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Abstract 

 

Genes in prokaryotic genomes are often arranged into clusters and co-transcribed into 

polycistronic RNAs. Isolated examples of polycistronic RNAs were also reported in some 

eukaryotes but their presence was generally considered rare. Here we developed a long-read 

sequencing strategy to identify polycistronic transcripts in several mushroom forming fungal 

species including Plicaturopsis crispa, Phanerochaete chrysosporium, Trametes versicolor and 

Gloeophyllum trabeum1. We found genome-wide prevalence of polycistronic transcription in 

these Agaricomycetes, and it involves up to 8% of the transcribed genes. Unlike polycistronic 

mRNAs in prokaryotes, these co-transcribed genes are also independently transcribed, and 

upstream transcription may interfere downstream transcription. Further comparative genomic 

analysis indicates that polycistronic transcription is likely a feature unique to these fungi. In 

addition, we also systematically demonstrated that short-read assembly is insufficient for mRNA 

isoform discovery, especially for isoform-rich loci. In summary, our study revealed, for the first 

time, the genome prevalence of polycistronic transcription in a subset of fungi. Futhermore, our 

long-read sequencing approach combined with bioinformatics pipeline is a generic powerful tool 

for precise characterization of complex transcriptomes. 

 

Significance Statement 

Our long-read sequencing led to an unexpected discovery of the genome-wide presence of 

polycistronic transcripts in mushroom forming fungi. In contrast to the previous belief that 

polycistronic transcription is largely restricted to prokaryotes, we demonstrated it is also a 

conserved feature unique to mushroom forming fungi, with a potential role in regulating gene 

expression. This study, for the first time, suggests genome-wide polycistronic transcription may 

not be a unique feature to prokaryotes.
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Introduction 

 

Advances in sequencing technologies have led to the discovery of an enormous variety of RNA 

species within cells, including both coding and non-coding RNAs2, 3, splicing isoforms4, 

alternatively polyadenylated isoforms5, 6, and gene-fusion transcripts7-9. High-throughput short-

read sequencing of transcriptomes (RNA-seq) has enabled a precise quantification of gene 

expression levels and the identification of new exons and splice junctions10, 11. However, as short-

reads are much shorter than the length of most transcripts, assembly of these short-reads is 

necessary to infer the full cornucopia of transcript diversity12. For organisms that lack a reference 

genome, de novo transcriptome assembly from short-reads is often the only available choice. 

However, transcript assembly has many informatics challenges as it involves piecing together 

large volumes of short-reads to reconstruct individual transcript isoforms 12. The largest 

challenges of short-read assembly include resolving hundreds of distinct isoforms derived from 

the same loci, and overlapping transcripts on the same strand for transcripts that span different 

loci9, 13, 14. Reduced sensitivity of short-read assembly to identify multiple isoforms from the same 

locus and long multi-locus transcripts clouds our ability to accurately define transcriptional units. 

 

With a mean read length of ~7 kb, the Pacific Biosciences (PacBio) single-molecule sequencing 

platform provides a direct and unbiased observation of full-length transcripts and their diversity. 

The throughput of the technology has dramatically increased, making genome-wide transcriptome 

studies possible for eukaryotes15-17.  To overcome the low single-pass sequencing accuracy of the 

platform, recent studies either used circular consensus (CCS) reads16 or 2nd generation short-reads 

to correct errors in PacBio long-reads17, 18. The CCS correction strategy excludes long transcripts 

(>3kb) and thus has limited ability to analyze long RNAs, while the short-read correction strategy 

requires additional sequencing efforts and the short-read sequencing may have biased coverage 
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over transcripts with extreme GC-content. Thus, additional approaches are needed to fully utilize 

PacBio long-reads for comprehensive transcriptomics studies. 

 

In this study we developed a transcriptome sequencing and analysis strategy called ToFU 

(Transcript isOforms: Full-length and Unassembled) that requires only PacBio reads for 

generating a de novo transcriptome, eliminating the need for short-read assembly or reference 

genomes. We chose to test ToFU on four wood-degrading basidiomycete fungal transcriptomes, 

Plicaturopsis crispa, Phanerochaete chrysosporium, Trametes versicolor and Gloeophyllum 

trabeum as these fungi possess genomic characteristics that are ideal to examine the effectiveness 

of our approach.  First, these basidiomycete fungi have genes with higher intron numbers and 

more prevalent alternative splicing than ascomycetes and thus rich RNA isoform diversity19. 

Second, despite exhibiting complex alternative splicing, intron-rich basidiomycetes have smaller 

numbers of expressed loci than many higher eukaryotes, which makes them an ideal candidate for 

testing ToFU. Finally, the biochemical and physiological adaptations of these fungi to decompose 

wood represent a mechanism with great biotechnological potential in engineering plant biomass 

deconstruction and advancing synthetic biology. Our knowledge related to RNA transcript 

isoform diversity in intron-rich fungi is limited as they are under-represented in transcriptome 

studies, and little is known about isoform diversity of mRNAs encoding the enzymes that govern 

wood-degrading processes. With these in mind, we first deeply sequenced the transcriptome of 

the white-rot basidiomycete P. crispa with both short- and long-read technology to benchmark 

our approach. Subsequently, we generated additional long-read transcript sequences for three 

additional species (P. chrysosporium, T. versicolor and G. trabeum) representing different orders 

within the Basidiomycota and showed the existence of widespread long polycistronic mRNAs in 

mushroom-forming fungi.
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Figure 1. An overview of the experimental (a) and 
informatics(b) components in the ToFU pipeline to 
generate transcript isoforms. 

Results 

 

A single-molecule, long-read strategy to identify full-length isoforms 

The goal of ToFU was to bypass complicated experimental and informatic procedures of short-

read assembly and instead leverage the longest reads from the PacBio platform to yield high-

confidence transcript 

isoforms independent of a 

reference genome and 

therefore making the 

approach applicable to any 

organism (Figure 1 and 

Methods). To increase the 

representation of different 

mRNA populations in P. 

crispa, multiple cDNA 

libraries, including size 

selected (1-2 kb, 2-3 kb, 

and 3-6 kb) and non-size 

selected libraries, were 

generated and sequenced 

for each of two growth 

conditions. After sequencing, we identified putative full-length cDNA reads from 5 million raw 

reads by the presence of both 5’ cDNA primers and polyA signals preceding the 3’ primers, 

yielding 2.1 million full-length sequences. Reads derived from the same isoforms were then 

clustered to generate initial consensus sequences, and further polished with the aid of non-full-

length reads to generate 176,903 high-quality consensus sequences. After merging redundant 
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sequences we obtained 22,956 distinct isoforms representing 9,073 transcribed loci 

(Supplemental Table 1). In the following sections, we denote this final set of isoforms as the 

ToFU transcript set. For performance comparison and validation purposes, we also generated 300 

million paired-end 100bp short-reads on the Illumina HiSeq platform from the same RNA 

samples. 

