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Abstract
Background: Gene expression variation is a phenotypic trait of particular interest
as it represents the initial link between genotype and other phenotypes. Analyzing
how such variation apportions among and within groups allows for the evaluation
5 of how genetic and environmental factors influence such traits. It also provides
opportunities to identify genes and pathways that may have been influenced by
non-neutral processes. Here we use a population genetics framework and next
generation sequencing to evaluate how gene expression variation is apportioned
among four human groups in a natural biological tissue, the placenta.

10  Results: We estimate that on average, 33.2%, 58.9% and 7.8% of the placental
transcriptome is explained by variation within individuals, among individuals and
among human groups, respectively. Additionally, when technical and biological
traits are included in models of gene expression they account for roughly 2% of total
gene expression variation. Notably, the variation that is significantly different

15  among groups is enriched in biological pathways associated with immune response,
cell signaling and metabolism. Many biological traits demonstrated correlated
changes in expression in numerous pathways of potential interest to clinicians and
evolutionary biologists. Finally, we estimate that the majority of the human
placental transcriptome (65% of expressed genes) exhibits expression profiles

20  consistent with neutrality; the remainder are consistent with stabilizing selection
(26%), directional selection (4.9%), or diversifying selection (4.8%).

Conclusion
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We apportion placental gene expression variation into individual, population and
biological trait factors and identify how each influence the transcriptome.
25  Additionally, we advance methods to associate expression profiles with different

forms of selection.

Keywords: transcriptome, gene expression, selection, apportionment, placenta, Nst,
Mst, population genetics
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Background

Nearly four decades ago, it was estimated that about 85% of the neutral

genetic variation in humans is found within groups and only about 15% between
35  groups [1], which reflects the close genetic relationship of human populations. This

initial observation, using protein markers, has been substantiated by numerous

additional studies and markers [2-6]. Further, these analyses provide a framework

to identify genes that exhibit unusually large differences between populations and

thus may have been subject to recent local positive selection [2, 7-10] as responses
40  to population-specific evolutionary forces.

In principle, the variation in phenotypic traits can also be apportioned into
within-population and between-population components [11], which could provide
insights into the relative influence of both genetic and environmental factors on
such traits. However, this has been done for only a few human traits. For example,

45  cranial variation among human populations present between-population
components (0.11 - 0.14) similar to neutral genetic variation [12], suggesting that
human cranial variation also (largely) reflects neutral genetic processes. Conversely,
variation in skin pigmentation has a significantly larger between-population
component (0.87) [12], in keeping with hypotheses that skin pigmentation variation

50 has been subject to strong selection [13, 14].

A phenotypic trait of recent considerable interest is the level of gene
expression (or RNA abundance), as it represents the initial link between genotype
and other phenotypes, and hence is the logical place to begin evaluating the relative

influence of genotype, environment and non-neutral evolution on phenotypic
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variation. Previous studies [15-21] have analyzed gene expression in
lymphoblastoid cell lines from up to eight global populations derived from the
International HapMap Project [22], and estimated that between 4.5% - 29% of genes
are differentially expressed among groups. Four of these studies have estimated a
between-population component of expression variation [17, 19-21]. Specifically,
when considering CEPH European (CEU) and Yoruba from Ibadan, Nigeria (YRI), the
first of these studies estimated that 15% of expression variation was observed
among groups, suggesting that expression variation mirrors genetic variation and
hence is largely neutral [17]. A subsequent study [20] found a similar median
estimate of 12% for the among-group variation in expression. However, after
accounting for non-genetic factors that estimate was reduced to 5%. Another
attempt to reduce non-genetic factors influencing expression variation obtained a
median estimate of 0.7% between CEU and YRI samples [19], while the most recent
study estimated 3% of the expression variation is found among groups [21]. It may
be crucial to correct for non-genetic factors for these specific samples as they were
collected at various times in the past, transformed into cell lines, and maintained in
culture for up to 20 years [15, 22, 23]. Yet given the range of estimates, the question
remains, what proportion of total gene expression variation is found among groups,
especially for native tissues rather than cell lines?

Here, we provide one of the first studies of among population gene
expression variation in a natural tissue (namely, placentas) [24]. We chose placentas
rather than more-easily obtained blood samples because gene expression in blood is

influenced by the age of the individual [25] and the time of the day when samples
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are taken [26], whereas all placentas were obtained at the same “age” and “time”-
namely, birth of the child. Additionally, the placenta is an important organ due to the
fetal-maternal interplay and its critical role in fetal growth and development.
Placentas were obtained from a single hospital during a six-week time period from
four groups: African-Americans (AF), European-Americans (EU), South Asian
Americans (SA), and East Asian Americans (EA). We emphasize that although we
have tried to minimize environmental variation by sampling from a single hospital
over a short time period, any differences in gene expression among these four
groups will reflect both differences in genetic ancestry as well as systematic
differences in their individual environments. However, we also incorporated
biological and environmental factors into our model of gene expression to explicitly
dissect the contributing variation that individual biology and environmental
elements, such as diet, may have on expression variation.

