
1

CIDER: a pipeline for detecting waves of
coordinated transcriptional regulation in gene

expression time-course data
Marco Mina1, Giuseppe Jurman1 and Cesare Furlanello1

1 Fondazione Bruno Kessler, Trento, Italy
{mamina,jurman,furlan}@fbk.eu

F

Abstract—Cell adaptability to environmental changes is conferred
by complex transcriptional regulatory networks, which respond to
external stimuli by modulating the expression dynamics of each gene.
Hence, deciphering the network of transcriptional regulation is re-
markably important, but proves to be extremely challenging, mainly
due to the unfavorable ratio between the number of available observa-
tions and the number of parameters to estimate. Most of the existing
computational methods for the inference of transcriptional networks
consider steady-state gene expression datasets, and produce models
of transcriptional regulation best explaining the observed static gene
expression.

Gene expression time-courses are an emergent typology of gene
expression data, paving the way to the characterization of the time-
dependent dynamics of transcriptional regulation.

In this work we introduce the Complexity Invariant Dynamic Time
Warping motif EnRichment (CIDER) analysis, a novel computational
pipeline to identify the prominent waves of coordinated gene tran-
scription induced in cells by external stimuli, and determine which
TFs are involved in the coordination of gene transcription. The CIDER
pipeline combines unsupervised time series clustering and motif en-
richment analysis to first detect transcriptional expression patterns,
and then identify the TFs over-represented in the promoter regions of
gene sets with similar expression dynamics.

The ability of CIDER to correctly identify regulatory interactions
is assessed on a realistic synthetic dataset of gene expression time-
courses, generated by simulating the effects of knock-out perturba-
tions on the E. coli regulatory network.

The CIDER source code and the validation datasets are available
on request from the corresponding author.

1 INTRODUCTION

Cells respond to external stimuli and adapt to envi-
ronmental changes by modulating their gene expression
through complex regulatory programs. Not surprisingly,
the disregulation of these regulatory programs plays a
major role in complex diseases, such as cancer and au-
toimmune diseases. Transcriptor Factors (TFs), molecules
with the ability of selectively bind to specific DNA regions

Corresponding author: C. Furlanello (furlan@fbk.eu)

and enhance/inhibit the transcription of neaby genes,
are among the most studied regulators of gene expres-
sion. Consequently, current approaches to improve cancer
treatment try to identify the proper combination of TFs
that would induce the desidered gene expression when
opportunely blocked or induced.

TFs do not operate separately, as their transcriptional
effects combine in complex patterns to orchestrate and
synchronize the transcription of genes. The ensemble of
the regulatory interactions taking place within cells is
commonly referred to as transcriptional regulatory net-
work (TRN). Deciphering TRNs is an essential step to
characterize the role of each TF, its involvement in specific
diseases, and the potential therapeutic effects of targeting
it. The task is challenging due to the small amount of
available data, compared to the number of parameters
to estimate and the noise introduced by the experimental
procedures. Morevoer, TF activity within the regulatory
networks is cell- and time- specific, and the TRNs can vary
significantly even within the same cell under different
external stimuli.

The typical approach to understand TRNs consists of
collecting the steady-state gene expression of cells under
a specific condition (e.g. stimulated with a particular
factor) and build a model of transcriptional regulation
that best explain the observed gene expression. The in-
ferred regulatory mechanism is a static description of the
regulatory effects of the TFs on the target genes, critical
for understanding the condition-specific role of TFs. Con-
cretely, the typical output of the proposed methodologies
is a network of regulatory interactions connecting TFs to
the regulated genes [1], [2]. Additional data such as the
strength, direction, and type of regulation are provided
by some of the methods.