 

ToFU transcripts are long and accurate 
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Figure 2. Long, high-quality, consensus sequences accurately benchmark transcript diversity. a, 

Length distributions of full-length (FL) input reads, high-quality CCS reads, and ToFU transcript 

sequences. b, Histogram of percent nucleotide identity of ToFU transcript sequences aligned to the 

reference genome. c, Accumulative histogram of number of reference annotations that have a ToFU 

transcript that completely covers each annotated junction (transcript-covered) or only partially covers the 

loci (loci-covered). d, Distribution of distinct isoforms per loci for the reference annotation and ToFU 

transcript set. e. Illumina short-read coverage (grey) and junction support (red) aligned along the reference 

annotated transcript (blue) for a glycosyl hydrolase gene with 120 distinct PacBio isoforms aligned below 

(splice junctions are shown in red and exon sequences are shown in green). f, An enlarged view of the 

region between two starts in 2e.  

 

The ToFU transcripts (Fig 2a) have an average length of 1,657 nt, with the longest being 5,589 nt. 

The length of the final transcripts closely follows the distribution of the input full-length reads 

(Input FL Reads in Fig 2a) since no assembly is involved. ToFU transcripts include a large 

number of isoforms greater than 3 kb that are not accessible by simply using CCS reads (HQ CCS 

Reads, Fig 2a)16. 

 

Despite the ~15% error rate in the input reads18, our analyses indicate that ToFU transcripts are 

highly accurate. Although our pipeline did not require a sequenced genome, we used the 

annotated draft genome sequence of P. crispa from JGI MycoCosm portal20 

(http://jgi.doe.gov/Plicaturopsis) to independently estimate transcript accuracy. When aligned to 

the genome sequence using GMAP21 and allowed alignment gaps, 99.79% 

(37,930,451/38,011,774) of the bases are concordant with the reference base (Fig. 2b). The 

estimated errors for substitution, insertion, and deletion are 0.06%, 0.04% and 0.12% 

respectively. These percentages are likely over-estimated since they do not account for errors in 

draft reference genome, polymorphisms, or post-transcriptional RNA-editing. In addition, based 

on existing reference-based gene annotations20 the ToFU transcripts fully span most of the genes 
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with detected expression (Figure 2c) and on average they have longer untranslated regions 

(UTRs) (Supplementary Fig. 1).  

 

ToFU reveals extensive alternative splicing and alternative poly-adenylation 

Fungal species were previously thought to have much lower rates of alternative splicing than 

plants and animals. Recent estimates based on EST and RNA-Seq data suggest that on average 

approximately 7.3% of genes in non-Saccharomycotina fungi undergo AS, with Cryptococcus 

neoformans being an extreme case with up to 20% of genes involved in AS19. By contrast, 42% of 

genes in Arabidopsis and 95% in humans are alternatively spliced22, 23. Among 9,073 transcribed 

loci in P. cripsa, 56% (5,038 / 9,073) have two or more and 32% (2,908) have three or more 

distinct isoforms that derived from either alternative splicing, alternative poly-adenylation, or 

alternative transcription start sites (Fig. 2d). In total, 25.2% of all transcribed loci are alternatively 

spliced and 28.7% loci have alternative poly-adenylation sites. This estimation of splicing rate is 

likely underestimated, as rare isoforms may skip detection, and we only sampled two conditions. 

These findings suggest that basidiomycete fungi may have a much higher transcriptional diversity 

than previously reported.   

 

Wood-decaying fungi produce a wide range of enzymes to break down plant cell walls including 

a large and diverse family of glycosyl hydrolases (GHs). Despite their importance, little is known 

about GH transcript isoform diversity at individual genes, which may affect the efficiency at 

which these enzymes are made both in their native host and bioengineered systems. Interestingly, 

among 151 loci that have 10 or more isoforms, 8 are associated with GH activity. One of these 

GH loci produces 120 distinct isoforms, with additional support from short-read validation of 

individual splice junctions (Fig. 2e,f).  

 

A quality evaluation of short-read assemblers 
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Extensive alternative splicing in the P. crispa transcriptome makes it a good candidate to assess 

the quality of algorithms for transcriptome reconstruction from short reads. In order to quantify 

the ability of existing short-read transcript reconstruction methods to capture isoform level 

resolution we used the ToFU transcript set as a reference. We selected three assemblers to 

represent both genome-based (Cufflinks24) and de novo (Rnnotator25 and Oases26) reconstruction 

strategies. All assemblies were generated from the above 300 million 100-bp paired end short-

read dataset. The performance of each assembler was evaluated by its ability to recover ToFU 

transcripts (sensitivity) and the number of predictions validated by ToFU (specificity) (Figure 3). 

For a fair comparison, we only considered loci that were detected by both short-reads and ToFU 

transcripts, and we evaluated the reconstructed transcripts only based on their exon structures 

(splicing junctions). 

 

Overall, a single assembler was only able to reconstruct a small percentage of 22,956 ToFU 

isoforms, and only 2.8% of isoforms by all three methods (Fig. 3a). 70% of ToFU transcripts 

were not fully reconstructed by any of the three assemblers. Among the three short-read 

assemblers, Oases had the largest number of transcripts and the highest prediction sensitivity, but 

it also had the most predictions not validated by ToFU and thus the least specificity. Cufflinks 

seemed to be the most conservative assembler, predicting only a small number of transcripts 

compared with the other two. Rnnotator showed a balance between sensitivity and specificity, 

with only one-third as many transcripts predicted as Oases with similar sensitivity (Supplemental 

Tables 2, 3 and Fig 3b). Importantly, both the sensitivity (Fig 3c) and specificity (Fig 3d) of all 

the above assemblers dropped sharply as isoform complexity increased.  
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Figure 3. Evaluating short-read transcript reconstruction against ToFU transcripts. a, Percentage of 

ToFU transcripts recovered by three different short-read assembly methods. The isoform frequency shows 

whether a ToFU transcript is recovered by exactly 0, 1, 2, or all 3 of the assemblers. b, Number of 

assembled transcripts validated by ToFU transcripts. A transcript is validated as an exact match of a ToFU 

transcript if it shares exactly the same number of exons and donor-acceptor sites. c, Fraction of ToFU 

transcripts recovered (sensitivity) by each short-read assembler as a function of isoform complexity. d, 

Fraction of assembled transcripts validated (specificity) by ToFU as a function of isoform complexity. 

Isoform complexity is determined by the number of ToFU isoforms at each locus. 

 

The above analyses highlight the limitations of current state-of-the-art short-read assembly 

methods for isoform discovery, and suggest that long-read RNA sequencing is essential for 

accurate isoform resolution, especially for genes with many isoforms.  
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Long-read sequencing reveals widespread polycistronic mRNAs in P. crispa 

Detailed analysis of the opening reading frames (ORFs) of the P. crispa ToFU transcript set 

revealed 508 genomic locations that produce readthrough mRNAs composed of two to four ORFs 

from either the same or opposite strands (an example is shown in Figure 4a). Three-hundred and 

fourteen (61.8%) of these readthrough transcripts containing two or more annotated reference 

genes were characterized further. They collectively involve 717 of the 9,073 transcribed loci 

(7.9%). Unlike the small regulatory upstream ORFs found in yeast and many other organisms10, 

27, the average size of the upstream ORFs is comparable to the downstream ones (256 vs 277 

amino acids) with an average inter-ORF distance of 364 nt.  

