative and binary traits under

general assumptions about the complexity of the population structure and its relationship to

the trait through both genetic and non-genetic factors. This theoretical solution directly leads to

a method for addressing the problem in practice that differs in key ways from the mixed model

and principal component approaches. The method is straightforward: a model of structure is

first estimated from the genotypes, and then a logistic regression is performed where the SNP

genotypes are logistically regressed on the trait plus an adjustment based on the fitted struc-

ture model. The coefficient corresponding to the trait is then tested for statistical significance.

The class of models to which this provides a test robust to structure is fairly general.

This association testing framework is robust to population genetic structure, as well as to

non-genetic effects that are dependent or correlated with population genetic structure (for ex-

ample, lifestyle and environment may be correlated with ancestry) and with heteroskedasticity

that is dependent on structure. We introduce a test based on this framework, called “genotype

conditional association test” (GCAT). We show the proposed method corrects for structure on

simulated data with a quantitative trait and compares favorably to existing methods. We also

apply the method to the Northern Finland Birth Cohort data [12] and identify several new as-

sociated loci that have not been identified by existing methods. For example, the proposed

method is the only one to identify a SNP (rs2814982) associated with height, which we note

is linked to another SNP (rs2814993) that has been associated with skeletal frame size [13].

We discuss the advantages and disadvantages of the proposed framework with existing ap-
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proaches, and we conclude that the proposed framework will be useful in future studies as

sample sizes and the complexity of structure increase.

RESULTS

Population Structure Model

Suppose that there are n individuals, each with m measured SNP genotypes. The genotype

for SNP i in individual j is denoted by xij ∈ {0, 1, 2}, i = 1, 2, . . . ,m, j = 1, 2, . . . , n. We

collected these SNP genotypes into an m × n matrix X, where the (i, j) entry is xij . We

denote the genotypes for individual j by xj = (x1j, x2j, . . . , xmj)
T .

We utilize our recently developed framework that flexibly models complex population struc-

tures for diallelic loci [14]. Let Z be an unobserved variable describing how individuals fit into

the underlying population structure. For a SNP i, the allele frequency πi can be viewed as

being a function of Z, πi(Z). For a random sample of n individuals from an overall population,

we therefore have sampled population structure positions z1, z2, . . . ,zn with resulting allele

frequencies πi(z1), πi(z2), . . . , πi(zn) for SNP i. In Hao et al. (2013) [14], we formulate and

estimate a model for m SNPs simultaneously while providing a flexible parameterization of the

form of πi(Z).

For shorthand, πij ≡ πi(zj) is the allele frequency for SNP i conditioned on the ancestry

state of individual j. The πij values are called “individual-specific allele frequencies.” These

allele frequencies can be collected into an m × n matrix F, where the (i, j) entry is πij . Note

that E[xij/2|zj] = πij , and when Hardy-Weinberg equilibrium holds, xij|zj ∼ Binomial(2, πij).

We utilize the framework from Hao et al. (2013) [14] that allows the simultaneous estimation of

all πij from a given genotype data set X. Specifically, it provides estimates of latent variables

that form a linear basis of the logit(πij) = log(
πij

1−πij ) quantities, which turns out is the most

convenient scale on which to estimate a model of structure for the proposed testing framework.

The model and estimation procedure is called “logistic factor analysis” (LFA). It should be noted

that other well-behaved estimates of πij may be utilized as well. Further details are provided

in METHODS.
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Trait Models

We assume a trait (quantitative or binary) has been measured on each individual, which we

denote by yj , j = 1, 2, . . . , n. One way in which spurious associations occur in the presence

of population structure is that SNPs become correlated with each other when structure is not

taken into account. Therefore, if a SNP is causal for the trait of interest, then any other SNP

correlated with this causal SNP may also show an association. For SNPs in linkage disequi-

librium due to their physical proximation with the causal SNP, one expects these to be asso-

ciated with the trait regardless of structure. However, in the presence of structure, there may

be many unlinked SNPs that also show associations with the trait due the fact that structure

induces correlations of these SNPs with the causal SNP. Indeed, one of the early methods for

detecting structure in association studies was to show that many randomly chosen, unlinked

SNPs show associations to the trait [4]. This source of confounding is typically the main focus

of association tests designed for structured populations.

Another key issue that is less often considered is the fact that lifestyle and environment

are also often related to ancestry (Figure 1a). This implies that non-genetic effects may also

be directly related to structure. We therefore extend the concept of the latent variable Z to in-

clude not only population genetic structure, but also lifestyle and environment: Z = (structure,

lifestyle, environment). For each observed individual j, there is an underlying latent variable

zj that contains the information about structure, lifestyle, and environment for individual j. We

allow for the case that structure or ancestry may be directly influential on or related to lifestyle

and environment, and that all three of these variables may influence the trait of interest. An

association test that is immune to structure should also be immune to the non-genetic effects

that are confounded with structure.

We consider the following models of quantitative and binary traits. We write the trait models

in terms of additive genetic effects, but the framework can be extended to account for domi-

nance models and interactions, and the models can also incorporate adjustment variables that

capture known sources of trait variation.

The quantitative trait model is

yj = α +
m∑
i=1

βixij + λj + εj, (1)

where βi is the genetic effect of SNP i on the trait, λj is the random non-genetic effect, and

εj is the random noise variation. To allow the interdependence of structure, lifestyle, and
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environment, we assume that xj = (x1j, . . . , xm,j)
T , λj , and σ2

j may all be functions of zj . We

assume that E[εj|zj] ∼ Normal(0, σ2
j (zj)), which allows for heteroskedasticity of the random

noise variation. The distribution of λj can remain unspecified, although we assume that λj and

zj may be dependent random variables. The population genetic model summarized shows

how the distribution of (xij)
m
i=1 depends on zj . Without having observed zj , it follows that

(xij)
m
i=1, λj , and εj are dependent random variables; however, we assume that conditional on

zj , these random variables are independent.

The binary trait model is

log

(
Pr(yj = 1)

Pr(yj = 0)

)
= α +

m∑
i=1

βixij + λj, (2)

where again βi is the genetic effect of SNP i on the trait, λj is the non-genetic effect, and we

allow for the case that xj and λj may be dependent due to the common confounding latent

variable zj as described for the quantitative trait model.

We have shown that the linear mixed effects model and principal components approaches

involve more restrictive assumptions about the trait models utilized in testing for associations

(METHODS).

Motivation and Rationale of the Proposed Test

The rationale for the proposed test is schematized in Figure 1. The SNP Xi and the trait

Y become spuriously associated because they are under the influence of a common latent

variable Z. This latent variable contains information on population structure, lifestyle, and

environment, all of which may be interdependent and play a determining role in the trait. The

problem is that we cannot directly observe Z and we would like to avoid making assumptions

about its mathematical form. If we can successfully construct either Xi|Z (the distribution of

Xi conditional on Z) or Y |Z, then it is possible to perform a test of association between Xi

and Y that is immune to the effects of Z. Possible association tests should occur between

Xi|Z and Y , between Xi and Y |Z, or between Xi|Z and Y |Z.

The linear mixed model and principal components approaches can be interpreted as at-

tempts to estimate a model of Y |Z. This requires additional assumptions about non-genetic

and genetic effects, and their relationship to Z, specifically there is no relationship between

structure and non-genetic effects in the trait model (METHODS and ref. [5]). Due to the mas-

sive number of SNPs that have been measured in GWAS, trying to constructXi|Z is appealing
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since we have an abundance of information about the effect of latent variables on the geno-

types. (For example, this can easily be visualized in principal components constructed from

the genotypes.) Our approach is therefore to carry out an association test between Xi|Z and

Y by specifically testing whether there is equality or not between Pr(Xi|Y,Z) and Pr(Xi|Z)

(Figure 1b). If Pr(Xi|Y,Z) = Pr(Xi|Z) then there is no association between the SNP Xi and

the trait Y ; if Pr(Xi|Y,Z) 6= Pr(Xi|Z), then there is an association. This test of association is

in theory immune to population structure because we have taken into account Z.

One remaining problem is that we cannot observeZ. However, it is straightforward to show

that when there is no association Pr(Xi|Y,Z, πi(Z)) = Pr(Xi|Y, πi(Z)) and Pr(Xi|Z, πi(Z)) =

Pr(Xi|πi(Z)). In other words, in order to capture Xi|Z, it suffices to capture Xi|πi(Z), the

effect of Z on the allele frequency of SNP i. We have recently developed a framework that

flexibly parameterizes and estimatesXi|πi(Z) [14]. In order to test whether Pr(Xi|Y, πi(Z)) =

Pr(Xi|πi(Z)), we perform a logistic regression of the SNP genotypes Xi on the trait Y plus

the transformed individual-specific allele frequencies, logit(πi(Z)), where logit(p) = log( p
1−p)

for 0 < p < 1. This inverse regression approach is a substantial departure from the most

commonly employed methods that attempt to adjust for population structure.

Association Test Immune to Population Structure

We have derived a statistical hypothesis test of association that is equivalent to testing whether

βi = 0 for each SNP i in the above trait models (1) and (2), and whose null distribution does

not depend on structure or the non-genetic effects correlated with structure, making it immune

to spurious associations due to structure (METHODS). Specifically, the test allows for general

levels of complexity in structure because the test is based on adjusting for structure according

to individual-specific allele frequencies.

We have proved a theorem (METHODS) that shows that βi = 0 in models (1) and (2) implies

that bi = 0 in the following model:

xij|yj, zj ∼ Binomial
(
2, logit−1(ai + biyj + logit(πij))

)
,

logit

(
E[xij|yj, zj]

2

)
= ai + biyj + logit(πij) (3)

for all j = 1, 2, . . . , n. This establishes a model that can be used to test for associations in

place of models (1) and (2). Note that the non-genetic effects, heteroskedasticity, and poly-

genic background do not appear in the above model used to test for associations. This is
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important because under our general assumptions, these terms can be difficult or even im-

possible to estimate in practice. Furthermore, testing for association under this model means

that the test will have a valid null distribution regardless of the form of the non-genetic effects,

heteroskedasticity, and polygenic background.

As fully detailed in METHODS, an association statistic whose null distribution is known can

be constructed by testing whether bi = 0 in the above model, which we have shown is a valid

test of βi = 0 in traits models (1) and (2). Briefly, the testing procedure works as follows:

1. Formulate and estimate a model of population structure that provides well-

behaved estimates of the logit(πij) values. We specifically use the logistic factor

analysis (LFA) approach of ref. [14], which has been shown to provide a accurate

linear basis of the logit(πij) values.