Transcriptomics time-courses (e.g. microarray or RNA-
Seq) are a longitudinal representation of gene expression
useful for characterizing the dynamics of regulatory ac-
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tivity within cells. Transcriptomics time-courses describe
the evolution of gene expression within the profiled cells
across time-points, thus extending the static description
provided by steady-state experiments [3], [4]. Hence,
analyzing time-course data can help characterizing the
mechanisms of transcriptional regulation triggered by
external stimuli. By analyzing the time-courses of gene
transcription initiation, for instance, Arner et al. showed
that external stimuli propagate along the transcriptional
regulatory networks by inducing waves of coordinated
transcription characterized by specific expression patterns
[5]. Current network inference methodologies are partially
fit to characterize these transcriptional waves, as they
generally try to infer the single regulatory interactions,
rather than the coordinated regulation of multiple genes.

In this work we introduce the Complexity-Invariant
Dynamic Time-Warping motif EnRichment (CIDER) anal-
ysis, a computational pipeline to detect the prominent
waves of coordinated transcription in time-course data,
and infer which TFs are involved in the underlying
regulatory mechanisms. CIDER differs from current ap-
proaches as it focuses on identifying the regulatory effects
of TFs on groups of genes with similar expression dy-
namics, rather than trying to dissect the single regulatory
interactions.

The following sections describe CIDER methodology
and implementation, and present an assessment of its
performance on a realistic synthetic dataset.

2 CIDER
Conceptually, a wave of coordinated transcription consists
of a set of genes whose expression patterns, under the
regulation of one or more TFs, follow a specific dynamic
in time. Reversing this statement, we reasoned that if a
group of genes with similar trajectories is regulated by
a common set of TFs, then it qualifies as a transcriptional
wave. Following this idea, CIDER first detects clusters of
genes with similar expression patterns from time-course
data, and then determines whether there are TFs that
consistently participate to the regulation of the genes
clustered together. The clusters of genes with similar
expression that are supported by evidence of consistent
co-regulation are reported by CIDER as transcriptional
waves.

Both the tasks of detecting clusters of genes with sim-
ilar expression and of finding TFs significantly regulating
the clustered genes present a series of difficulties that
must be tailored with the utmost attention. First of all,
the increment of data-points on the temporal scale is
generally counter-balanced by a significant drop in the
number of independent samples available. Moreover, the
longitudinal nature of the time-course data introduce an
inter-dependency between different time-points. Hence,
the methodologies for gene clustering must be adapted.

CIDER is designed to require just a single time-course
from a single biological replicate. Provided that the num-
ber and arrangement of time-points is sufficient to discern
the expression patterns, CIDER opens the possibility of

analyzing transcritpional regulation at singe-sample res-
olution. Obviously, time-courses from multiple biological
replicates can be joined to improve the clustering quality
and stability.

On the other side, inferring the regulatory interactions
between TFs and regulated genes is a long-standing prob-
lem for which different solutions, more or less effective,
have been proposed. While a group of solutions rely only
on the expression data, others integrate other information
to improve the accuracy of the inference. Both families of
solutions have been successfully used to infer regulatory
network. We propose to consider external data to improve
the inference accuracy in some cases, such as when no
correlation between TF and target expression is present.
This happens, for instance, when a TF is constitutively
expressed but inactive, and begins its regulatory activity
after a post-translational modification. CIDER makes use
of a-priori known information about TF binding motifs
to evaluate the transcriptional effect of each TF on each
single cluster.

2.1 Algorithm description
CIDER consists of two steps: first, expression patterns are
identified by unsupervised hierarchical clustering of the
time series. Then, motif enrichment analysis is performed
on the time series clusters, to identify the transcription
factors likely to induce the transcription of the genes with
similar expression pattern. The pipeline, sketched in Fig.
1, is described in the rest of this section from both the
methodological and implementative points of view.

• Required input data

Three different types of data are required by CIDER:

1) The time series describing gene expression longi-
tudinally across time, used to cluster genes with
similar longitudinal expression patterns,

2) A collection of TF binding sites, whose over-
representation in the promoter regions of co-
clusterer genes (motif enrichment analysis) is in-
terpreted as indicator of TF transcriptional activ-
ity,

3) The reference genome, required to extract the
flanking sequences of co-clustered genes and the
background sequences required by the motif en-
richment analysis.