 

In the majority of cases (73%), ORFs within a readthrough transcript are in the same forward 

orientation; thus these transcripts are polycistronic mRNAs. Multiple stop codons are present in 

all reading frames between most of these ORFs, excluding the possibility that the transcripts are 

large single ORFs that are misannotated. Polycistronic transcripts are a common feature of the 

prokaryotes, but are relatively rare in eukaryotes except for transpliced transcripts in protists and 

nematodes28. To our knowledge this is the first report of polycistronic transcription in higher 

fungi. To rule out the possibility that these transcripts are experimental or informatics artifacts, 

we carried out independent validation experiments by RT-PCR followed by additional 

sequencing of amplicons (Methods and Supplemental Table 4). In support of the high fidelity of 

long-read sequencing strategy, 8 out of 10 randomly selected polycistronic transcripts were 

successfully validated, while the remaining 2 were inconclusive due to technical PCR problems.  
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Figure 4. The genome-wide presence of polycistronic mRNAs.  

a, Short-reads (Illumina) aligned to a cluster of tandem reference genes (Annotation, 3 tandem genes on the 

first row). The numbers of supporting short-reads for each junction are indicated. Polycistronic transcripts 

(TOFU) are shown in green and non-polycistronic transcripts in gray. b, A comparison of transcription 

termination signals. The sequence composition profiles (upper panel for A-content and lower panel for U-

content) before the polyadenylation sites for different classes of ORFs. pORF1 is the upstream ORF and 

pORF2 is downstream ORF, while nORF stands for non-polycistronic mRNAs. The y-axis are the 

frequencies of a specific nucleotide averaged for 200 randomly sampled polycistronic mRNA or non-
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polycistronic controls, dotted lines are the expected frequencies (0.25) if all four bases are equally likely. 

Arrows denote NUE (upper panel) and FUE (lower panel), respectively. For this figure, only polycistronic 

transcripts with exactly two ORFs are plotted. Genome-wide analysis base composition of termination 

signals for all transcribed loci is shown in Supplementary Fig. 2. c, The independent expression levels of 

ORFs within polycistronic RNAs. ORF numbers indicate their order in the transcript (5’- to 3’). d, 

Polycistronic transcripts are likely a unique feature to Agaricomycetes. The top plot shows the total number 

of adjacent ORF pairs within polycistronic transcripts from P. crispa that have conserved gene 

configuration in related species. The numbers on x-axis are species with increasing evolutionary distance. 

The bottom heatmap shows the conservation for each individual pair of ORFs. Red indicates the presence 

of a homologous gene pair in the species. 

 

In humans, Arabidopsis thaliana and the filamentous ascomycete Aspergillus oryzae, signals for 

transcription termination include an A-rich near upstream element (NUE), and a U-rich far 

upstream element (FUE)5, 29, 30. The polycistronic transcripts could result from transcriptional 

readthrough due to weak termination signals5. To address this possibility, we compared the 

sequence composition before the poly-adenylation sites of the upstream and the downstream 

ORFs. First, we did a genome-wide analysis of sequences surrounding poly-adenylation sites to 

confirm the presence of NUE and FUE elements in the basidiomycete, P. crispa (Supplementary 

Fig. 2). We then compared the termination signals of ORF1 in polycistronic transcripts (Figure 

4b, pORF1) against its downstream ORF (Figure 4b, pORF2) and non-polycistronic transcripts 

(Figure 4b, nORF). Consistent with the weak transcription termination hypothesis, ORF1 is 

lacking both the U-rich FUE and A-rich NUE.   

 

Genes within polycistronic transcripts are also independently transcribed 

Unlike in prokaryotes where polycistronic genes are transcribed into a single transcript without 

independent transcription, the polycistronic genes in P. crispa are also independently transcribed 

(Figure 4a). However, expression of downstream genes is consistently lower than their upstream 
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counterparts within the same polycistronic transcript and this trend was consistent in independent 

experimental conditions (Figure 4c). Thus genes associated with readthrough transcripts 

frequently formed 2 to 4 successive tiers of decreasing gene expression. Polycistronic 

readthrough RNAs associated with this biased expression are different than previously identified 

regulatory RNAs such as lncRNAs2 that fall largely outside genic regions or transcripts that are 

found in antisense orientation relative to genes due to convergent readthrough transcription31, 32.  

This raises the possibility that the expression of downstream genes is repressed by the upstream 

readthrough transcription either through transcriptional interference (TI) or nucleosome 

positioning in which intergenic transcription alters the organization of nucleosomes at promoters 

thus influencing their activity33, 34.  

 

Polycistronic RNAs are likely a feature unique to Agaricomycetes 

To investigate the evolutionary origin of these genome-wide polycistronic transcripts from P. 

crispa, we used the pairs of adjacent ORFs within these transcripts as queries to search 47 

sequenced fungal genomes (Supplemental Table 5) for conserved gene configurations. These 

fungal species include 13 species from the same subclass as P. crispa (Agaricomycetidae), 24 

from the same class (Agaricomycotina), and 33 from the same phylum (Basidiomycota).  In 

addition, there are 4 species from the phylum Ascomycota. Since there are no available long read 

sequences from these species, we reasoned that conserved gene configuration would be indicative 

of possible readthrough transcription in other species. These conservation analyses indicate that 

only a subset of the gene pairs have conserved configuration in multiple species (Figure 4d), and 

this conservation declines sharply outside of the Agaricomycete class. This suggests that the gene 

pairs producing polycistronic transcripts in P. crispa may also produce polycistronic transcripts in 

other Agaricomycetes. This also implies that either polycistronic transcription is unique to 

Agaricomycetes or that more distally related species produce polycistronic transcripts from 

different pairs of adjacent genes.  
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To validate the notion that other Agaricomycetes produce polycistronic transcripts, we generated 

additional PacBio transcriptome data from three species from different orders than P. crispa, but 

within Agaricomycetes class. These fungi represent three independent orders (Polyporales, 

Gloeophyllales, Amylocorticiales), and include two additional white rot fungi Phanerochaete 

chrysosporium, and Trametes versicolor, as well as one brown rot fungus Gloeophyllum trabeum 

(Methods). Even without deep sequencing, we identified at least a hundred putative polycistronic 

readthrough transcripts from each fungus (Table 1). Among the P. crispa polycistronic gene pairs 

with homologous gene configurations in these species, PacBio long reads confirmed polycistronic 

transcripts associated with three gene pairs in Trametes versicolor, four gene pairs in 

Phanerochaete chrysosporium and one gene pair in Gloeophyllum trabeum (19, 19 and 21 total 

conserved gene pairs per species, respectively, Supplemental Table S5). To provide support for 

the absence of polycistronic transcription in non-Agaricomycetes we analyzed a deep long-read 

transcriptome data set for the ascomycete Neurospora crassa35 (N. crassa). This analysis did not 

identify any high confidence polycistronic transcripts. These results are consistent with the above 

hypothesis that genome-wide polycistronic transcription is likely to be prevalent among 

mushroom-forming Agaricomycetes and possibly unique to these fungi. 