2. For each SNP i, perform a logistic regression of the SNP genotypes on the

trait values plus the model terms that estimate the {logit(πij)}nj=1 values1. Also,

perform a logistic regression of the SNP genotypes on only the model terms that

estimate {logit(πij)}nj=1, where the trait is now excluded from the fit. These two

model fits are compared via a likelihood ratio statistic, where the larger the statistic,

the more evidence there is that bi 6= 0.

3. Calculate a p-value for each SNP based on our result that when the null hypoth-

esis of no association is true, βi = 0 in models (1) and (2), then the above statistic

follows a χ2
1 distribution for large sample sizes.

We call our proposed test the “genotype conditional association test” (GCAT). As a general

concept, such an approach is sometimes called an inverse regression model because we

consider E[x|y] rather than E[y|x].

Simulation Studies

We performed an extensive set of simulations to demonstrate that the proposed test is robust

to population structure and to assess its power to detect true associations (full technical details

in METHODS). We compared the proposed test to its oracle version where model (3) and test-

statistic (6) are used with the true πij values. We also included in the simulations studies three

1In our implementation, the logistic factors are included as covariates, which serve as the model terms that

estimate the {logit(πij)}nj=1 values.

7

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2014. ; https://doi.org/10.1101/012682doi: bioRxiv preprint 

https://doi.org/10.1101/012682


important and popular methods: (i) the method of adjusting the trait and genotypes by principal

components computed from the full set of genotypes [8] and (ii) two implementations of the

linear mixed effects model approach [9, 10], specifically EMMAX by Kang et al. (2010) [10]

and GEMMA by Zhou and Stephens (2012) [15]. The methods are abbreviated as “PCA,”

“LMM-EMMAX,” and “LMM-GEMMA.”

The complete simulation study on quantitative traits involved population structure con-

structed in 11 different ways for each of three different apportionments of variance among

genetic effects, non-genetic effects, and random variation that all contribute to variation in the

trait. Therefore, each configuration involved a constructed allele frequency matrix F and val-

ues assigned to variances Var(
∑n

i=1 βixij), Var(
∑n

j=1 λj), and Var(εj) from model (1). For

each of these 33 = 11× 3 configurations, we simulated 100 GWAS data sets, for a grand total

of 3300 studies.

We simulated allele frequencies: (i) subject to structure estimated from three real data sets:

HapMap, Human Genome Diversity Project (HGDP), and the 1000 Genomes Project (TGP),

where the HapMap structure was simulated according to the Balding-Nichols model; (ii) at

four different levels of admixture in the Pritchard-Stephens-Donnelly (PSD) model, which is

an extension of the Balding-Nichols model; and (iii) for four different types of spatially defined

structure. We intentionally simulated challenging population structures, having in mind that

future GWAS such as the forthcoming “Genotype Tissue Expression” program (GTEx) data

may involve particularly challenging forms of structure.

In order to provide an extra challenge to the proposed test, we simulated the allele fre-

quencies from a model that differs from LFA model (4). We generated allele frequencies

parameterized by F = ΓS, where F is the matrix of πij values, Γ is an m × d matrix and S

is the d× n matrix that encapsulates the structure. This model captures as special cases the

Balding-Nichols model and the PSD model [14]. It was also intended to provide an advantage

to the PCA and LMM methods because the structure is manifested on the observed genotype

scale [14], which is the same scale on which both methods estimate structure.

We simulated 10 truly associated SNPs whose effect sizes are distributed according to a

Normal distribution. All genotypes were simulated to be in linkage equilibrium so that true

and false positives are unambiguous. We set the variances Var(
∑n

i=1 βixij), Var(
∑n

j=1 λj),

and Var(εj) to be: (5%, 5%, 90%), (10%, 0%, 90%), and (10%, 20%, 70%). Setting these

variances enforced a certain overall level of genetic contribution to the trait; therefore our

simulation study results were minimally affected by the choice of 10 truly associated SNPs

8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2014. ; https://doi.org/10.1101/012682doi: bioRxiv preprint 

https://doi.org/10.1101/012682


and the Normal distribution on their effect sizes. In each simulation scenario, we simulated

data for m = 100, 000 SNPs and n = 5000 individuals, except HGDP necessarily restricted

us to n = 940 individuals and TGP to n = 1500 individuals. The dimension of the structure

was set to d = 3, although we carried out the same simulations for d = 6 and the results were

quantitatively very similar and qualitatively equivalent.

Each simulation configuration involved analyzing 100 GWAS data sets (X,y), where the

Oracle method, the proposed GCAT method, and the PCA method were applied to each study.

For a given simulated study, we obtained a set of m = 100,000 p-values. So-called “spurious

associations” occur when the p-values corresponding to null (non-associated) SNPs are ar-

tificially small. For a given p-value threshold t, we expect there to be m0 × t false positives

among the m0 p-values corresponding to null SNPs, where m0 = 100, 000− 10 in our case. At

the same time, we can calculate the observed number of false positive simply by counting how

many of the null SNP p-values are less than or equal to t. The excess observed false posi-

tives are spurious associations. A method properly accounts for structure when the average

difference is zero. The best one can do on a study-by-study basis is captured by the Oracle

method, which according to our theory is immune to structure and provides the correct null

distribution.

We found from using the distributed binary executable EMMAX software and our own im-

plementation that EMMAX required a 10-fold increase in computational time over the proposed

method and PCA when analyzing n = 5000 individuals. Therefore, it was not reasonable to

apply EMMAX to all 3300 simulated GWAS data sets. We limited comparisons with EMMAX

to five representative structure configurations of the full 11 for a single apportionment of the

variances assigned to genetic effects, non-genetic effects, and random variation. GEMMA was

computationally more efficient, though still significantly slower than GCAT or our implementa-

tion of PCA. Figure 2 shows the excess in observed false positives vs. the expected number

of false positives for the Oracle, GCAT (proposed), PCA, and both implementations of LMM

methods under five configurations of structure for the variance configuration corresponding to

genetic=5%, environmental=5%, and noise=90%. It can be seen that the LFA implementation

of the proposed GCAT method performs similarly to the Oracle test, whereas PCA tends to

suffer from an excess of spurious associations. Figures S1-S8 is a more complete set of simu-

lations with results from the all three sets of variances for the full 11 configurations of structure.

Due to the computational constraints mentioned above, the additional simulations feature only

results from GEMMA for LMM methods.
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In comparing the statistical power among the methods (Figures S9-S17), we found that the

Oracle, GCAT, and PCA performed similarly well, while the two LMM methods often suffered

from a loss of power. We also carried out analogous simulations on binary traits simulated

from model (2) and we found that all methods performed similarly well in terms of producing

correct p-values that were robust to structure. This result agrees with the comparisons made

between PCA and a linear mixed effects model in Astle and Balding (2009) [5].

Analysis of the Northern Finland Birth Cohort Data

We applied the proposed method to the Northern Finland Birth Cohort (NFBC) genome-wide

association study data [12], which includes several metabolic traits and height. This study

has also been analyzed by the LMM and PCA methods, as well as a standard analysis un-

corrected for structure [10]. We carried out association analyses with the proposed method

on the 10 traits that were also analyzed using the other methods (Table 1). After processing

the data, including filtering for missing data, minor allele frequencies, and departures from

Hardy-Weinberg equilibrium, the data were composed of m = 324, 160 SNPs and n = 5027

individuals (METHODS). The logistic factors were computed on a subset of the data where

markers were at least 200 kbp apart.

Most traits showed only approximate Normal distributions, so we applied a Box-Cox Normal

transformation to all traits so that they satisfy the model assumptions. We noted that C-reactive

Protein (CRP) and Triglycerides (TG) traits followed an exponential distribution more closely,

so it was unnecessary to transform these two traits. The developed theory can be extended to

exponential distributed quantitative traits as well.

The 20 most significant SNPs for each of the 10 traits are shown in Table S1. Kang et

al. (2010) utilized a genome-wide significance threshold of p-value < 7.2× 10−8 as proposed

in ref. [16], so we also utilized this threshold for comparative purposes. The number of loci

found to be significant for each method are shown in Table 1. Whereas our proposed method

identifies 16 significant loci, the other methods identify 11 to 14 loci.

We identified three new loci that were not identified by the other methods. None of the

other methods identified any significant associations for the height trait. However, we iden-

tified rs2814982 on chromosome 6 as being statistically associated with height (Table S1).

This SNP is located ∼ 70kbp from another SNP, rs2814993, which has been associated with

skeletal frame size in a previous study [13]. Additionally, rs2814993 was the fifth most signifi-
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cant SNP for height. For the LDL cholesterol trait, we identified a significant association with

rs11668477, which was significantly associated with LDL cholesterol in a different study [17].

Finally, there were significant associations between the glucose (GLU) trait and a cluster of

SNPs (rs3847554, rs1387153, rs1447352, rs7121092) proximal to the MTNR1B locus; varia-

tion at this locus has been associated with glucose in a previous study [18].

As described in Sabatti et al. (2009) [12], the NFBC data show modest levels of inflation

due to population structure as measured by the genomic control inflation factor (GCIF) [19]

of test statistics from an uncorrected analysis. The population structure present among these

individuals may be subtler and manifested on a finer scale than other settings. Noting that

the GCAT approach does not attempt to adjust for a polygenic background, the GCIF values

calculated for the proposed method (Table S2) were found to be in line with what is expected

for polygenic traits where no structure is present [20], providing evidence that the proposed

method adequately accounts for structure.

DISCUSSION

We considered models of quantitative and binary traits involving genetic effects and non-

genetic effects in the presence of arbitrarily complex population structure. We allowed for the

non-genetic effects to be confounded with population genetic structure since structure, ances-

try, lifestyle, and environment – all factors potentially involved in complex traits – may be highly

dependent with one another. A causal model provided the intuition that under these models, it

is most reasonable to account for this confounding in the genotypes, but it is not tractable to do

so in the non-genetic effects. This follows because we have many instances of genotypes that

can be jointly modeled to provide reliable estimates of structure, but the non-genetic effects

are never directly observed and we do not have repeated instances of them. In general it is

not possible to estimate a latent variable that accounts for the confounding between structure

and non-genetic effects.