• Step 1. Time series clustering

A hierarchical clustering approach is adopted to identify
expression patterns from the longitudinal gene expression
data. The following paragraphs provide details on pre-
processing, distance, and specific hierarchical clustering
methods adopted in CIDER.

Step 1-A. Time series preprocessing: time series are con-
strained between 0 and 1 by dividing each time series
by its maximum value, in order to apply distances that
require time series normalization (see step 1-B). Each
replicate is normalized separately, to avoid penalizing
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Fig. 1: Overview of the CIDER pipeline. Time series clustering and multilevel motif enrichment analysis are combined
to infer the regulatory map from time-course data and known TF binding motifs. The four TFs listed at step 2 (flhC/D,
rcsA/B) are from the E.coli regulatory network (see Fig. 2).

replicates with systematic lower signal levels (e.g. low tag
per million counts), and focus on shape patterns instead
of magnitude levels. To reduce the impact of outliers in
short time series, instead of averaging the replicates, they
are concatenated obtaining longer time series.

Step 1-B. Time series distance: to overcome known issues
with correlation-based methods [6], [7], as an appropriate
distance for time series clustering, CIDER adopts the
Euclidean-based Dynamic Time Warping (DTW) distance

[8], The application of DTW on transcriptomics time series
profiling has been already demonstrated on microarray
platforms [9]. DTW alignment is constrained to align
time-points within each replicate, with a Sakoe-Chiba
band of width 1 as global constraint [10]. As a further
refinement, we implemented in CIDER the Complexity
Invariant (CID) correction for DTW (CIDDTW method),
one of the latest installations of DTW, proposed as a
generalization that accounts for signal complexity [11].
In details, the CIDDTW method introduces a correction
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term penalizing signals with low variability; the rationale
is that for standard distance measures (Euclidean, corre-
lation, non-corrected DTW) pairs of complex objects tend
to be gauged further apart than pairs of simple objects,
introducing errors in classification.

Step 1-C. Hierarchical clustering: Time series are clustered in
CIDER by means of the complete-linkage agglomerative
hierarchical clustering algorithm.

• Step 2. Multilevel Motif Enrichment analysis

CIDER adopts motif enrichment as the pruning rule for
clustering. In general, motif enrichment is defined as a
class of techniques to identify motifs with a significant
number of binding sites in a set of DNA sequences (i.e.
in the flanking regions of the transcription start sites of a
group of genes).

Step 2-A. Motif Enrichment: The hierarchical clustering
structure produced at step 1.C is used as starting point
to perform a multi-level motif enrichment analysis. Each
node in the cluster is tested for enriched motifs using
the AME tool, part of the MEME software suite [12] with
default parameters.

The flanking regions of each gene in the cluster are
extracted from the Human Genome using SAMtools [13].
By default CIDER considers the -1500 to +500 bases as
flanking region. Overlapping flanking regions are then
merged in a single sequence to avoid overcounting bind-
ing sites. For each cluster, a 10-fold set of random se-
quences selected from the pool of flanking regions of all
the genes in the genome is used as background set for
motif enrichment. The GC content of query and back-
ground sets is matched to avoid the GC content bias in
motif enrichment, as described in [14]. For each motif,
AME counts the number of binding sites in the foreground
and background sets of flanking regions, and evaluates
the over-representation in the foreground set by Fisher’s
exact test.

Step 2-B. Enrichment-based pruning: The enrichment associ-
ations computed by AME are then pruned to retain only
the most relevant associations between motif activity and
expression patterns. In literature, different approaches
were proposed to prune not significant association [15],
[16], [17]. CIDER includes three pruning strategies:

• Absolute thresholding: the association between a
cluster and a motif is deemed as significant if the
Fisher test P value is smaller than a given threshold
Pmax [15], [16].

• Relative thresholding: the association between a
cluster and a motif is deemed as significant if
the Fisher test P value is greater than α standard
deviations the mean of the enrichment P values of
the other transcriptional motifs in the cluster [17].