 

Organism Order/Class Poycistronic 
transcription 

Plicaturopsis crispa Agaricomycete/basidiomycete 229 
Phanerochaete chrysosporium Agaricomycete/basidiomycete 118 

Trametes versicolor Agaricomycete/basidiomycete 108 
Gloeophyllum trabeum Agaricomycete/basidiomycete 100 
Neurospora crassa35 Sordariomycetes /ascomycete 0 

Table1. Polycistronic transcripts identified in several fungi transcriptomes. 

 

DISCUSSION 
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Here we present a combined experimental and bioinformatics strategy (ToFU) that uses PacBio 

long reads for transcript isoform discovery. This strategy does not rely on reference genomes, and 

thereby enables the study of the transcriptome of any species. We showed that our strategy 

accurately reconstructs complex transcriptomes without relying on short-reads for error-

correction or short-read assembly.  

 

Lower mRNA isoform diversity has been observed in fungi compared to plants or animals. The 

low estimation is likely reflective of biased sampling from fungal lineages, such as the 

ascomycetes that have less complex gene structures and may have lower levels of isoform 

diversity36. The proficiency of ToFU was demonstrated on the transcriptome of the wood-

degrading basidiomycete P. crispa. Our study shows that more than half of the genes in P. crispa, 

produce more than one transcript isoform, suggesting transcript isoform diversity in this phyla has 

likely been underestimated previously due to lack of deep full-length cDNA data. Similar to other 

non-fungal systems, genes producing the largest numbers of distinct isoforms are probable targets 

for regulation by NMD22. In this way alternative splicing may control production of functional 

proteins.  Sequence optimization of GH and related enzymes may therefore be important in order 

to influence splicing and maximize production of transcript isoforms encoding functional 

enzymes in bioengineered systems.  

 

 A surprising finding is the discovery of long polycistronic transcripts spanning multiple 

independently transcribed loci that retain coding potential. Analysis of gene configuration 

conservation and long-read sequencing of multiple transcriptomes suggests that polycistronic 

transcripts may be found in mushroom-forming Agaricomycete fungi and absent from other 

basidiomycetes and ascomycetes. Future long-read transcriptome studies will resolve further 

details about the evolutionary breadth and origin of polycistronic readthrough transcription, as 

well as selective forces acting on the associated gene configurations. Interestingly, multi-ORF 
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readthrough transcripts were associated with half of the bioinformatically detected secondary 

metabolite gene clusters identified by antiSMASH37. In the context of secondary metabolite gene 

clusters co-regulation and co-segregation can prevent the accumulation of toxic intermediates 

from these pathways38. Thus, polycistronic transcription may play an important role in achieving 

a particular ratio of enzymes produced from biosynthetic gene clusters, representing an 

advantageous mechanism to coordinate cellular responses. 

 

A full understanding of the roles of polycistronic transcripts requires further experimental 

characterization of these polycistronic mRNAs. For example, how are they translated? Are they 

post-transcriptionally cleaved and processed?  Post-transcriptional processing in response to 

environmental conditions has been shown for specific cases in other systems to regulate protein 

expression40. Conducting heterologous expression and biochemical characterization of the 

products encoded by some of these polycistronic mRNAs is a crucial step to understand the 

function and role of polycistronic transcripts in fungi.  Manipulation and engineering of 

polycistronic transcripts has the potential to positively impact the field of bioconversion.  
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METHODS 

 

Library preparation and cDNA sequencing 

Total RNA was isolated from a monokaryotic culture of Plicaturopsis crispa grown on either a 

glucose-rich medium or microcrystalline cellulose. Total RNA was isolated from a monokaryotic 

cultures of Phanerochaete chrysosporium,Trametes versicolor, and Gloeophyllum trabeum. 

PolyA+ RNA was purified from total RNA via oligo-dT magnetic beads (Dynal). Four sequencing 

libraries (1-2 kb, 2-3 kb, 6kb, and no size-selection) were made for both P. crispa growth 

conditions and were prepared according to the PacBio isoform-sequencing protocol 

(http://www.smrtcommunity.com/servlet/servlet.FileDownload?file=00P7000000Pb1fkEAB). 

Phanerochaete chrysosporium, Trametes versicolor, and Gloeophyllum trabeum long-reads were 

generated from a size selected (>2 kb) cDNA library for each species. Single-molecule 

sequencing was performed on the PacBio RS II using P4-C2 chemistry, MagBead loading and 2 

hour movie times.   

 

The ToFU pipeline 

The pipeline consists of three stages: identifying full-length reads, isoform-level clustering, and 

final consensus polishing.  

 

In the first stage, ToFU classifies all input raw reads into Circular Consensus Sequences (CCS) 

and non-CCS subreads by searching for the presence of sequencing adapters. Then ToFU 

determines a CCS or subread sequence to be full-length if both the 5’ and 3’ cDNA primers were 

present and there was a polyA tail signal preceding the 3’ primer.  

 

In the second stage, ToFU uses an iterative isoform-clustering algorithm to cluster all the full-

length reads derived from the same isoform. Briefly it first does clique-finding based on a 
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similarity graph, then calls consensus using the Directed Acyclic Graph Consensus method and 

finally reassign sequences to different clusters based on their likelihood.  

 

In the final stage, ToFU recruits the non-full-length reads and uses them to polish the consensus 

sequences produced during the second stage using the Quiver algorithm. Consensus sequences 

predicted to contain more than 10 errors are discarded.  

 

 

Merging the redundant PacBio transcripts into the ToFU transcript set 

Due to the limitation of the cDNA library protocol, some cDNAs may not be full-length as they 

may lack the 5’-end. We collapsed transcripts that only differ in the 5’ start of their first exon but 

are otherwise identical in all subsequent exon structures keeping only the longest ones. The 

consequence of this step is that some transcripts with alternative transcription start sites are lost, 

but those with alternative splicing and alternatively polyadenylation will be preserved. This step 

can be avoided if the cDNA library protocol guarantees transcript sequences that preserve the 5’ 

start. 

 

Identification of polycistronic readthrough transcripts 

We used Transdecoder for ORF prediction41. Transcripts with two or more non-overlapping 

ORFs ≥ 100 aa were further categorized based on reference annotations.  

 

RT-PCR and sequencing validation of the polycistronic RNAs 

We selected 10 randomly selected polycistronic RNAs for experimental validation. RT-PCR 

primers were designed so that the target region begins near the end of the first ORF and ends 

within the second ORF. RT-PCR products were pooled and sequenced by PacBio sequencing. 