These observations led us to propose an inverse regression approach to testing for associ-

ations, where the association is tested by modeling genotype variation in terms of the trait plus

model terms accounting for structure. In this model, the terms accounting for structure were

based on the logistic factor analysis approach that we have proposed [14], although the gen-

eral form of the association test can incorporate other methods that estimate population struc-
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ture. We mathematically proved under general assumptions that the trait term in the model

is non-zero only when the genetic marker is truly associated with the trait, regardless of the

population structure. We demonstrated that the implemented test properly accounts for struc-

ture in a large body of simulated studies that included a wide range of population structures.

We also applied the method to 10 traits from the Northern Finland Birth Cohort genome-wide

association study. The proposed method identified three new loci associated with the traits,

including being the only method among those we considered that identifies a locus associated

with the height trait. Overall, we showed that the proposed method compares favorably to ex-

isting methods and we also noted that it has favorable computational requirements compared

to existing methods.

As GWAS increase in sample size and levels of complexity of population structure, it is

important to develop methods that properly account for structure and scale well with sample

size. Whereas we found that the popular principal components adjustment does not properly

account for structure, we also found that the mixed model approach performs reasonably well.

However, the mixed model approach involves estimating a n× n kinship matrix and its current

implementation does not scale well with sample size. The kinship matrix quickly becomes

computationally unwieldy when n grows large, and the possibility of the estimated kinship

matrix becoming overwhelmed by noise is a concern [21]. In the Northern Finland Birth Cohort

data, the mixed model approach required us to estimate 12 million parameters, whereas the

proposed method involved estimating 25-thousand parameters, a∼500-fold decrease. A study

involving n = 10, 000 individuals with the same complexity of structure requires estimating

about 50-million parameters in the mixed model kinship matrix, whereas the proposed method

requires estimating 50-thousand parameters, a ∼1000-fold decrease. In addition, estimating

the structure in the proposed method primarily uses singular value decomposition, for which

a rich literature of computational techniques exist. We utilized a Lanczos bidiagonalization

algorithm [22] which scales approximately linearly with respect to n for d � n. The proposed

method is well equipped to scale to massive GWAS and can take advantage of future advances

for computing singular value decomposition.

The key assumption to verify in utilizing the proposed GCAT approach is that population

structure observed in the SNP genotypes is adequately modeled and estimated. One can test

for associations among SNPs that show convincing empirical evidence that the model of struc-

ture is reasonably well-behaved; this can be directly tested on the genotype data as previously

demonstrated in our logistic factor analysis (LFA) model of structure [14]. For example, on the
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Northern Finland Birth Cohort Study, we empirically verified that utilizing the LFA model with

dimension d = 6 accounted for structure reasonably well for the great majority of SNPs. The

linear mixed effects model (LMM) approach and principal components (PCA) approach make

trait model assumptions that may be difficult to verify in practice (METHODS).

We anticipate that the proposed genotype conditional association test (GCAT) will be useful

for future studies. The mathematical framework we have developed should facilitate its exten-

sion to traits modeled according to distributions not considered here while maintaining our

theoretical proof that the test accounts for population structure in the presence of non-genetic

effects also confounded with structure.

METHODS

Logistic Factor Analysis (LFA)

When forming a latent variable model of structure, where the goal is to make minimal assump-

tions about the underlying structure, there are benefits to modeling logit(πij) in terms of a

latent variable model instead of πij directly [14]. The quantity logit(πij) = log(πij/(1 − πij))
is called the “natural parameter” of the distribution of xij when we assume Hardy-Weinberg

equilibrium so that xij ∼ Binomial(2, πij). The quantity logit(πij) occurs as a linear term in

the log-likelihood of the data, and it is the target parameter in logistic regression because of

its straightforward mathematical properties. This viewpoint also facilitates calculating the dis-

tribution of xij given the structure, which is the essential challenge in accounting for structure

in the proposed association testing framework.

In the association testing framework detailed below, it turns out that developing a latent

variable model and estimate of the logit(πij) is particularly appropriate. The approach is called

“logistic factor analysis” (LFA). Let L be an m×n matrix with (i, j) element equal to logit(πij).

Consider the following parameterization:

L = AH, (4)

where A is anm×dmatrix, H is a d×nmatrix, and d� n. The columns of H are independent,

and column j captures the structure information for individual j. That is, Pr(xij|hj, zj) =

Pr(xij|hj) where hj is column j of H. Row i of A determines how SNP i is affected by

structure. We have shown in ref. [14] that this model performs well in estimating structure
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resulting from discrete subpopulations, admixed populations, the Balding-Nichols model [23],

the Pritchard-Stephens-Donnelly model [24], and models of spatially oriented structure.

In practice, H will be unknown, so it must be estimated. We have developed a method

called logistic factor analysis (LFA) that we have shown to estimate H well [14]. Specifically,

the LFA estimate Ĥ has been shown to span the same space as the true H at a high level of

accuracy, which implies that replacing H with Ĥ in the above equations yields nearly identical

results. The accuracy of Ĥ in estimating H has been demonstrated even when the individual-

specific allele frequencies are not directly constructed from model (4), L = AH.

Proposed Association Testing Framework

We have derived a statistical hypothesis test of association that is equivalent to testing whether

βi = 0 for each SNP i in the above trait models (1) and (2), and whose null distribution

does not depend on structure or the non-genetic effects correlated with structure, making it

immune to spurious associations due to structure. Specifically, the test allows for general

levels of complexity in structure because the test is based on adjusting for structure according

to individual-specific allele frequencies.

A Model of Genetic Variation Given the Trait and Structure. As a first step, we have proved

a theorem (see below) that shows that βi = 0 in models (1) and (2) implies that bi = 0 in the

following model:

xij|yj, zj ∼ Binomial
(
2, logit−1(ai + biyj + logit(πij))

)
,

logit

(
E[xij|yj, zj]

2

)
= ai + biyj + logit(πij) (5)

for all j = 1, 2, . . . , n. This establishes a model that can be used to test for associations in

place of models (1) and (2).

There are a few important details to note. First, the variables λj , σ2
j , and (xkj)k 6=i do not

appear in the model. This is important because it is impossible to estimate λj and σ2
j in the

typical setting, and we will also typically not know the polygenic
∑

k 6=i βkxkj component of the

model. Second, the genotype variation is being modeled in terms of the trait variation, instead

of the other way around. It is initially counter-intuitive because almost all association tests

involve modeling the trait in terms of the SNP genotypes. As explained in more detail below,

this reversal is crucial for adjusting the probability distribution of xij according to structure, and

for eliminating the need to estimate λj , σ2
j , and (βk)k 6=i.
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We call our proposed test the “genotype conditional association test” (GCAT). The model

we propose to utilize is sometimes called an inverse regression model because we utilize

E[x|y] rather than E[y|x].

Proposed Test Conditional on Individual-Specific Allele Frequencies. As a second step,

we have derived a test-statistic to test whether bi = 0 in model (3) whose null distribution is

immune to structure. The log-likelihood function of the parameters given individual j is

`(ai, bi|xij, yj, πij) ∝ log (Pr(xij|yj, ai, bi, πij))

where the probability on the right-hand-side is calculated according to model (3). The log-

likelihood of all n individuals is

`(ai, bi|xi,y,πi) =
n∑
j=1

`(ai, bi|xij, yj, πij) ∝ log

[
n∏
j=1

Pr(xij, yj|ai, bi, πij)

]
,

where πi = (πi1, πi2, . . . , πi,n) and y = (y1, y2, . . . , yn). The test statistic we utilize is a gener-

alized likelihood ratio test statistic [25]:

T (xi,y,πi) = 2

[
max
ai,bi

`(ai, bi|xi,y,πi)−max
ai

`(ai, bi = 0|xi,y,πi)
]
. (6)

The log-likelihood is maximized by performing a logistic regression of all n observed genotypes

for SNP i on the right hand side of model (3). We have proven a theorem (METHODS) that

shows that when βi = 0 in models (1) or (2), the null distribution of this test statistic is χ2
1,

regardless of the values of πij , (xkj)k 6=i, (βkj)k 6=i, λj , and σ2
j for j = 1, 2, . . . , n in models (1)

and (2).

Proposed Test In Terms of LFA Model. As a third step, we have extended the above re-

sults to the case where the individual-specific allele frequencies are unknown and must be

estimated. This requires a model of the individual-specific allele frequencies, and we utilize

model (4) so that logit(πij) =
∑d

k=1 aikhkj . First, assume that H from model (4) is known. We

have proved that βi = 0 in models (1) and (2) implies bi = 0 in the following model:

xij|yj, zj ∼ Binomial

(
2, logit−1

(
d∑

k=1

aikhkj + biyj

))
,

logit

(
E [xij|yj, zj]

2

)
=

d∑
k=1

aikhkj + biyj (7)
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for all j = 1, 2, . . . , n, where hj is column j of H and it is noted that without loss of generality

we let hdj = 1 making aid an intercept term. The test-statistic used to test for an association

between SNP i and the trait is the following generalized likelihood ratio test statistic:

T (xi,y,H) = 2

[
max
ai,bi

`(ai, bi|xi,y,H)−max
ai

`(ai, bi = 0|xi,y,H)

]
, (8)

where ai = (ai1, ai2, . . . , ai,d). The log-likelihoods in this test statistic are maximized by per-

forming a logistic regression of all n observed genotypes for SNP i on the right hand side of

model (7) on all n individuals. As the previous case, we have proven a theorem (METHODS)

that shows that when βi = 0 in models (1) or (2), the null distribution of this test statistic is χ2
1,

regardless of the values of πi, (xkj)k 6=i, β−i, λ, and σ2 in models (1) and (2).

The proposed test utilizes LFA to form an estimate Ĥ, replaces H with Ĥ, and carries out

the test using model (7) and test statistic (8): T (xi,y, Ĥ). This approach directly allows the

simultaneous estimation of ai and bi for each SNP i under the unconstrained model and the

estimation of ai with bi = 0 under the constraints of the null hypothesis. Because of this, the

test allows the uncertainty of the m × d unknown parameters of A to be taken into account

and it allows bi to be competitively fit with ai under the unconstrained, alternative hypothesis

model.

Another approach is to first carry out estimation of F by whatever method the analyst finds

appropriate and then base the test on statistic (6) with the πij replaced with the estimates π̂ij :

T (xi,y, π̂i). This has the advantage that it allows for a much broader class of methods to

estimate F, but it may be more conservative than the above implementation because bi is not

competitively fit with the πij under the unconstrained model. In this case, F may be estimated

in a manner that allows for fine-scale levels of inter-individual coancestry and locus-specific

models of structure without relying on the lower d-dimensional factorized model L = AH that

we used here.