• Linkage criterion: and extension of the absolute
thresholding requiring the enrichment to be re-
dundant at multiple levels of the clustering hi-
erarchy. This approach, inspired by the shadow

analysis [18], further refines the enrichment by
removing the motif-cluster associations that are not
supported by contiguous enrichments along the
clustering hierarchy. The rationale is that a cluster
might be enriched for a specific motif even when
only a subset of its genes is effectively regulated
by the TFs binding to the enriched motif, while
the other sub-cluster is not significantly enriched.
Hence, the linkage criterion reduces false positives
by ruling out sub-clusters that are not significantly
enriched by themselves, but appears to be enriched
in upper layers of the clustering hierarchy because
merged with another significant cluster.

The three pruning strategies can be combined together
to define stricter criteria.

2.2 Implementation
The time series clustering routines are entirely imple-
mented as R scripts. The R package dtw [19] was extended
to implement the CIDDTW, and the R package parallel
used to parallelize the task on multiple processors. The R
package fastcluster [20] is used to perform hierarchical
clustering on thousands of time series, instead of the
default R hclust hierarchical clustering solution.

The multi-level enrichment analysis module, instead,
is series of Python, R, and bash scripts. In particular, a
collection of bash scripts controls the AME enrichment
procedure by running the AME application in parallel by
using the GNU parallel utility.

The Python package ETE2 [21] was used to integrate
clustering and enrichment data in an unified structure
feasible for pruning.

2.3 Output description
The primary output provided by CIDER is a list of asso-
ciations between time series clusters and TFs, as the one
in Table 1. Extending the TF-cluster associations to the
genes representated by each time series, it is possible to
derive a broad regulatory map specific for the time-course.
As a by-product, CIDER also provides the hierarchical
clustering of the time series as Newick file.

3 VALIDATION

The validation approach commonly used to assess regu-
latory activity inference methods consists of comparing
the inferred regulatory interactions and active TFs to the
set of regulatory mechanisms known to take place in
the tested dataset. Following this approach, we set up
a procedure based on the idea of perturbing a (set of)
TFs, collect the time series describing the resulting gene
expression dynamics, and verify whether the perturbed
TFs are included in those inferred by CIDER as involved
in the regulation of a transcriptional wave. Finally, we also
manually verified the soundness of the inferred transcrip-
tional waves on a random selection of tests. The dataset
generation and validation procedures are sketched in Fig.
2.
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Fig. 2: Description of the assessment strategy based on the two synthetic time-course gene expression datasets
generated by GeneNetWeaver.
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3.1 Description of the In-silico datasets and valida-
tion procedure

We generated two synthetic datasets by perturbing the
E.coli transcriptional regulatory network and collecting
the resulting gene expression time series. GeneNetWeaver
(version 3.1b), a mature software to generate in-silico gene
expression datasets given a known model of regulatory
network [22], was used to induce perturbations in the
known E.coli regulatory network included in the software
(1565 genes, 3758 interactions), and simulate the resulting
gene expression dynamics. In details, GeneNetWeaver
was instructed to simulate a single knock-out event for
each TF of the input network and register the resulting
time series of gene expression for all the genes within the
network (step 1.B in Fig. 2). All the resulting time-courses
were automatically normalized by GeneNetWeaver be-
tween 0 and 1.

We observed that in some cases the expression vari-
ability of the knocked-out TF was not enough pronounced
to induce a measurable effect on the regulatory network,
leading to time-constant expression patterns for most of
the genes. Hence, in order to build a dataset of time-
courses with resonable signal variability, we only consid-
ered the time-courses generated by significant perturba-
tions of the knocked-out TF. Precisely, a TF was considered
significantly perturbed when its normalized expression
varied of at least 0.25 across the entire time-course.

The two synthetic datasets differs in the size and
complexity of the regulatory network considered:

• Ecoli 1 sub dataset: The first synthetic dataset
collects time-courses derived from the perturba-
tion of small regulatory networks. GeneNetWaver
was used to extract six subnetworks of 300 genes
(hereby referred to as ecoli 1 sub x) from the com-
plete E.coli regualtory network (step 1.A in Fig.
2). The default subnetwork extraction parameters
were used, and GeneNetWeaver was required to
include at least 40 TFs in each subnetwork. In
total we collected 157 time-courses associated to
significant TF perturbations.