29,511 raw reads were aligned to the 10 reference transcripts using BLASR. Only high quality 
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end-to-end alignments (19,706 reads) were further analyzed. Eight out of 10 RT-PCR products 

exactly matched the references and therefore validated the polycistronic RNAs. The remaining 

two were inclusive, as one (scaffold_9:1201061-1204786) did not yield any matching sequencing 

reads, while the other (scaffold_15:638864-642834) had a different 3’ end from the designated 3’ 

target site. These two may represent RT-PCR off-target cases. Further details are listed in 

Supplemental Table 4. 

 

 Poly-adenylation site (PAS) analysis 

The poly-adenylation sites (PAS) of non-polycistronic and the second ORF of the polycistronic 

transcripts were identified by the polyA tail. The PAS of the first ORF of the polycistronic 

transcripts were identified with the aid of independent transcripts of the first ORF. The PAS 

motifs were predicted as previously described30.  

 

Short-read transcript reconstruction 

PolyA+ RNA was purified from the same total RNA samples as used for long-read sequencing. 

100-bp paired end Illumina reads were generated on the HiSeq2000 according to the 

manufacturer’s instructions (Illumina). Short-reads were assembled using Rnnotator (v.3.0.0), 

Oases (v0.2.08), and Cufflinks (v.2.1.1). Rnnotator and Oases are both de novo transcript 

assemblers whereas Cufflinks is reference-based. In order to obtain optimal assembly results for 

Oases, we performed eight assemblies with Oases using different values of k-mer then used 

Vmatch (v2.2.0) to remove redundancy. The k-mer size ranged from 53 to 95 and the step size 

was 6. For Cufflinks, short-reads were first aligned to the reference genome with TopHat (v2.0.6) 

then the alignments were assembled into a parsimonious set of transcripts using Cufflinks. All 

three programs were run with default options with strand-specific information.  
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Assembled transcripts were mapped to the reference genome using GMAP (v2014-04-24) using 

parameters `--cross-species --allow-close-indels 0 –n 0` and filtered for ≥ 99% alignment 

coverage and ≥ 85% alignment identity; these parameters are the same as those applied to the 

PacBio consensus sequences. Finally, the same redundancy removal script used for collapsing 

PacBio consensus sequences was applied to create a non-redundant, high-quality transcript set for 

each assembly program. 

 

Conservation of homologous gene configurations of polycistronic-associated gene pairs in 

other sequenced fungi 

For identification of cases of gene order conservation of polycistronic gene pairs in other fungi 

(Supplemental Table S5), we searched for directly adjacent same-strand Blastp best hits in every 

fungal genome, publicly available at Mycocosm portal. 
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All RNA-Seq data have been submitted to NCBI, under the BioProject ID: PRJNA261247.
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Supplementary Text 
 
1. TOFU: a bioinformatics pipeline for PacBio transcriptome data  
We developed a novel bioinformatics pipeline called TOFU to leverage both CCS (Circular 
Consensus Sequence) reads and non-CCS reads for transcript discovery. TOFU consists of three 
components: identifying full-length reads, isoform-level clustering, and final consensus polishing. 
We explain details in each step in the subsections below. 
 
1.1 Full-length read identification and artifact removal 
Given either CCS or subreads, we use the phmmer program from HMMER1 to detect and remove 
the Clontech 5’ / 3’ primers (5’ – AAGCAGTGGTATCAACGCAGAGTAC – 3’). A read is 
considered full-length if both primers are detected at the ends with a polyA tail signal of at least 
12 consecutive ‘A’s preceding the 3’ primer. Based on polyA tail and 3’ primer orientation, 
primer-trimmed reads are reverse complemented to represent the sense strand. Because the 
Clontech protocol does not ensure the capture of the 5’ cap, reads are considered 3’-complete but 
potentially 5’-partial; the 5’ incompleteness is taken into account in later stages of transcript 
collapsing. To remove artificial concatemers that may have formed via ligation of primer-
attached inserts, the same phmmer program is used to detect the presence of Clontech primers at 
least 100 bp away from either end of the sequence.  

 
1.2. Iterative isoform clustering & consensus calling using Quiver 
We develop an iterative isoform clustering algorithm called ICE (Iterative Clustering for Error 
Correction) that uses PacBio sequencing QVs for determining whether two reads come from the 
same isoform. ICE consists of several main modules: (1) clique-finding based on similarity graph; 
(2) fast consensus calling with no QV information using DAGCon; (3) reassignment of sequences 
to different clusters based on likelihood. The following flow chart shows the process. 
 
In the initial phase of clustering, the input sequence, which are often only a portion of the entire 
dataset, are aligned against each other using BLASR2 to construct a similarity graph where each 
node represents a read and each connecting edge indicates an “isoform hit”. Since BLASR is 
designed to align through long stretches of gaps, a hit between two transcripts that share some 
number of exons may have an alignment. To distinguish alignments from the same isoform while 
accounting for sequencing errors, an alignment between two reads is considered an “isoform hit” 
(from the same isoform) only if the percentage of gaps that cannot be attributed to base errors 
within a window size w is below some threshold T.	
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Formally, let the alignment string between two fully aligned sequences x and y be A = a1a2...an 
where ai is ‘M’ for a match, ‘S’ for a substitution, ‘I’ for insertion, and ‘D’ for deletion (hence A 
is just an unraveled cigar string). Let  denote the probability of each 
error type based on the raw QVs for sequence x. Construct an non-match vector E = e1e2…en 
where ei = 0 if one of the following is true: 

• ai = 'M’ 
• ai = ‘S’ and (  
• ai = ‘I’ and (  
• ai = ‘D’ and (  

 
otherwise ei = 1 which indicates a likely genuine non-match. Finally, we define x and y as being 
different isoforms if exists i, j > 0, where  j – i < w, such that . In other words, 
we identify indel-rich regions in the alignment that are likely due to exon-level differences. We 
use a previously published linear time algorithm for identifying indel-rich regions3 . A pair of 
aligned sequences x, y, that do not have an indel-rich region, is considered an “isoform hit”. In 
this study, we set c = 0.1, w = 20, and T = 0.5. 
 
With the similarity graph constructed using isoform hits, we look for perfect cliques in the graph. 
Ideally, all sequences from the same isoform would form a clique on its own with no other 
connecting edges. In practice, however, it is more likely that the sequences would form several 
cliques and may contain false positives (sequences from other isoforms). We address this by 
allowing “reassignment” of sequences to other clusters in a later step. For now, we run a maximal 
clique finding algorithm 4, 5 that non-deterministically finds maximal cliques in a graph, removes 
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the clique nodes from the graph, then repeat the process until the entire graph is partitioned into 
mutually exclusive cliques (clusters).  
 