Proposed Test Under the Alternative Hypothesis. The proposed association test is based

on models (3) and (7). Even though we have proved that the test is immune to population

structure, it is also important to demonstrate that the test has favorable statistical power to

identify true associations. We have shown that the logit
(

E[xij |yj ,zj ]

2

)
= ai + logit(πij) + biyj

is a tractable approximation of the model under general configurations of a true alternative hy-

pothesis for SNP i where βi 6= 0 (see below). This provides the beginnings of a mathematical

framework for characterizing the power of the test.
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Theorems and Proofs

Because xij|zj ∼ Binomial(2, πi(zj)) where we write πij ≡ πi(zj), it follows that Pr(xij|πij, zj) =

Pr(xij|πij). We assume that Pr(xij|hj, zj) = Pr(xij|hj); in other words, all information about

the influence of population structure on the genotypes of individual j is captured through col-

umn j of H. It therefore follows that Pr(xij|πij,hj, zj) = Pr(xij|πij,hj) = Pr(xij|πij). We also

assume that the SNP genotypes are mutually independent given the structure (which also

implies the set of SNPs we consider are in linkage equilibrium, given the structure). These

assumptions yield the following equalities:

Pr(X|L,H, (zk)
n
k=1) = Pr(X|L,H) = Pr(X|L)

Pr(X|(zk)nk=1) =
m∏
i=1

n∏
j=1

Pr(xij|(zk)nk=1) =
m∏
i=1

n∏
j=1

Pr(xij|zj)

Pr(X|L) =
m∏
i=1

n∏
j=1

Pr(xij|L) =
m∏
i=1

n∏
j=1

Pr(xij|πij)

Pr(X|H) =
m∏
i=1

n∏
j=1

Pr(xij|H) =
m∏
i=1

n∏
j=1

Pr(xij|hj)

Theorem 1 Suppose that yj is distributed according to model (1) or (2), xij|πij ∼ Binomial(2, πij)

as parameterized above, and the SNP genotypes are mutually independent given the structure

as detailed above. Then βi = 0 in models (1) or (2) implies that bi = 0 in model (3).

Note: We provide two proofs of this theorem because both provide relevant insights. The

first version gives insight into the probabilistic mechanism underlying the proposed approach

and has some generality beyond the modeling assumptions made here. The second version

directly shows how the terms in models (1) and (2) relate to those in model (3).

Proof (version 1): When βi = 0, it follows that Pr(yj|(xkj)k 6=i, xij, zj) = Pr(yj|(xkj)k 6=i, zj)
by the assumptions of models (1) and (2). Noting that Pr((xkj)k 6=i|xij, zj) = Pr((xkj)k 6=i|zj)
by the conditional independence assumption, we have:

Pr(yj|xij, zj) =

∫
Pr(yj|(xkj)k 6=i, xij, zj)Pr((xkj)k 6=i|xij, zj)dP

=

∫
Pr(yj|(xkj)k 6=i, zj)Pr((xkj)k 6=i|zj)dP

= Pr(yj|zj). (9)

17

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2014. ; https://doi.org/10.1101/012682doi: bioRxiv preprint 

https://doi.org/10.1101/012682


By Bayes theorem we have

Pr(xij|yj, zj) =
Pr(yj|xij, zj)Pr(xij|zj)

Pr(yj|zj)
.

Since Pr(yj|xij, zj) = Pr(yj|zj), this implies that Pr(xij|yj, zj) = Pr(xij|zj) and it follows that

bi = 0 in model (3).

Proof (version 2): For either model (1) or (2), it follows that

log
Pr(xij = 1|yj, (xkj)k 6=i, zj)
Pr(xij = 0|yj, (xkj)k 6=i, zj)

= log
Pr(xij = 1|yj, (xkj)k 6=i, zj)
Pr(xij = 0|yj, (xkj)k 6=i, zj)

(10)

= log
Pr(yj|xij = 1, (xkj)k 6=i, zj)

Pr(yj|xij = 0, (xkj)k 6=i, zj)
+ log

Pr(xij = 1|(xkj)k 6=i, zj)
Pr(xij = 0|(xkj)k 6=i, zj)

and similarly

log
Pr(xij = 2|yj, (xkj)k 6=i, zj)
Pr(xij = 1|yj, (xkj)k 6=i, zj)

= log
Pr(yj|xij = 2, (xkj)k 6=i, zj)

Pr(yj|xij = 1, (xkj)k 6=i, zj)
+log

Pr(xij = 2|(xkj)k 6=i, zj)
Pr(xij = 1|(xkj)k 6=i, zj)

.

By the assumptions detailed above, we have Pr(xij|(xkj)k 6=i, zj) = Pr(xij|πij) and therefore:

log
Pr(xij = 1|(xkj)k 6=i, zj)
Pr(xij = 0|(xkj)k 6=i, zj)

= log
πij

1− πij
+ log 2,

log
Pr(xij = 2|(xkj)k 6=i, zj)
Pr(xij = 1|(xkj)k 6=i, zj)

= log
πij

1− πij
− log 2.

Under the quantitative trait model (1), it follows that

log
Pr(yj|xij = 1, (xkj)k 6=i, zj)

Pr(yj|xij = 0, (xkj)k 6=i, zj)
=
−βi(βi + 2α)

2σ2
j

+
∑
l 6=i

−βlβi
σ2
j

xlj +
−βi
σ2
j

λj +
βi
σ2
j

yj.

Plugging this back into equation (10) shows that

log
Pr(xij = 1|yj, (xkj)k 6=i, zj)
Pr(xij = 0|yj, (xkj)k 6=i, zj)

= aij + bijyj + logit(πij) + log(2),

where aij =
−βi(βi/2+α+

∑
k 6=i βkxkj+λj)

σ2
j

and bij = βi
σ2
j
. Following analogous steps, we find that

log
Pr(xij = 2|yj, (xkj)k 6=i, zj)
Pr(xij = 1|yj, (xkj)k 6=i, zj)

= ãij + bijyj + logit(πij)− log(2),

where ãij = aij − β2
i

σ2
j
. When βi = 0 in model (1), then aij = ãij = bij = 0.
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Under the binary trait model (2), it follows that

log
Pr(yj|xij = 1, (xkj)k 6=i, zj)

Pr(yj|xij = 0, (xkj)k 6=i, zj)
= aij + biyj,

where aij = log
1+exp(α+

∑
l6=i βlxlj+λj)

1+exp(α+βi+
∑

l6=i βlxlj+λj)
and bi = βi. Plugging this back into equation (10)

shows that

log
Pr(xij = 1|yj, (xkj)k 6=i, zj)
Pr(xij = 0|yj, (xkj)k 6=i, zj)

= aij + biyj + logit(πij) + log(2).

Following analogous steps, we find that

log
Pr(xij = 2|yj, (xkj)k 6=i, zj)
Pr(xij = 1|yj, (xkj)k 6=i, zj)

= ãij + biyj + logit(πij)− log(2),

where ãij = log
1+exp(α+βi+

∑
l6=i βlxlj+λj)

1+exp(α+2βi+
∑

l6=i βlxlj+λj)
. When βi = 0 in model (2), then aij = ãij = bi = 0.

Putting these together, we have that when βi = 0 in models (1) or (2), then model (3) holds

with bi = 0.

Corollary 1 Suppose that the assumptions of Theorem 1 hold and additionally logit(πij) =∑d
k=1 aikhkj . Then βi = 0 in models (1) or (2) implies that bi = 0 in model (7).

Proof: The proof is the same as that to Theorem 1, except we replace πij with hj .

Theorem 2 Suppose that yj is distributed according to model (1) or (2) and that xij|πij ∼
Binomial(2, πij). If βi = 0 in models (1) or (2), then the test-statistic T (xi,y,πi) defined in (6)

converges in distribution to χ2
1 as n→∞.

Proof: When βi = 0, then [xij|yj, πij] ∼ Binomial (2, πij) by Theorem 1. It then follows that

T (xi,y,πi)→ χ2
1 in distribution as n→∞ by Wilks’ theorem [25].

Corollary 2 Suppose that the assumptions of Theorem 1 hold and additionally logit(πij) =∑d
k=1 aikhkj . If βi = 0 in models (1) or (2), then the test-statistic T (xi,y,H) defined in (8)

converges in distribution to χ2
1 as n→∞.

Proof: When βi = 0, then [xij|yj,hj] ∼ Binomial
(

2, logit−1(
∑d

k=1 aikhkj)
)

by Corollary 1. It

then follows that T (xi,y,H)→ χ2
1 in distribution as n→∞ by Wilks’ theorem [25].
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Proposed Model Under the Alternative Hypothesis

When the alternative model is true this means that βi 6= 0. In this case it is worthwhile to

characterize model (3) in terms of the distribution of xij|yj, zj . Under trait models (1) or (2), it

follows that:

logit

(
E[xij|yj, zj]

2

)
= log

( 1
2
Pr(xij = 1|yj, zj) + Pr(xij = 2|yj, zj)

1− 1
2
Pr(xij = 1|yj, zj)− Pr(xij = 2|yj, zj)

)
= log

( 1
2
Pr(xij = 1|yj, zj) + Pr(xij = 2|yj, zj)

1
2
Pr(xij = 1|yj, zj) + Pr(xij = 0|yj, zj)

)

= log

 1
2

+
Pr(xij=2|yj ,zj)

Pr(xij=1|yj ,zj)

1
2

+
Pr(xij=0|yj ,zj)

Pr(xij=1|yj ,zj)


This implies that

logit

(
E[xij|yj, zj]

2

)
= log

(
1 + exp {ãij + bijyj + logit(πij)}

1 + exp {−(aij + bijyj + logit(πij))}

)
,

where under model (1) we have aij =
−βi(βi/2+α+

∑
k 6=i βkxkj+λj)

σ2
j

, ãij = aij − β2
i

σ2
j
, bij = βi

σ2
j

and

under model (2) we have aij = log
1+exp(α+

∑
l6=i βlxlj+λj)

1+exp(α+βi+
∑

l6=i βlxlj+λj)
, ãij = log

1+exp(α+βi+
∑

l6=i βlxlj+λj)

1+exp(α+2βi+
∑

l6=i βlxlj+λj)
,

bij = βi.