• Ecoli 2 full dataset: We built a second validation
dataset considering the entire E.coli TRN (1565
nodes, 3758 edges). Gene expression time-courses
were simulted by GeneNetWeaver following the
same procedure used for the ecoli 1 sub dataset.
In total we collected 139 time-courses associated
to significant TF perturbations (out of the 178 TFs
within the whole E.coli regulatory network).

The resulting gene expression dynamics was recorded
in time-courses of 41 time-points, covering the time span
between 0 (beginning of the knockout perturbation) and
2000 seconds. GeneNetWeaver produced two versions of
each time-course: a “basic” version without experimental
measurement noise added, and a “noisy” version with
experimental noise added, following the noise model
defined in the DREAM4 challenge [23]. We evaluated the
performance of CIDER on both versions, thus providing

an estimate of the sensibility of CIDER to noise. Note that
both the basic and noisy time-courses were generated by
using stochastic rather than ordinary differential equa-
tions, thus modeling the molecular noise effects on the
network regulation.

For the multilevel motif enrichment analysis we set
up an ideal motif binding scenario with exact information
on binding activity, by exploiting the known structure of
the E.coli regulatory network (step 2.B in Fig. 2). This was
useful to assess the clustering procedure and the motif
enrichment in an ideal scenario without motif enrichment
bias. For each TF, only the differentially expressed target
genes were used as background set in the enrichment
analysis. The three enrichment pruning strategies were
used altogether to yield the strictest results. The absolute
enrichment P value was set to 0.01, and the standard
deviation parameter α was fixed to 1.5.

3.2 Detectability threshold

Perturbing TFs elicits a stronger or weaker network re-
sponse, measurable in terms of gene expression variabil-
ity, depending on the extension and on the topology of
the portion of regulatory network controlled by the TF.
For instance, if a TF x regulates a small number of genes
Y , the effect of perturbing x might elicit only a feeble
variability in the regulatory network, not noticeable when
looking at the expression dinamics. This phenomenon
is even stronger when there are not TFs within the set
Y . Another phenomenon that would limit the effects of
the perturbation of x can potentially manifest when the
downstream targets Y of x are also regulated by another
TF z. If the regulatory strength of z on Y is stronger than
x, then perturbing x might not be sufficient to induce a
detectable effect in the network.

Beside these biological aspects, there are also technical
limitations to the detectability of TF activity, as the one
imposed by the use of the Fisher’s test in the motif en-
richment analysis. Indeed, when the number of potential
targets of a TF within the perturbed network is small, the
estimation of the significativity by the Fisher’s test may
not be accurate, resulting in not significant enrichment
scores.

Hence, in order to provide indications on the applica-
bility of CIDER, we studied the varibility of CIDER output
respect to the degree of the perturbed TF. The TF degree
is defined as the number of downstream targets that the
TF possesses in the regulatory network used to generate
the time-course. For instance, in the E.coli subnetworks,
the degree of the TF is the number of genes regulated by
the TF in the subnetwork, not on the entire E.coli network.
Additionally, the number of differentially expression (DE)
genes in the time-course was considered as covariate. As
done for the TFs, a gene was considered as DE if its
expression variability was > 0.25 across the entire time-
course.

The relationship between the degree of the perturbed
TF, the number of DE genes, and the outcome of CIDER
analysis for each time-course of the noisy ecoli 1 sub
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(a)

(b)

Fig. 3: Variability of CIDER output respect to the degree of
the perturbed TF and to the number of DE genes in the as-
sociated time-course, considering the 157 time-courses in
the noisy version of the E.coli 1 sub dataset. (a) Solid gray
dots represent time-courses for which CIDER reported at
least one enriched TF. Empty black circles represent time-
courses for which no enrichment was detected by CIDER.
(b) MCC scores used in the grid search of the detectability
threshold.

dataset is displayed in Fig. 3a. As expected, CIDER tends
to return no enriched clusters for the time-courses associ-
ated to the perturbation of low-degree TFs. The number of
DE genes in the time-course, instead, does not appear to
influence the outcome. A similar pattern is observed when
considering the basic version of the ecoli 1 sub dataset
(Fig. S1a).