We call an initial consensus on all clusters using DAGCon, a directed acyclic graph based 
consensus calling algorithm originally developed for error correcting PacBio genomic 
sequences6. With the improved accuracy of the consensus sequences, we can better approximate 
the likelihood of sequences belonging to the same isoform. Here, we use a “reassignment” 
procedure similar to the Gibbs sampling method described for detecting HIV quasispecies7. 
Briefly, we calculate the posterior probability of a sequence x originating from an isoform h(c) for 
cluster c as: 
 

 
 
Theoretically, we need to calculate  for all sequences x and all cluster 
consensus In practice, only pairs of (x, h(c)), for which there is an “isoform hit” are 
calculated. Here “isoform hit” uses the same linear time algorithm in the similarity graph 
construction; the only difference is h(c) is considered error-less.  
 
At each “reassignment” step, for each sequence x, there are three possible moves: 
 

• Case 1: If no isoform hit exists for x, it is put into an “orphan” bin 
• Case 2a: If there exists another cluster c’ such that , 

reassign x to c’.  
• Case 2b: If x is in a singleton cluster and there exists another cluster c’ such that h(c’) and 

x has an isoform hit, with some probability p, reassign x to c’. 
• Case 3: If none of the above is true, x remains in c. 

 
Case 2a deals with clusters that are big enough (>= 3 sequences) to generate consensus. In cases 
where DAGCon cannot generate consensus because there is only 1 or 2 sequences in the cluster 
(called “singleton clusters”),  will always have the best probability and x will not 
have any possible moves. To allow the singletons to “escape”, we reassign it to another cluster for 
which there is an isoform hit with some low probability (by default, p=0.3).  
 
At the end of the reassignments, the “orphan” sequences go through the same similarity graph 
construction and maximal clique finding process to form new clusters. Any cluster that has 
membership changes must have run through DAGCon again for consensus calling, as well as 

 recalculated.  
 
Because our algorithm does not jointly optimize for a global objective function (such as 

, the total probability of observing the clusters given the input sequences and 
alignments) and our maximal clique finding is not guaranteed to put all isoform sequences in one 
cluster, a single isoform can end up being represented by multiple clusters. Thus, we add a phase 
of cluster merging, where the consensus sequences of two clusters are aligned against each other 
and if they are highly identical (  similar) and are considered an isoform hit, then the two 
clusters are merged together. Note that, if two clusters were incorrectly merged, most commonly 
DAGCon will call consensus on one isoform but not the other, and as a result sequences 
belonging to the other isoform will be “orphaned” out in the next reassignment phase. 
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The iterative nature of the clustering process described so far makes adding new sequences very 
easy. New sequences can be introduced as follows: First, all new sequences are aligned against 
existing cluster consensus and assigned to the cluster with highest probability. For all sequences 
that did not have an isoform hit to an existing cluster, it is “orphaned” and follows the maximal 
clique finding procedure to be introduced into the dataset. 
 
To summarize, the iterative process consists of maximal clique finding, consensus calling using 
DAGCon, cluster reassignment, and cluster merging. After a burn-in phase of reassignment and 
merging, the final set of DAGCon-generated consensus sequences are sent to the final stage of 
consensus calling using the more accurate and slower Quiver. 
 
In this final stage of Quiver consensus calling, non-full-length reads, that were excluded from the 
iterative clustering process, is recruited to improve consensus accuracy. Non-full-length reads are 
aligned to all DAGCon-generated consensus sequences and filtered so that only “isoform hits” 
(using the same criterion as before but allowing for partial alignment) remain in the final 
alignment. Quiver uses the raw QVs from all aligned PacBio reads and outputs informative QVs 
along with the consensus sequence. Using the consensus QVs, we can filter out low quality 
consensus sequences that are often junk sequences and artifacts, though we also risk throwing out 
rare transcripts that have too little coverage. 
 
Several speedups and parallelization are employed in the actual implementation of ICE. First, 
full-length reads are binned by size range (ex: 1-2k, 2-3k, 3-6k) since sequences from the same 
isoform must be within certain length differences even with indel errors. Partitioning the input 
sequences also serves to reduce the memory usage of each ICE process, which for efficiency 
maintains all QV information of “active” sequences (described below) in memory. Depending on 
the readlengths, 100k reads can take up 40-60GB of memory. Another speedup employed is to re-
run DAGCon consensus calling only on clusters that are relatively small, where the removal of 
one or two sequences can affect the consensus sequence. In this study, we set the re-run cluster 
𝐴, ℎ does not to be re-calculated since it will remain the same. Finally, ICE maintains a set of 
“active” sequences that are sequences that are highly likely to be reassigned or orphaned because 
it is in a small cluster. A “freeze phase” is introduced after certain iterations of ICE, where any 
sequence that is in a cluster of size greater than the re-run size threshold and does not have an 
isoform hit to any other clusters is “inactivated” and forced to remain in its current cluster. QVs 
of inactive sequences are removed from memory. Consequently, clusters that contain inactive 
sequences, which must be of size greater than the re-run size threshold, does not ever have 
consensus re-run, and its core members can only increase.  
 
1.3 Software availability 
As of this writing, TOFU has been incorporated into the official SMRTAnalysis suite (versions 
2.2 and above) by Pacific Biosciences under the protocol name RS_IsoSeq. The only difference 
between TOFU and RS_IsoSeq is that while TOFU uses a mixture of CCS reads and subreads, 
RS_IsoSeq uses the improved ReadsOfInsert protocol that generates a consensus read for each 
ZMW. The developemental version of TOFU is available publicly at 
http://github.com/PacificBiosciences/cDNA_primer. 
 
 
2. Short read mapping to long read consensus and filtering by coverage 
Strand-specific Illumina paired short reads are treated as paired and concordantly mapped to the 
PacBio consensus sequences using BowTie2 with ‘--very-fast –norc’ and otherwise default 
parameters. Based on the short read coverage, PacBio consensus sequences are discarded if it: (1) 
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has zero short read coverage that is not at the end of the sequence; or (2) has a sudden drop in 
coverage that is greater than 100X fold and the smaller coverage is less than 10.  
 
 
3. Identifying exon and splice junctions and removing redundancy 
PacBio consensus sequences are mapped to the P. crispa contigs using GMAP (version 2014-04-
24) with parameters ‘--allow-close-indels 0 --cross-species’. Alignments with less than 99% 
coverage are discarded. Exon boundaries and alternative junctions are defined based on the 
remaining alignments. Because the PacBio reads are considered 3’ complete but possibly 5’ 
partial, transcripts are merged if they share the same 3’ exon and do not have any conflicting 
splice junctions. In the case of a single-exon transcript, all overlapping transcripts are merged. 
 
4. ORF prediction and comparison with genome annotation 
ORF prediction is done using TransDecoder8 on the PacBio (TOFU) transcript consensus 
sequences. To find polycistronic candidates, we filter for any PacBio transcripts that satisfy the 
following: (1) has two or more non-overlapping ORF predictions; (2) does not have another 
PacBio consensus with a single ORF prediction that maps to the same loci and whose predicted 
ORF length is between 80%-120% of the total ORF length (in aa) from (1). We ignore any 
polycistronic candidates that have a similar PacBio consensus with single predicted ORF because 
most of them appear to be either incompletely or faulty spliced. The filtered polycistronic 
transcripts are then categorized as either reference-supported or non-reference-supported 
depending on whether each of the predicted ORFs overlaps an annotated reference gene. 
 