In the case that aij = ãij , it is the case that

logit

(
E[xij|yj, zj]

2

)
= aij + bijyj + logit(πij).

However, this exact equality is only the case when βi = 0. For the typical effect sizes seen

in GWAS, it will nevertheless be true that aij ≈ ãij , in which case the above functional form

will be approximately true. This allows for an approximation that can be utilized in practice for

power calcuations.

Simulated Allele Frequencies

In order to simulate the m × n matrix of genotypes X, we first needed to simulate the m × n
matrix of allele frequencies F. Recall that we model the allele frequencies by forming L =

logit(F) and then utilizing the model L = AH from equation (4).

Instead of simulating allele frequencies from the L = AH model we use to perform the

proposed association test, we instead simulated them from a different model to demonstrate
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the flexibility of the L = AH model. Specifically, we let F = ΓS where Γ is m × d and S is

d× n with d ≤ n. The d× n matrix S encapsulates the genetic population structure for these

individuals since S is not SNP-specific but is shared across SNPs. The m× d matrix Γ maps

how the structure is manifested in the allele frequencies of each SNP. We have shown that the

model F = ΓS includes as special cases discrete subpopulations, the Balding-Nichols model,

and the Pritchard-Stephens-Donnelly model.

We formed Γ and S for the 11 different population structure configurations exactly as car-

ried out in Hao et al. (2013) [14]. These constructions are summarized as follows from Hao et

al. (2013).

Balding-Nichols Model. The HapMap data set was deliberately sampled to be from three

discrete populations, which allowed us to populate each row i of Γ with three independent

and identically distributed draws from the Balding-Nichols model: γik
i.i.d.∼ BN(pi, Fi), where

k ∈ {1, 2, 3}. Each γik is interpreted to be the allele frequency for subpopulation k at SNP

i. The pairs (pi, Fi) were computed by randomly selecting a SNP in the HapMap data set,

calculating its observed allele frequency, and estimating its FST value using the Weir & Cock-

erham estimator [26]. The columns of S were populated with indicator vectors such that each

individual was assigned to one of the three subpopulations. The subpopulation assignments

were drawn independently with probabilities 60/210, 60/210, and 90/210, which reflect the

subpopulation proportions in the HapMap data set. The dimensions of the simulated data

were m = 100, 000 SNPs and n = 5000 individuals.

1000 Genomes Project (TGP). We started with the TGP data set from Hao et al. (2013) [14].

The matrix Γ was generated by sampling γik
i.i.d.∼ 0.9×Uniform(0, 1/2) for k = 1, 2 and setting

γi3 = 0.05. In order to generate S, we computed the first two principal components of the

TGP genotype matrix after mean centering each SNP. We then transformed each principal

component to be between (0, 1) and set the first two rows of S to be the transformed principal

components. The third row of S was set to 1, i.e. an intercept. The dimensions of the simulated

data were m = 100, 000 and n = 1500, where n was determined by the number of individuals

in the TGP data set.

Human Genome Diversity Project (HGDP). We started with the HGDP data set from Hao

et al. (2013) [14] and applied the same simulation scheme as for the TGP scenario. The

dimensions of the simulated data were m = 100, 000 and n = 940, where n was determined

by the number of individuals in the HGDP data set.
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Pritchard-Stephens-Donnelly (PSD). The PSD model assumes individuals to be an admix-

ture of ancestral subpopulations. The rows of Γ were again created by three independent

and identically distributed draws from the Balding-Nichols model: γik
i.i.d.∼ BN(pi, Fi), where

k ∈ {1, 2, 3}. For this scenario, the pairs (pi, Fi) were computed from analyzing the HGDP data

set for observed allele frequency and estimated FST via the Weir & Cockerham estimate [26].

The estimator requires each individual to be assigned to a subpopulation, which were made

according to the K = 5 subpopulations from the analysis in Rosenberg et al. (2002) [27].

The columns of S were sampled (s1j, s2j, s3j)
i.i.d.∼ Dirichlet(α) for j = 1, . . . , n. There

were four PSD scenarios with parameter values α = (0.01, 0.01, 0.01), α = (0.1, 0.1, 0.1),

α = (0.5, 0.5, 0.5), and α = (1, 1, 1). α = (0.1, 0.1, 0.1) was chosen as the representative

structure for Figure 2. The dimensions of the simulated data were m = 100, 000 SNPs and

n = 5000 individuals.

Spatial. We seek to simulate genotypes such that the population structure relates to the

spatial position of the individuals. The matrix Γ was populated by sampling γik
i.i.d.∼ 0.9 ×

Uniform(0, 1/2) for k = 1, 2 and setting γi3 = 0.05. The first two rows of S correspond to coor-

dinates for each individual on the unit square and were set to be independent and identically

distributed samples from Beta(a, a), while the third row of S was set to be 1, i.e. an inter-

cept. There were four spatial scenarios with parameter values of a = 0.1, 0.25, 0.5, and 1. As

a → 0, the individuals are placed closer to the corners of the unit square, while when a = 1,

the individuals are distributed uniformly. a = 0.1 was chosen as the representative structure

for Figure 2. The dimensions of the simulated data were m = 100, 000 SNPs and n = 5000

individuals.

Simulated Traits

For each of the 11 simulations scenarios, we generated 100 independent studies. For each

study, X was formed by simulating xij ∼ Binomial(2, πij) where F was constructed as de-

scribed above. In order to simulate a quantitative trait, we needed to simulate α,
∑m

i=1 βixij ,

λj , and εj from model (1).

First, we set α = 0. Without loss of generality SNPs i = 1, 2, . . . , 10 were set to be true

alternative SNPs (where βi 6= 0); we simulated βi
i.i.d.∼ Normal(0, 0.5) for i = 1, 2, . . . , 10. We

set βi = 0 for i > 10. Note that X is influenced by the latent variables z1, . . . ,zn through S

in the model F = ΓS described above. In order to simulate λj and εj so that they are also
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influenced by the latent variables z1, . . . ,zn, we performed the following:

1. Perform K-means clustering on the columns of S with K = 3 using Euclidean distance.

This assigns each individual j to one of three mutually exclusive cluster sets S1,S2,S3
where Sk ⊂ {1, 2, . . . , n}.

2. Set λj = k for all j ∈ Sk for each k = 1, 2, 3.

3. Let τ 21 , τ
2
2 , τ

2
3
i.i.d.∼ InvGamma(3, 1) and set σ2

j = τ 2k for all j ∈ Si for each k = 1, 2, 3.

4. Draw εj ∼ Normal(0, σ2
j ) independently for j = 1, 2, . . . , n.

This strategy simulates non-genetic effects and random variation that manifest among K dis-

crete groups over a more continuous population genetic structure defined by S. This is meant

to emulate the fact that environment (specifically lifestyle) may partition among individuals in a

manner distinct from, but highly related to population structure.

This yields three values
∑m

i=1 βixij , λj , and εj for each individual j = 1, 2, . . . , n. In order to

set the variances of these three values to pre specified levels νgen, νenv and νnoise, we rescaled

each quantity as follows:
m∑
i=1

βixij ←
[ √

νgen

s.d. {
∑m

i=1 βixik}
n

k=1

] m∑
i=1

βixij

λj ←

 √
νenv√∑n

k=1(λk−λ)2
n−1

λj
εj ←

 √
νnoise√∑n

k=1(εk−ε)2
n−1

 εj
The trait for a given study was then formed according to

yj =
m∑
i=1

βixij + λj + εj

for j = 1, 2, . . . , n. For each of the 11 simulation scenarios, we considered the following three

configurations of (νgen, νenv, νnoise): (5%, 5%, 90%), (10%, 0%, 90%) and (10%, 20%, 70%).

In total, there were 11 different types of structures considered over three different config-

urations of genetic, environmental, and noise variances for a total of 33 settings. For each

setting, we simulated 100 independent studies where each involved m = 100, 000 SNPs and

up to n = 5000 individuals.
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Northern Finland Birth Cohort Data

Genotype data was downloaded from dbGaP (Study Accession: phs000276.v1.p1 ). Individ-

uals were filtered for completeness (maximum 1% missing genotypes) and pregnancy. (Preg-

nant women were excluded because we did not receive IRB approval for these individuals.)

SNPs were first filtered for completeness (maximum 5% missing genotypes) and minor allele

frequency (minimum 1% minor allele frequency), then tested for Hardy-Weinberg equilibrium

(p-value < 1
328348

.). The final dimensions of the genotype matrix are m = 324, 160 SNPs and

n = 5027 individuals.

A Box-Cox transform was applied to each trait, where the parameter was chosen such

that the values in the median 95% value of the trait was as close to the normal distribution

as possible. Indicators for sex, oral contraception, and fasting status were added as adjust-

ment variables. For glucose, the individual with the minimum value was removed from the

analysis as an extreme outlier. All analyses were performed with d = 6 logistic factors, which

was determined based on the Hardy-Weinberg equilibrium method described in ref. [14]. The

association tests were performed exactly as described in the main text.

Linear Mixed Effects Model and Principal Component Analysis Approaches

In order to explain the assumptions made by the linear mixed effects model approach (LMM)

and principal components approach (PCA), we first re-write model (1) as follows:

yj = α + βixij +
∑
k 6=i

βkxkj + λj + εj,

where the object of inference is βi for each SNP i = 1, . . . ,m. As explained in Astle and

Balding (2009) [5], these approaches assume that λj + εj
i.i.d.∼ Normal(0, σ2

e), meaning that the

non-genetic effects are independent from population structure and there is no heteroskedas-

ticity among individuals.

The LMM approach also makes the assumption that we can approximate the genetic con-

tribution by a multivariate Normal distribution:{∑
k 6=i

βkxkj

}n

j=1

.∼ MVN(0, σ2
gΦ),

where Φ is the n× n kinship matrix. If we define η(i)j =
∑

k 6=i βkxkj + λj + εj , we can write the
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above model as

yj = α + βixij + η
(i)
j ,

where it is assumed that
{
η
(i)
j

}n
j=1

.∼ MVN(0, σ2
gΦ + σ2

eI). Since it is not the case in general

that the η
(i)
j are identically distributed for all SNPs i = 1, . . . ,m, one can either estimate a

different pair of parameters (σ2
g , σ

2
e) for each SNP or assume that these parameters change

very little between SNPs. Since the former tends to be computationally demanding, algorithms

such as EMMAX [10] propose to estimate a single pair of parameters (σ2
g , σ

2
e) from a null model

and then utilize this single estimate for every SNP. More recently, algorithms such as GEMMA

have been proposed to relax this assumption [15].