In order to empirically determine a “detectability
threshold”, we performed a grid-search for the less strin-
gent threshold, in terms of TF degree and number of
DE genes, that best separate the time-courses for which
CIDER is respectvely able and unable to detect any

transcriptional wave. The optimization was performed
by considering the set N of time-courses in the noisy
version of the ecoli 1 sub dataset (|N | = 157). Given a
pair i = (x, y) ∈ N2, let Ti ∈ N be the subset of the
time-courses that are associated to the knock-out of a TF
with degree > x and have a number of DE genes > y.
Let D ∈ N be the subset of the time-courses for which
CIDER identified at least one enriched cluster, regardless
of its correctness. The set Di = D ∩ Ti represents the
time-courses satisfying the threshold i that have a signal
detectable by CIDER. Conceptually, the optimal threshold
should exclude most of the time-courses with no enrich-
ment but retain most of those with at least one enrichment.
We make use of the Matthew Correlation Coefficient
(MCC) to evaluate the trade-off between including time-
courses without enrichment and excluding those with
sufficient signal. The optimal detectability threshold is the
pair î = (x̂, ŷ) with highest MCC. The MCC for a generic
threshold i is defined as:

MCCi =
TPi TNi − FPi FNi√

(TPi + FPi)(TPi + FNi)(TNi + FPi)(TNi + FNi)

where

TPi = |Di|
FPi = |Ti| − |Di|

FNi = |D| − |Di|
TNi = N − |Ti| − |FNi|

We found a ridge of thresholds with the similar max-
imum MCC at x̂ = 14, extending over a wide range of
y (Fig. 3b). The presence of this ridge indicates that the
number of DE genes in the time-course does not affect
CIDER ability to detect transcriptional waves, while the
TF degree is a significant factor. Consistently, we found
a slightly less stringent optimal detectability threshold
(x̂ = 10) when considering the basic version of the
ecoli 1 sub dataset (Fig. S1b).

The results of this section suggest that controlling at
least 15 genes is the minimum requirement for eliciting
a perturbation detectable by CIDER. We believe that this
limit is mainly due to the Fisher’s test used in the motif en-
richment analysis, hence improving the enrichment analy-
sis might leverage this constraint. Note that this constraint
is not problematic, as in the larger regulatory networks,
such as those of human and mouse, the TFs generally
regulate dozens of genes, extending safely beyond the
detectability threshold.

3.3 Performance evaluation on the ecoli 1 sub syn-
thetic dataset

For each time-course, the set of TFs found enriched in
clusters of genes with specific expression patterns was
compared to the list of knocked-down TFs. CIDER was
considered to perform correctly when the perturbed TF or
a TF directly regulated by the perturbed TF was included
in the list of enriched TFs.

Only the 47 noisy and 77 basic time-courses associated
to the significant perturbation of a TFs with degree greater
than the detectability thresholds of 11 and 15 genes,

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2015. ; https://doi.org/10.1101/012518doi: bioRxiv preprint 

https://doi.org/10.1101/012518
http://creativecommons.org/licenses/by/4.0/


8

respectively for the basic and noisy versions, were con-
sidered. For the basic ecoli 1 sub dataset, CIDER found
the perturbed TF (or one of its direct downstream TFs)
correctly enriched in 65 out of the 77 time-courses (84%,
Table 1 and Fig. S2). The performance on the noisy version
of the ecoli 1 sub dataset are comparable, with 38 correct
inferences out of 47 considered time-courses (81%, Table 2
and Fig. 4).