5. Identification of full-length CCS and subread sequences  
We ran a total of 77 SMRTCells on the PacBio RS II consisting of different size fractions: 20 
with no size selection, 22 from the 1-2k size selection, 19 from the 2-3k size selection, and 16 
from the > 3k size selection. The loading efficiency (P1) for the runs were from 30-55%, which is 
the recommended range. The RS_Filter protocol from SMRTPortal (version 2.0) was used to 
generate filtered CCS (Circular Consensus Sequence) and subread sequences. Out of a total of 
4,920,305 sequencing ZMWs, 1,628,297 (33%) were CCS ZMWs. We defined a CCS or subread 
sequence to be full-length (FL) if both the 5’ and 3’ cDNA primers were present and there was a 
polyA tail signal preceding the 3’ primer. Primers and polyA tails were trimmed from full-length 
sequences. Out of a total of 2,177,319 full-length CCS or non-CCS ZMWs, 4,748 were detected 
as artificial concatemers (0.2%) and were removed. The remaining trimmed, full-length 
sequences were further filtered for potential PCR chimeras by removing any sequence with at 
least 12 consecutive Ts in the beginning of the sequence. The remaining 2,548,103 sequences 
(from 2,143,039 ZMWs) were then used as input to the subsequent ICE clustering step. 
 
 
6. Creating high-quality transcript consensus sequences 
To speed up the clustering step, input sequences were divided into several bins (one for sequences 
shorter than 1kb, four for sequences between 1-2kb, two for sequences between 2-3kb, and one 
for sequences longer than 3kb) and ran through ICE independently on each bin. This resulted in 
many redundant transcripts consensus sequences that were merged in later steps. After obtaining 
the Quiver consensus sequence for each cluster, we estimated the number of expected errors 
based on the consensus QVs and discarded any consensus sequence that had more than 10 
expected errors. While we risk throwing away rarer transcripts that have less coverage and thus 
worse consensus QVs, this ensured that the resulting consensus sequences were high quality. 40% 
of the clusters (176,903/443,242) passed this filter, which together consisted of 84% of the full-
length input sequences. Most of the discarded clusters consisted of only one subread sequence, 
suggesting that these were likely low-quality sequences.   
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The high-quality consensus sequences were mapped to the P. crispa genome scaffolds using 
GMAP (version 2013-07-20) and removed for any sequence that did not map to the genome with 
at least 99% coverage; 12,085/179,603, or 6.8%, were removed.  
 
 
7. Further filtering of PacBio consensus sequences based on short read evidence 
Paired-end Illumina reads were mapped to the PacBio consensus sequences using BowTie2. Most 
of the short reads mapped to at least one PacBio consensus sequence. We found that most PCR 
chimeras that have formed during the full-length cDNA library construction in the PacBio reads 
were successfully filtered by the detection for polyT stretches in the sequence filtering steps. To 
exclude remaining PCR chimeras, we discarded any consensus sequence that did not have 
sufficient Illumina short read coverage throughout the sequence. We removed 17,335 out of 
164,818 consensus sequences at this step. The remaining 147,483 consensus sequences then 
constitutes the redundant, high-quality transcript sequences that are supported by three 
independent sources: PacBio raw read support, Illumina short read support, and good alignment 
to the reference genome. 
 
8. Collapsing redundant PacBio transcripts 
Because the PacBio reads were considered 3’ complete but possibly 5’ partial, transcripts were 
merged if they shared the same 3’ exon and did not have any conflicting splice junctions. After 
merging redundant transcripts, we obtained 22,956 non-redundant transcript sequences in 9,073 
isoform clusters.  
 
 
9. Categorizing polycistronic readthrough transcripts 
We screened for PacBio transcripts that had two or more non-overlapping ORF predictions that 
were not covered by another transcript that had a single, long ORF prediction. We then collapsed 
the readthrough transcripts by their mapped genomic locations and found 508 distinct loci to be 
polycistronic, among which 314 have support from genome-based gene predictions. The 
polycistronic transcripts were distributed across the genomic scaffolds and ranged from 828 to 
5080 bp with an average length of 2330 bp. The majority of the candidates were bi-cistronic 
(471/508, or 93%), with the mean ORF lengths for the first and second ORFs being 256 aa and 
277 aa .The mean distance between the two ORFs was 364 bp. 
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Supplementary	
  Tables	
  
	
  
Table	
  S1.	
  PacBio	
  Sequencing	
  statistics.	
  
RS	
  II	
  sequencing	
  statistics	
  	
  
Number	
  of	
  SMRTcells	
   77	
  
Number	
  of	
  sequencing	
  ZMWs	
   4,920,305	
  
Number	
  of	
  full-­‐length	
  ZMWs	
   2,177,319	
  
	
  
Quality	
  filtering	
  
Removed:	
  artificial	
  concatemers	
   4,748	
  (0.2%)	
  
Removed:	
  suspicious	
  polyT	
  	
   29,532	
  (1%)	
  
Input	
  to	
  consensus	
  clustering	
  (ICE):	
  2,548,103	
  sequences	
  (2,143,039	
  ZMWs)	
  
	
  
Post-­‐ICE	
  consensus	
  sequencing	
  filtering	
  
Number	
  of	
  clusters	
   443,342	
  
Number	
  of	
  high-­‐quality	
  clusters	
   176,903	
  (40%)	
  
Removed:	
  low	
  alignment	
  to	
  genome	
   12,085	
  (6.8%)	
  
Removed:	
  low	
  short	
  read	
  support	
   17,335	
  (10.5%)	
  
Number	
  of	
  high-­‐quality,	
  redundant	
  clusters	
  with	
  support	
  from	
  PacBio,	
  Illumina	
  short	
  reads,	
  
and	
  genome	
  scaffold:	
  147,	
  483	
  
	
  
Collapsing	
  redundant	
  transcripts	
  
Number	
  of	
  non-­‐redundant	
  transcripts	
   22,956	
  
Number	
  of	
  isoform	
  clusters	
   9,073	
  
	
  

Table S2. Statistics for assembled transcripts from short reads.  
Program Number of 

assembled 
transcripts 

Well-mapped 
transcripts  

Number of 
Non-
redundant 
transcripts 

Length of non-redundant 
transcripts (nt) 

Min Max Median 

Rnnotator 29,754 27,549 24,637 43 15,374 614 
Oases 112,669 80,761 68,693 100 19,699 1,481 
Cufflinks 10,211 10,184 10,051 96 20,688 1,960 
	