The n × n kinship matrix Φ is estimated from the genotype data X. This involves the si-

multaneous estimation of (n2 − n)/2 parameters, which is particularly large for sample sizes

considered in current GWAS (on the order of 108 for n = 10, 000). The uncertainty in the

estimated Φ is typically not taken into account, and there is so far no regularization of the

high-dimensional estimator of Φ. Unregularized estimates of large covariance matrices have

been shown to be problematic [28,29], a concern that is also applicable to estimates of Φ. Es-

timating (σ2
g , σ

2
e) involves manipulations of the estimated Φ matrix, which can pose numerical

challenges due to the fact that the estimated Φ is both high-dimensional and nonsingular. The

LMM approach therefore makes assumptions that are important to verify for each given study

and it involves some challenging calculations and estimations.

The PCA approach first calculates the top d principal components on a normalized version

of the genotype matrix X. In the method proposed by Price et al. (2006) [8], these principal

components are then regressed out of each SNP i and the trait (regardless of whether it is

binary or quantitative). A correlation statistic is calculated between each adjusted SNP geno-

type and the adjusted trait, and the p-value that tests for equality to 0 is reported. As shown in

Hao et al. (2013) [14], the top d principal components form a high-quality estimate of a linear

basis of the allele frequencies πij . Extracting the residuals after linearly regressing the geno-

type data for SNP i onto these principal components is equivalent to estimating the quantity

xij −πij . Using the trait as the response variable in this regression adjustment is equivalent to

estimating
∑n

k=1 βk(xkj − πkj) under the assumptions on the trait model given above (where

this quantitative trait model is assumed regardless of whether the trait is quantitative or binary).

Therefore, the association test carried out in the PCA approach implicitly involves an estimated
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form of the model:

yj = α + βi(xij − πij) +
∑
k 6=i

βk(xkj − πik) + λj + εj,

where it is assumed that λj + εj are approximately i.i.d. Normal(0, σ2
e). When a correlation

between the adjusted trait and the adjusted genotype for SNP i is carried out, then the residual

variation is based on the joint distribution of
∑

k 6=i βk(xkj − πik) + λj + εj for j = 1, . . . , n.

Let us denote ξ(i)j =
∑

k 6=i βk(xkj − πik) + λj + εj . Since Var(xij − πij) = 2πij(1− πij) and

Var(xkj−πkj) = 2πkj(1−πkj), it follows that (xij−πij) and (xkj−πkj) for i, k = 1, . . . ,m and

j = 1, . . . , n still suffer from confounding due to structure through their variances. Therefore,

the implicit assumption made by the PCA approach that the ξ(i)1 , ξ
(i)
2 , . . . , ξ

(i)
n are independent

and identically distributed in the above model is violated. This is our interpretation of why

the PCA approach shows poor performance in adjusting for structure under our quantitative

trait simulations. Astle and Balding (2009) [5] make further mathematical characterizations of

the relationship between the implicit models in the PCA and LMM approaches, which we also

found to be helpful.

Interestingly, when considering the binary trait model (2), the Bernoulli distributed trait does

not involve a mean and variance term as in the Normal distributed quantitative trait. It may be

the case that this difference contributes to explaining why the PCA approach shows simi-

lar behavior to the GCAT and LMM approaches for binary traits (see RESULTS and ref. [5]).

Specifically, the PCA approach appears to perform reasonably well in adjusting for structure

for the binary trait simulations that we considered.

Software Implementation

The proposed method has been implemented in open source software, which will be made

publicly available upon publication.
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Figure 1: Rationale for the proposed test of association. (a) A graphical model describing population
structure and its effects on traits. Population structure serves as a latent causal variable common among
a set of loci, via the allele frequencies. When one locus has a causal effect on the trait, this induces
spurious associations with other loci affected by population structure. At the same time, population
structure may be highly related to lifestyle and the environment as these are all possibly related to
ancestry and geography. (b) Accounting for confounding due to latent population structure. Left panel:
A test for association between the ith SNP Xi and trait Y without taking into account Z will produce
a spurious association due to the fact that both Xi and Y are confounded with Z. Right panel: A test
for association between Xi|πi(Z) and Y will be an unbiased because condition on πi(Z) breaks the
relationship between Z and Xi.
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Figure 2: Performance of association tests on 100 simulated studies based off the Balding-Nichols,
HGDP, TGP, PSD α = 0.1, and spatial a = 0.1 simulation scenarios comparing the Oracle, GCAT
(proposed), LMM (EMMAX), LMM (GEMMA), and PCA tests. The quantitative traits are based on
model (1). The variance contributions to the trait are genetic=5%, environmental=5%, and noise=90%.
The differences between the observed number of false positives and expected number of false positives
versus the expected number of false positives under the null are plotted for each simulated study (grey
lines), the average of those differences (black line), and the middle 90% (blue lines). All simulations
had m = 100, 000 SNPs, so the range of the x-axis corresponds to choosing a significance threshold of
up to 0.0025. The difference on the y-axis is the number of “spurious associations.” PCA is shown on a
separate y-axis since it usually has a much larger maximum than the other methods. The Oracle method
is where the true allele frequencies are inputted into the proposed test, which we have theoretically
proven always corrects for structure.

32

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2014. ; https://doi.org/10.1101/012682doi: bioRxiv preprint 

https://doi.org/10.1101/012682


Table 1: Number of significant loci at genome-wide significance (p-value < 7.2× 10−8) for each of the
10 traits from the Northern Finland Birth Cohort. The counts for LMM+GC, PCA+GC, and Uncorr+GC
are derived from Table 2 in Kang et al. (2010).

Trait Abbreviation GCAT+GC LMM+GC PCA+GC Uncorr+GC
Body Mass Index BMI 0 0 0 0
C-reactive Protein CRP 2† 2 2 2
Diastolic blood pressure DBP 0 0 0 0
Glucose GLU 3 2 2 2
HDL Cholesterol HDL 4 4 2 4
Height Height 1 0 0 0
Insulin INS 0 0 0 0
LDL Cholesterol LDL 4 3 3 3
Systolic blood pressure SBP 0 0 0 0
Triglycerides TG 2 3 2 2

Total 16 14 11 13
†Result when the Box-Cox transformation was not applied to the CRP trait. The result is 1 when the transformation is applied.
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Figure S1: Performance of association tests on 100 simulated studies based off the PSD model of
structure for various α comparing the Oracle, GCAT (proposed), LMM (GEMMA), and PCA tests. The
variance contributions to the trait are genetic=5%, environmental=5%, and noise=90%. The remaining
details are equivalent to Figure 2.

34

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2014. ; https://doi.org/10.1101/012682doi: bioRxiv preprint 

https://doi.org/10.1101/012682


Oracle PCAGCAT LMM − GEMMA

0

100

200

300

400

0

100

200

300

0

100

200

0

50

100

150

a
=

0.1
a

=
0.25

a
=

0.5
a

=
1

0 50 100 150 200 250

0

50

−30

0

30

−25

0

25

50

−40

−20

0

20

40

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Expected False Positives

O
bs

er
ve

d 
Fa

ls
e 

P
os

iti
ve

s 
−

 E
xp

ec
te

d 
Fa

ls
e 

P
os

iti
ve

s

Figure S2: Performance of association tests on 100 simulated studies based off the spatial model of
structure for various a comparing the Oracle, GCAT (proposed), LMM (GEMMA), and PCA tests. The
variance contributions to the trait are genetic=5%, environmental=5%, and noise=90%. The remaining
details are equivalent to Figure 2.
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Figure S3: Performance of association tests on 100 simulated studies based off the PSD model of
structure for various α comparing the Oracle, GCAT (proposed), LMM (GEMMA), and PCA tests. The
variance contributions to the trait are genetic=10%, environmental=0%, and noise=90%. The remaining
details are equivalent to Figure 2.
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Figure S4: Performance of association tests on 100 simulated studies based off the spatial model of
structure for various a comparing the Oracle, GCAT (proposed), LMM (GEMMA), and PCA tests. The
variance contributions to the trait are genetic=10%, environmental=0%, and noise=90%. The remaining
details are equivalent to Figure 2.
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Figure S5: Performance of association tests on 100 simulated studies based off the Balding-Nichols,
HGDP, and TGP simulation scenarios comparing the Oracle, GCAT (proposed), LMM (GEMMA),
and PCA tests. The variance contributions to the trait are genetic=10%, environmental=0%, and
noise=90%. The remaining details are equivalent to Figure 2.

38

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2014. ; https://doi.org/10.1101/012682doi: bioRxiv preprint 

https://doi.org/10.1101/012682


Oracle PCAGCAT LMM − GEMMA

−25

0

25

50

−20

0

20

40

60

−25

0

25

50

−30

0

30

60

α
=

0.01
α

=
0.1

α
=

0.5
α

=
1

0 50 100 150 200 250

−25

0

25

50

−25

0

25

50

−25

0

25

50

−50

−25

0

25

50

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Expected False Positives

O
bs

er
ve

d 
Fa

ls
e 

P
os

iti
ve

s 
−

 E
xp

ec
te

d 
Fa

ls
e 

P
os

iti
ve

s

Figure S6: Performance of association tests on 100 simulated studies based off the PSD model of
structure for various α comparing the Oracle, GCAT (proposed), LMM (GEMMA), and PCA tests. The
variance contributions to the trait are genetic=20%, environmental=10%, and noise=70%. The remain-
ing details are equivalent to Figure 2.
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Figure S7: Performance of association tests on 100 simulated studies based off the spatial model
of structure for various a comparing the Oracle, GCAT (proposed), LMM (GEMMA), and PCA tests.
The variance contributions to the trait are genetic=20%, environmental=10%, and noise=70%. The
remaining details are equivalent to Figure 2.
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Figure S8: Performance of association tests on 100 simulated studies based off the Balding-Nichols,
HGDP, and TGP simulation scenarios comparing the Oracle, GCAT (proposed), LMM (GEMMA),
and PCA tests. The variance contributions to the trait are genetic=20%, environmental=10%, and
noise=70%. The remaining details are equivalent to Figure 2.
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Figure S9: Statistical power of the Oracle, GCAT (proposed), PCA, and both LMM association tests.
The results are for the simulated data sets shown in Figures 2. The quantitative traits are based on
model (1). The variance contributions to the trait are genetic=5%, environmental=5%, and noise=90%.
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Figure S10: Power analysis for the simulation studies presented in Figure S1.
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Figure S11: Power analysis for the simulation studies presented in Figure S2.
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Figure S12: Power analysis for the simulation studies presented in Figure S3.
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Figure S13: Power analysis for the simulation studies presented in Figure S4.
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Figure S14: Power analysis for the simulation studies presented in Figure S5.
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Figure S15: Power analysis for the simulation studies presented in Figure S6.
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Figure S16: Power analysis for the simulation studies presented in Figure S7.
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Figure S17: Power analysis for the simulation studies presented in Figure S8.
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Figure S18: Theoretical versus observed quantiles of − log10(p-value) from the GCAT association
tests on the Northern Finland Birth Cohort traits. The y-axis was truncated at p-value < 10−8; see
Table S1 for the smallest p-values for each trait.