(a)

Fig. 4: Performance of CIDER analysis on the noisy ver-
sion of the E.coli 1 sub dataset. Solid black circles rep-
resent time-courses where CIDER correctly identified the
perturbed TF (or a direct downstream TF) as regulator of
a transcriptional wave. Red crosses represent time-courses
where CIDER did not identify the perturbed TF (or a
direct downstream TF) as regulator of a transcriptional
wave. Empty black circles represent time-courses for
which CIDER did not report any enrichment. The dashed
line represent the detectability threshold (TF degree≥ 15).

Network Nodes Edges Number of
Time-courses1

Correct
inference
# %

Ecoli 1 sub 1 300 577 4 3 75
Ecoli 1 sub 2 300 580 7 7 100
Ecoli 1 sub 3 300 532 11 9 82
Ecoli 1 sub 4 300 577 6 6 100
Ecoli 1 sub 5 300 481 8 5 62
Ecoli 1 sub 6 300 671 11 8 72

Ecoli 1 sub (cumulative) 47 38 81
1 Number of time-courses associated to a significant perturbation

(expression variability > 0.25) of a TF with degree ≥ 15.

TABLE 1: Description of the noisy version of the
Ecoli 1 sub dataset, and the performance of CIDER anal-
ysis.

3.4 Performance evaluation on the ecoli 2 synthetic
dataset
Next, CIDER was validated on the Ecoli 2 dataset. The
same validation approach was used, considering only the
time-courses associated to 23 perturbed TFs with degree

Network Nodes Edges Number of
Time-courses1

Correct
inference
# %

Ecoli 1 sub 1 300 577 10 10 100
Ecoli 1 sub 2 300 580 13 13 100
Ecoli 1 sub 3 300 532 15 12 80
Ecoli 1 sub 4 300 577 13 9 69
Ecoli 1 sub 5 300 481 11 9 81
Ecoli 1 sub 6 300 671 15 12 80

Ecoli 1 sub (cumulative) 77 65 84
1 Number of time-courses associated to a significant perturbation

(expression variability > 0.25) of a TF with degree ≥ 11.

TABLE 2: Description of the basic version of the
Ecoli 1 sub dataset, and the performance of CIDER anal-
ysis.

≥ 15 in both the basic and noisy versions of the dataset.
CIDER correctly inferred the activity in 20 out of 23 time-
courses (87%) in the noisy version, and of 27 out of 31
time-courses in the basic version (87%).

The scatter plots in Fig. 5 and Fig. S3 show the
performance of CIDER on the noisy and basic versions
of the Ecoli 2 datasets, respectively. Consistently with
the detection limits derived form the noisy Ecoli 1 sub
dataset, CIDER failed to predict the activity of most of
the time-courses generated under the perturbation of TFs
with degree ≤ 14.

Note that in this evaluation we considered as correct
only the inferences that associate the knocked-out TF or
one of its direct downstream TFs to a transcriptional
wave. This does not mean that CIDER was unable to
correctly identify any transcriptional wave in the time-
courses marked as wrong in Fig. 5. A detailed example is
provided in the case-study described in the next section.

3.5 Case study of CIDER analysis
This paragraph describes in details the CIDER analysis of
the time-course associated to the knock-out of the oxyR
TF in the Ecoli 1 sub 2 subnetwork. The noisy version
of the time-course is considered. This time-course was
not included in the validation described in the previous
paragraphs, as oxyR was not significantly perturbed by
GeneNetWeaver (its expression variability was less that
the 0.25 threshold of DE). We selected this time-course
to prove that even in this extreme case CIDER is able to
detect some of the downstream effects of the oxyR per-
turbation and correctly identify the transcriptional waves
induced in the regulatory network.

CIDER identified four transcriptional waves respec-
tively regulated by fur, metJ, flhC/D, and marA, involving
in total 32 of the 88 genes differentially expressed in the
time-course (Table 3).