  
Table S3. Comparison of assembled transcripts from short reads against PacBio 
transcripts.  
Program Number of 

non-
redundant 
transcripts 

Match against PacBio* 
Exact Extended Subset Concordant Alternative Nomatch 

Rnnotator 24,637 3975 
(16%) 

2488 
(10%) 

5770 
(23%) 

824 
(3%) 

5171 
(21%) 

6409 
(26%) 

Oases 68,693 5212 
(17%) 

20419 
(33%) 

14351 
(6%) 

4581 
(3%) 

11081 
(22%) 

13049 
(19%) 

Cufflinks 10,051 1684 
(8%) 

3308 
(30%) 

590 
(21%) 

294 
(7%) 

2220 
(16%) 

1955 
(19%) 
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* Each assembled transcript was matched against PacBio transcripts and categorized based on the 
number and exact position of donor-acceptor sites, regardless of the start and end position of the 
first and last exon. An exact match indicates that the exon junctions are the same, whereas 
extended, subset, and concordant indicates exon junction agreement where there is overlap but 
there are additional junctions not covered by either the assembled transcript or PacBio. An 
alternative match means disagreement in exon junctions but the mapped loci overlaps. Finally, a 
nomatch indicates no PacBio is observed at the loci. 
 
	
  
Table	
  S4.	
  RT-­‐PCR	
  validation	
  of	
  polycistronic	
  transcripts.	
  Primers	
  were	
  designed	
  to	
  
cover	
  more	
  than	
  one	
  of	
  the	
  predicted	
  ORF	
  regions	
  to	
  prevent	
  mis-­‐validation	
  by	
  sequencing	
  
of	
  non-­‐polycistronic	
  transcripts	
  that	
  contain	
  only	
  one	
  of	
  the	
  ORFs.	
  Eight	
  out	
  of	
  ten	
  of	
  the	
  RT-­‐
PCR	
  products	
  and	
  subsequent	
  sequencing	
  confirmed	
  the	
  presence	
  of	
  the	
  polycistronic	
  
transcripts.	
  

Transcrip
t ID 

Length 
(nt) Locus 

Primer 
target 
region 

Observed 
read region 

Number of Full-Match Reads 
5' primer 
detected 

3' primer 
detected 

5' & 3' 
detected 

i1_c21309  1918 
scaffold_13:45194

3-454078 635 - 1832 635 - 1832 91 123 71 

i4_c15846  2155 
scaffold_4:136449

3-1367235  393 - 1784 393 - 1784 77 104 45 

i4_c2393  2949 
scaffold_16:25638

7-259704 437 - 2428 437 - 2428 432 405 312 

i4_c71086  2728 
scaffold_9:120106

1-1204786  30 - 2029 30 - NA 6989 0 0 

i5_c14860 2457 
scaffold_5:113696-

116791 110 - 1606 110 - 1606 930 871 747 

i6_c15213  3333 
scaffold_3:127027

1-1274332  1006 - 2505 1006 - 2505 113 137 93 

i6_c18769  3332 
scaffold_8:146034

1-1464471  398 - 2593 398 - 2593 652 607 495 

i6_c19101  4168 
scaffold_14:66823

9-673734  1622 - 3821 1622 - 3821 206 208 157 

i6_c36760 3101 
scaffold_2:123125-

126961  125 - 2426 125 - 2426 64 49 31 

i6_c38512  3506 
scaffold_15:63886

4-642834  382 - 3390 382 - 1860 1290 1233 1071 
	
  
	
  
Table	
  S5.	
  The	
  list	
  of	
  species	
  that	
  are	
  used	
  for	
  searching	
  conserved	
  gene	
  pairs.	
  
JGI	
  mycocosym	
  ID	
   conserved	
  gene	
  pair	
  

	
  configurations	
  
taxonomic	
  relation	
  	
  
to	
  P.	
  crispa	
  

Ompol1	
   10	
   Agaricales	
  
PleosPC9_1	
   21	
   Agaricales	
  
Agabi_varbisH97_3	
   19	
   Agaricales	
  
Schco_LoeD_1	
   12	
   Agaricales	
  
Schco3	
   12	
   Agaricales	
  
Schco_TatD_1	
   10	
   Agaricales	
  
Lacbi2	
   23	
   Agaricales	
  
Volvo1	
   7	
   Agaricales	
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Agabi_varbur_1	
   18	
   Agaricales	
  
PleosPC15_2	
   16	
   Agaricales	
  
Agabi_varbisH97_2	
   17	
   Agaricales	
  
Galma1	
   19	
   Agaricales	
  
Armme1	
   7	
   Agaricales	
  
Punst1	
   15	
   Agaricomycetes	
  
Conpu1	
   20	
   Agaricomycetes	
  
Phchr2	
   19	
   Agaricomycetes	
  
Aurde3_1	
   3	
   Agaricomycetes	
  
SerlaS7_3_2	
   22	
   Agaricomycetes	
  
Botbo1	
   4	
   Agaricomycetes	
  
Dicsq1	
   13	
   Agaricomycetes	
  
Wolco1	
   14	
   Agaricomycetes	
  
Bjead1_1	
   18	
   Agaricomycetes	
  
PosplRSB12_1	
   14	
   Agaricomycetes	
  
Fompi3	
   17	
   Agaricomycetes	
  
Jaaar1	
   25	
   Agaricomycetes	
  
Glotr1_1	
   21	
   Agaricomycetes	
  
Cersu1	
   17	
   Agaricomycetes	
  
SerlaS7_9_2	
   24	
   Agaricomycetes	
  
Stehi1	
   16	
   Agaricomycetes	
  
Pirin1	
   1	
   Agaricomycetes	
  
Phlbr1	
   15	
   Agaricomycetes	
  
Phaca1	
   17	
   Agaricomycetes	
  
Trave1	
   19	
   Agaricomycetes	
  
Hetan2	
   22	
   Agaricomycetes	
  
Serla_varsha1	
   21	
   Agaricomycetes	
  
Fomme1	
   13	
   Agaricomycetes	
  
Gansp1	
   15	
   Agaricomycetes	
  
Dacsp1	
   3	
   Agaricomycotina	
  
Treme1	
   1	
   Agaricomycotina	
  
Psehu1	
   1	
   Basidiomycota	
  
Mellp1	
   1	
   Basidiomycota	
  
Tilan2	
   1	
   Basidiomycota	
  
Malgl1	
   2	
   Basidiomycota	
  
Hisca1	
   1	
   Ascomycota	
  
Clagr3	
   1	
   Ascomycota	
  
Hyspu1	
   1	
   Ascomycota	
  
Talma1_2	
   1	
   Ascomycota	
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FigureS1. Most of the TOFU transcripts have longer UTRs than current annotation. 
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Figure S2. Genome-wide analysis of the transcription termination signals in P. crispa. 
Average nucleotide composition was plotted for all non-polycistronic ToFU transcripts 
upstream of the poly-adenylation site. A-rich NUE and U-rich FUE elements are indicated. 
Green represents C-content and purple represent G-content, respectively. X-axis indicates 
the distance to polyA site.
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