51

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2014. ; https://doi.org/10.1101/012682doi: bioRxiv preprint 

https://doi.org/10.1101/012682


Table S1: The top 20 most associated SNPs for each of the 10 traits considered in the Northern
Finland Birth Cohort study. The GCAT p-value and GCAT+GC p-value (genomic control adjusted GCAT
p-value) is shown for each SNP. SNPs that achieved GCAT+GC p-value < 7.2× 10−8 are colored, and
each locus for a given trait is given a different color.

BMI

RSID Chr Pos GCAT GCAT+GC
1 rs987237 6 50911009 1.1740e-06 1.8102e-06
2 rs11759809 6 51063040 1.2745e-06 1.9597e-06
3 rs710139 1 10767145 3.3937e-06 5.0475e-06
4 rs1001729 6 2540477 5.6701e-06 8.2880e-06
5 rs943005 6 50973779 7.0516e-06 1.0231e-05
6 rs6871982 5 56807391 7.6186e-06 1.1025e-05
7 rs12636212 3 86287913 7.9311e-06 1.1462e-05
8 rs8085349 18 55884408 8.5149e-06 1.2276e-05
9 rs4953198 2 45248172 1.0358e-05 1.4834e-05

10 rs7925000 11 8665565 1.1783e-05 1.6803e-05
11 rs6567030 18 54679876 1.2041e-05 1.7157e-05
12 rs8050136 16 52373776 1.3787e-05 1.9556e-05
13 rs1350341 18 55993513 1.4471e-05 2.0492e-05
14 rs12658762 5 18615363 1.5436e-05 2.1811e-05
15 rs633265 18 55982448 1.6156e-05 2.2793e-05
16 rs3751812 16 52375961 1.7325e-05 2.4386e-05
17 rs17207196 7 74939001 1.9619e-05 2.7499e-05
18 rs6447118 4 41550330 1.9832e-05 2.7787e-05
19 rs13386897 2 236764149 2.0884e-05 2.9210e-05
20 rs10484665 6 51050509 2.2783e-05 3.1773e-05

CRP
RSID Chr Pos GCAT GCAT+GC

1 rs2794520 1 157945440 4.8203e-13 6.1981e-13
2 rs12093699 1 157914612 1.6766e-10 2.0421e-10
3 rs2592887 1 157919563 1.2559e-08 1.4700e-08
4 rs1811472 1 157908973 5.6824e-08 6.5599e-08
5 rs402681 4 104634397 1.1920e-06 1.3383e-06
6 rs7694802 4 104621696 4.1179e-06 4.5715e-06
7 rs2708104 12 119968332 4.1802e-06 4.6401e-06
8 rs7178765 15 23672266 5.2013e-06 5.7622e-06
9 rs340468 4 104637688 8.2712e-06 9.1245e-06

10 rs10774580 12 119960806 9.6851e-06 1.0669e-05
11 rs4259763 10 133291511 1.8144e-05 1.9875e-05
12 rs10107791 8 101040128 2.0076e-05 2.1970e-05
13 rs4534508 10 98272976 2.0584e-05 2.2521e-05
14 rs35779764 10 98309845 2.0584e-05 2.2521e-05
15 rs1510889 12 77295462 2.1194e-05 2.3182e-05
16 rs4656241 1 157880610 2.2403e-05 2.4492e-05
17 rs7538364 1 85711938 2.2729e-05 2.4846e-05
18 rs33964467 10 98310922 2.3057e-05 2.5202e-05
19 rs1403955 1 85712693 2.4406e-05 2.6662e-05
20 rs488797 18 33224625 2.5203e-05 2.7525e-05

DBT
RSID Chr Pos GCAT GCAT+GC

1 rs472594 1 226668261 8.4419e-07 1.1356e-06
2 rs1491313 4 44480146 4.7333e-06 6.1230e-06
3 rs7783562 7 106704674 8.0721e-06 1.0317e-05
4 rs17305647 21 13962089 1.2297e-05 1.5568e-05
5 rs4548444 1 204956761 1.3747e-05 1.7360e-05
6 rs952061 12 100502356 1.5578e-05 1.9617e-05
7 rs11669309 19 34584137 1.6056e-05 2.0205e-05
8 rs2304586 17 4045747 2.1122e-05 2.6417e-05
9 rs2212853 18 57474627 2.1370e-05 2.6720e-05

10 rs6942973 7 3134277 2.2787e-05 2.8451e-05
11 rs1079199 11 6384682 2.3648e-05 2.9500e-05
12 rs10171678 2 204863117 2.5030e-05 3.1186e-05
13 rs7256832 19 34586645 2.6413e-05 3.2869e-05
14 rs11119265 1 204907336 3.3342e-05 4.1275e-05
15 rs6454393 6 85438647 3.5259e-05 4.3592e-05
16 rs4782509 16 87354279 3.7928e-05 4.6815e-05
17 rs3736338 16 75519348 4.3515e-05 5.3547e-05
18 rs6703170 1 225041893 4.7666e-05 5.8534e-05
19 rs6437523 3 105772154 4.8726e-05 5.9806e-05
20 rs6819019 4 23630880 5.5619e-05 6.8065e-05

GLU
RSID Chr Pos GCAT GCAT+GC

1 rs560887 2 169471394 3.7754e-12 7.6825e-12
2 rs3847554 11 92308474 9.4364e-10 1.6428e-09
3 rs2971671 7 44177862 4.6022e-09 7.6621e-09
4 rs1387153 11 92313476 6.6178e-09 1.0906e-08
5 rs563694 2 169482317 1.2029e-08 1.9494e-08
6 rs1447352 11 92362409 2.8260e-08 4.4711e-08
7 rs7121092 11 92363999 3.2323e-08 5.0946e-08
8 rs2166706 11 92331180 4.9250e-08 7.6715e-08
9 rs2908290 7 44182662 1.1147e-07 1.6970e-07

10 rs853778 2 169519470 1.3122e-07 1.9886e-07
11 rs10244051 7 15030358 1.3606e-07 2.0598e-07
12 rs2083567 13 110223844 2.4468e-07 3.6441e-07
13 rs2191348 7 15030780 2.4483e-07 3.6462e-07
14 rs2685814 2 169506865 5.2640e-07 7.6737e-07
15 rs12196601 6 65351159 3.1123e-06 4.3181e-06
16 rs763913 14 41907455 3.1755e-06 4.4032e-06
17 rs1893292 18 523191 3.2493e-06 4.5027e-06
18 rs478333 2 169487402 5.1875e-06 7.0959e-06
19 rs497692 2 169497262 6.7055e-06 9.1072e-06
20 rs2073741 22 18369890 7.0091e-06 9.5080e-06

HDL
RSID Chr Pos GCAT GCAT+GC

1 rs3764261 16 55550825 2.3773e-32 4.9288e-31
2 rs1532624 16 55562980 7.5555e-22 5.5951e-21
3 rs7499892 16 55564091 9.6861e-16 3.9504e-15
4 rs1532085 15 56470658 1.7492e-13 5.7275e-13
5 rs7120118 11 47242866 3.7380e-09 8.0480e-09
6 rs1800961 20 42475778 4.2849e-09 9.1729e-09
7 rs2167079 11 47226831 4.7891e-09 1.0205e-08
8 rs9989419 16 55542640 5.4462e-09 1.1543e-08
9 rs415799 15 56478046 9.2636e-09 1.9202e-08

10 rs255052 16 66582496 6.4830e-08 1.2390e-07
11 rs255049 16 66570972 1.0342e-07 1.9385e-07
12 rs2575875 9 106702315 1.8123e-07 3.3185e-07
13 rs2271293 16 66459571 3.6319e-07 6.4610e-07
14 rs6499137 16 66229305 3.9424e-07 6.9896e-07
15 rs4743764 9 106668925 4.3381e-07 7.6606e-07
16 rs673548 2 21091049 4.5146e-07 7.9591e-07
17 rs1975802 16 66843348 4.8554e-07 8.5340e-07
18 rs8058517 16 66937361 5.0286e-07 8.8257e-07
19 rs6728178 2 21047434 5.2562e-07 9.2082e-07
20 rs676210 2 21085029 5.5106e-07 9.6350e-07

Height
RSID Chr Pos GCAT GCAT+GC

1 rs2814982 6 34654538 5.7467e-09 2.6103e-08
2 rs2744972 6 34767032 6.2207e-07 1.9050e-06
3 rs2814983 6 34699185 6.4332e-07 1.9645e-06
4 rs2815005 6 34746825 6.6764e-07 2.0325e-06
5 rs2814993 6 34726871 7.0911e-07 2.1478e-06
6 rs2814985 6 34656274 8.1011e-07 2.4266e-06
7 rs2814944 6 34660775 1.4897e-06 4.2405e-06
8 rs6719545 2 218160079 2.8640e-06 7.7191e-06
9 rs4911494 20 33435328 3.0941e-06 8.2857e-06

10 rs6088813 20 33438595 3.1259e-06 8.3639e-06
11 rs9462014 6 34836231 5.1444e-06 1.3205e-05
12 rs1042630 15 87203055 5.2251e-06 1.3394e-05
13 rs2272023 15 87192164 6.7490e-06 1.6936e-05
14 rs8050499 16 66985827 7.5368e-06 1.8740e-05
15 rs2679184 2 232487467 7.8748e-06 1.9509e-05
16 rs6058154 20 33049495 8.9542e-06 2.1947e-05
17 rs6476514 9 36036596 8.9881e-06 2.2024e-05
18 rs4932439 15 87202113 9.6408e-06 2.3486e-05
19 rs13250548 8 35627942 1.0594e-05 2.5606e-05
20 rs9395041 6 44707121 1.0970e-05 2.6439e-05
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Table S1 continued.
INS