These inferred transcriptional waves were manually
compared to the structure of the Ecoli 1 sub 2 network to
determine their consistency with the effective propagation
of the oxyR perturbation in the regulatory network. The
portion of the Ecoli 1 sub 2 network interested by the
perturbation is organized in Fig. 6, following the tran-
scriptional cascade triggered by the knock-out.
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Fig. 5: Performance of CIDER analysis on the noisy ver-
sion of the E.coli 2 dataset. Solid black circles represent
time-courses where CIDER correctly identified the per-
turbed TF (or a direct downstream TF) as regulator of a
transcriptional wave. Red crosses represent time-courses
where CIDER did not identify the perturbed TF (or a
direct downstream TF) as regulator of a transcriptional
wave. Empty black circles represent time-courses for
which CIDER did not report any enrichment. The dashed
line represent the detectability threshold (TF degree≥ 15).

Cl.
Id

TF Cluster
size

Correct
targets

Hit ratio Fisher test
P value

1 fur,- 9 8 0.89 9.28 10−6

2 metJ,- 7 4 0.57 0.0002
3 flhD,+ 7 6 0.86 3.55 10−5

3 flhC,+ 7 6 0.86 3.55 10−5

4 marA,+ 9 5 0.56 0.0003

TABLE 3: Enrichment table produced by CIDER in the
analysis of the noisy version of the time-course associated
to the knock-out of the oxyR TF in the Ecoli 1 sub 2
network.

The oxyR knock-out induces the downregulation of
the fur TF. As fur downregulates the metJ, flhC and flhD
TFs, the perturbation initiated by oxyR is propagated
downstream in the transcriptional network. Note that
the strength of fur regulation on the downstream TFs
is strongly variable, as confirmed by the significantly
different expression patterns of metJ respect to flhC/D.
CIDER was unable to detect any direct regulatory effect
of oxyR, including the downregulation of fur, as the weak
oxyR perturbation does not elicit a consistent effect on
a relevent subset of its direct targets. Indeed, the set
of oxyR direct targets encompasses only 15 genes that
are regulated by different mechanisms involving multiple
TFs, resulting in different expression patterns that are not
clustered together by CIDER.

CIDER was able to identify three transcriptional waves
that are induced downstream of oxyR by propagation of
the perturbation across the transcriptional network. As the
fur expression decreases, the expression of a first wave

of genes negatively targeted by fur consistently increases
(cluster 1, 9 genes). This wave includes the metJ TF; as the
expression of metJ increases, it induces a transcriptional
wave on its downstream target genes, correctly detected
by CIDER (cluster 2, 7 genes). Simultaneously, the flhC/D
TFs, not downregulated by fur, induce the expression
of the third transcriptional wave, recognized by CIDER
(cluster 3, 7 genes).

4 CONCLUSION

CIDER is a novel methodology for the inference of the
transcriptional waves induced by the regulatory activity
of the TFs, orthogonal to the current approaches of net-
work inference. CIDER is not designed to infer the single
regulatory interactions between TFs and target genes, but
aims at identifying the role of the TFs in driving the waves
of consistent transcription triggered in the cell by external
stimuli.

In this work, we assessed CIDER on two realistic
synthetic datasets based on the E.coli regulatory network.

A remarkable aspect of CIDER is that it requires only
a time-course from a single biological replicate. Provided
that the number and arrangement of time-points is suf-
ficient to discern the expression patterns, CIDER opens
the possibility of analyzing transcritpional regulation at
single-sample resolution.
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metJ

fur

oxyR

marA

flhC/flhD

Fig. 6: Transcriptional waves induced by the knock-out of oxyR in the Ecoli 1 sub 2 subnetwork, and correctly inferred
by CIDER. Gray nodes represent not DE genes that are not considered in the analysis. Purple nodes represent DE genes
that were not included in any enriched cluster. The other colored nodes (red, green, pink and light blue) represent
genes included in clusters enriched for at least one TF. Squared nodes are TFs involved in the propagation of the
perturbation or enriched in an expression cluster (oxyR, fur, metJ, flhC, flhD, marA). The black solid edges represent
the transcriptional interactions correctly inferred by CIDER, the black dotted edges are regulatory interactions not
captured by CIDER, and the gray dotted edges are regulatory interactions invoving genes not DE genes excluded from
the analysis. Arrow-ending and flat-ending edges represent positive and negative regulation, respectively.
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