RSID Chr Pos GCAT GCAT+GC
1 rs7068299 10 72992635 1.2712e-05 1.6927e-05
2 rs7241379 18 64306982 2.0943e-05 2.7508e-05
3 rs6502762 17 3819013 2.1891e-05 2.8719e-05
4 rs11041941 11 1918445 2.3782e-05 3.1129e-05
5 rs885014 10 72997827 2.4419e-05 3.1939e-05
6 rs521184 8 41720842 2.9795e-05 3.8759e-05
7 rs11726701 4 133207690 3.0767e-05 3.9988e-05
8 rs11175040 12 62233961 3.8519e-05 4.9758e-05
9 rs1444858 15 93597363 4.4007e-05 5.6641e-05

10 rs4953198 2 45248172 4.6139e-05 5.9308e-05
11 rs12373385 18 52170174 4.7328e-05 6.0794e-05
12 rs7644598 3 129631215 4.8166e-05 6.1841e-05
13 rs2969344 2 177090835 5.0070e-05 6.4217e-05
14 rs2303164 19 8028737 5.3696e-05 6.8736e-05
15 rs7148454 14 94841177 5.5013e-05 7.0376e-05
16 rs4801020 18 52179034 5.7137e-05 7.3017e-05
17 rs877783 10 72985946 5.9507e-05 7.5962e-05
18 rs932052 12 62081496 6.0274e-05 7.6913e-05
19 rs998223 2 64824633 6.1922e-05 7.8959e-05
20 rs2400541 8 83042101 6.5601e-05 8.3518e-05

LDL
RSID Chr Pos GCAT GCAT+GC

1 rs646776 1 109620053 3.0987e-11 8.0825e-11
2 rs693 2 21085700 7.3555e-11 1.8507e-10
3 rs754524 2 21165046 3.5409e-09 7.5849e-09
4 rs4844614 1 205941798 4.5687e-09 9.6838e-09
5 rs11668477 19 11056030 9.2904e-09 1.9121e-08
6 rs207150 1 55579053 4.3743e-08 8.4446e-08
7 rs1541596 19 10848013 4.4530e-08 8.5900e-08
8 rs157580 19 50087106 4.7932e-08 9.2182e-08
9 rs3923037 2 21011755 6.3663e-08 1.2101e-07

10 rs6754295 2 21059688 1.0839e-07 2.0156e-07
11 rs754523 2 21165196 1.1943e-07 2.2120e-07
12 rs6728178 2 21047434 1.2624e-07 2.3327e-07
13 rs1429974 2 21154275 1.3113e-07 2.4193e-07
14 rs611917 1 109616775 2.5699e-07 4.6117e-07
15 rs10198175 2 20997364 2.8066e-07 5.0184e-07
16 rs174556 11 61337211 3.0497e-07 5.4344e-07
17 rs3737002 1 205827396 5.0495e-07 8.8133e-07
18 rs207127 1 55588172 6.3836e-07 1.1035e-06
19 rs10495712 2 21049609 6.5972e-07 1.1389e-06
20 rs174546 11 61326406 8.4890e-07 1.4504e-06

SBP
RSID Chr Pos GCAT GCAT+GC

1 rs782588 2 55695144 3.8489e-07 5.1179e-07
2 rs782586 2 55689669 4.9242e-07 6.5145e-07
3 rs782602 2 55702813 8.7091e-07 1.1387e-06
4 rs2627759 2 55706845 2.5932e-06 3.3154e-06
5 rs2291336 2 55698855 2.9326e-06 3.7399e-06
6 rs1754154 1 43243353 4.0200e-06 5.0935e-06
7 rs10496050 2 55659817 8.3039e-06 1.0366e-05
8 rs1565198 5 8208254 9.5277e-06 1.1860e-05
9 rs782606 2 55740106 9.8327e-06 1.2232e-05

10 rs782652 2 55716279 1.2745e-05 1.5772e-05
11 rs2216322 2 56228414 1.3187e-05 1.6307e-05
12 rs12740489 1 97069523 1.5592e-05 1.9214e-05
13 rs782637 2 55747751 1.6244e-05 2.0002e-05
14 rs12992408 2 55602589 1.7976e-05 2.2089e-05
15 rs7710144 5 92015872 1.8254e-05 2.2423e-05
16 rs2586954 2 55745765 1.8477e-05 2.2691e-05
17 rs480801 11 117018041 1.8653e-05 2.2903e-05
18 rs3741353 11 3085350 1.9268e-05 2.3643e-05
19 rs9791555 7 33211653 1.9431e-05 2.3838e-05
20 rs10486523 7 33208521 1.9832e-05 2.4320e-05

TG
RSID Chr Pos GCAT GCAT+GC

1 rs1260326 2 27584444 1.7072e-09 3.0005e-09
2 rs10096633 8 19875201 1.6803e-08 2.7606e-08
3 rs780094 2 27594741 1.7955e-08 2.9441e-08
4 rs6447066 4 41102425 1.8445e-06 2.6403e-06
5 rs1260333 2 27602128 4.3671e-06 6.0963e-06
6 rs10499276 6 154351501 6.9589e-06 9.5836e-06
7 rs2083637 8 19909455 7.8991e-06 1.0838e-05
8 rs2304130 19 19650528 9.1440e-06 1.2493e-05
9 rs6447065 4 41101723 1.0246e-05 1.3952e-05

10 rs2190174 7 78817283 1.0389e-05 1.4142e-05
11 rs2907632 17 50223911 1.0624e-05 1.4453e-05
12 rs261336 15 56529710 1.0734e-05 1.4598e-05
13 rs673548 2 21091049 1.0768e-05 1.4642e-05
14 rs676210 2 21085029 1.2314e-05 1.6679e-05
15 rs12179536 6 31101569 1.2519e-05 1.6950e-05
16 rs10060710 5 156213134 1.2655e-05 1.7128e-05
17 rs2364913 7 78861440 1.3088e-05 1.7697e-05
18 rs28397289 6 31305386 1.4835e-05 1.9986e-05
19 rs2075650 19 50087459 1.5417e-05 2.0747e-05
20 rs6728178 2 21047434 1.5585e-05 2.0967e-05

CRP (untransformed)
RSID Chr Pos GCAT GCAT+GC

1 rs2464196 12 119919810 1.6254e-09 2.3469e-09
2 rs1169300 12 119915608 1.9049e-09 2.7420e-09
3 rs2794520 1 157945440 2.9924e-08 4.0861e-08
4 rs2650000 12 119873345 2.7614e-07 3.6141e-07
5 rs735396 12 119923227 3.3146e-07 4.3231e-07
6 rs2592887 1 157919563 3.4052e-07 4.4390e-07
7 rs10160939 12 128430312 8.3779e-07 1.0736e-06
8 rs2009800 17 72026460 3.0208e-06 3.7779e-06
9 rs10035541 5 7592712 6.2592e-06 7.7210e-06

10 rs2098930 3 153371624 6.8292e-06 8.4103e-06
11 rs7953249 12 119888107 6.8385e-06 8.4215e-06
12 rs390623 9 118028734 7.4386e-06 9.1459e-06
13 rs924796 11 11067701 1.1358e-05 1.3854e-05
14 rs12093699 1 157914612 1.4562e-05 1.7679e-05
15 rs2072081 17 39683019 1.9668e-05 2.3743e-05
16 rs8015588 14 55230657 1.9845e-05 2.3953e-05
17 rs10483644 14 55171632 2.6387e-05 3.1679e-05
18 rs1811472 1 157908973 2.6710e-05 3.2059e-05
19 rs7637998 3 54061623 2.7532e-05 3.3027e-05
20 rs1169302 12 119916685 3.5850e-05 4.2793e-05

TG (untransformed)
RSID Chr Pos GCAT GCAT+GC

1 rs1260326 2 27584444 4.8574e-09 5.6817e-09
2 rs10096633 8 19875201 9.7234e-09 1.1305e-08
3 rs780094 2 27594741 3.0158e-08 3.4722e-08
4 rs673548 2 21091049 7.1013e-06 7.8005e-06
5 rs3923037 2 21011755 7.8905e-06 8.6596e-06
6 rs6581439 12 38608113 9.4246e-06 1.0328e-05
7 rs676210 2 21085029 9.8160e-06 1.0753e-05
8 rs784622 1 39877401 1.1086e-05 1.2132e-05
9 rs6122161 20 61857331 1.2809e-05 1.4000e-05

10 rs261336 15 56529710 1.3401e-05 1.4641e-05
11 rs1836882 11 88871809 1.7570e-05 1.9151e-05
12 rs2286276 7 72625290 1.7695e-05 1.9287e-05
13 rs12179536 6 31101569 1.9373e-05 2.1100e-05
14 rs6728178 2 21047434 1.9395e-05 2.1123e-05
15 rs3811644 2 27656309 2.5212e-05 2.7397e-05
16 rs12805061 11 116058235 2.5845e-05 2.8079e-05
17 rs6472088 8 64381899 2.6590e-05 2.8881e-05
18 rs10234070 7 44504221 2.7333e-05 2.9681e-05
19 rs7700248 4 89073818 2.8885e-05 3.1352e-05
20 rs6843164 4 95838010 2.9945e-05 3.2492e-05
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Table S2: The genomic control inflation factor (GCIF) was calculated for each trait in the association
analysis of the Northern Finland Birth Cohort traits. The calculation was based on SNPs spaced at
∼250kbp. The 95% Bonferroni adjusted simultaneous confidence interval under the assumption that
the median statistic follows the theoretical null distribution is (0.9389, 1.0666). We calculated GCIF for
the proposed statistics T (xi,y, Ĥ) and T (xi,y, π̂i) defined in the text.

Trait Abbreviation T (xi,y, Ĥ) T (xi,y, π̂i)
Body Mass Index BMI 1.0633 1.0445
C-reactive Protein CRP 1.0073 1.0050
Diastolic blood pressure DBP 1.0487 1.0306
Glucose GLU 1.0225 0.9886
HDL Cholesterol HDL 1.0418 1.0206
Height Height 1.0798 1.1017
Insulin INS 1.0471 1.0636
LDL Cholesterol LDL 1.0651 1.0264
Systolic blood pressure SBP 1.0319 1.0336
Triglycerides TG 1.0708 1.0327
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