A complication in the study of native tissues, such as placentas, is their cell
type heterogeneity, and their spatio-temporal expression variability [27-29]. Thus,
any one dissection of a complex tissue is but a single snapshot of the stochastic
variation observed in expression abundance in that tissue space and in that moment
in time. We therefore sampled each placenta twice to explicitly measure variation
within a single placenta, to estimate the contribution of cell-type heterogeneity and

spatial variability to inter-individual variation.

Results
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Of the 159 million high quality reads obtained, 117 million mapped to annotated
exons. An average of 1.46 million exon-mapped reads were obtained for each library
(sample replicate), corresponding to an average of 2.9 million exon-mapped reads
for each individual (Figure S1 in Additional File 1). There was at least one mapped
read for each library at 13,156 genes, including but not limited to 11301 protein-
coding genes, 801 psuedogenes, 893 long noncoding RNAs (IncRNAs), and 40 small
RNAs, which includes 21 pre-miRNAs. Expression levels were normalized (variance
stabilized) using protocols described in the DESeq2 package [30]. Pearson’s
correlation coefficient for each pair of sample replicates was 0.98 * 0.005, yielding
an r-squared value of 0.96 + 0.01. Data quality was further evaluated by validating
the expression profiles of three genes by rt-qPCR,, a mean Pearson’sr of 0.74 £ 0.07
was observed between the expression values measured by RNA-sequencing vs. rt-
qPCR (Figure S2 in Additional file 1). Thus, based on both sample replicates and an
independent method of measuring expression abundance, the data we obtained

accurately provide an accurate measurement of RNA transcript abundance.

Total Gene Expression Structure

To determine if inter-individual gene expression variation was larger than intra-
individual variation, and if individuals cluster by ancestry, a sample-by-sample
correlation matrix was calculated and a hierarchical clustering dendrogram of all
libraries was produced (Figure 1A). We observed that 74 of the 80 dissection
replicates clustered together, consistent with the correlation results and indicating

that intra-individual variation tends to be smaller than inter-individual variation.
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The three individuals whose dissection replicates did not pair were subsequently
removed from all further analyses under the assumption that their lack of pairing

125  was the product of dissection and/or processing error.

An additional observation from the sample correlation dendrogram is the lack of
clustering of individuals with the same ancestry. To further evaluate this a principle
component (PC) analysis reveals that in contrast to what is commonly observed for
130  genetic data [31-33] there is no evident structure in this cellular phenotype that
corresponds to groups (Figure 1B). However, when the PC loadings for each
individual are tested for correlations with other aspects of the data (Figure 1C), PC2
is correlated with fetal length at birth (r = -0.54, Bonferroni p-value = 0.007), PC3
correlates with the sum of mapped reads (r = -0.62, Bonferroni p-value = 0.0005),
135 and PC4 correlates with normal maternal weight (r = 0.46, Bonferroni p-value =
0.045). Additionally, analysis of genes that correlate with the loadings from the first
3 PCs [34, 35] reveals enrichment in hundreds of gene ontology categories,
particularly molecular function (GO:0003674), biological process (GO:0008150),
binding (G0O:0005488) and their sub-categories (Additional file 2 - Tab A), as well as
140 numerous KEGG pathways (Additional file 2 - Tab B) highlighted by the most
enriched KEGG pathway, namely 01100:Metabolic Pathways (adjusted p-value =
2.9e-05). Overall, it appears that total transcriptome variation is largely influenced
by factors other than group affiliation (e.g., population), and that transcript
variation hence does not parallel expected patterns of genetic structure for these

145  groups[32, 36].
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An Apportionment of Gene Expression Variation

Total variance in expression at each gene was apportioned among groups (Mst &
Nst), among individuals within groups (Mit and Nit) and among dissection replicates
(or within individuals, Met and Net). An analysis of variance (ANOVA) at each gene
was performed to apportion the variation and two components of the data were
used to derive the apportionment estimates - the additive components of variances
and the sums of squares estimates (see the Methods section for details on these
models.). Under this framework we are able to model all groups simultaneously as
well as model populations in pairs. Assuming a model with four populations, the
variance (Mst, Mit. Met) and variation parameters (Nst, Nit, Net) are highly
correlated across genes (Mst:Nst, r = 0.97; Mit:Nit, r = 0.95; Met:Net, r = 0.99; p =
2.2e-16; Figure S3 in Additional File 1), even though their distributions and mean
estimates are quite different (Figure 2A-C). The uniqueness of the variance
parameters (M*t) reflects the specific manner in which these values are derived -
that is, by the additive component of variance from the expected mean squares in
this type [ hierarchical ANOVA (see: Table S1 and S2 in Additional file 1). Given the
correlation among parameter estimates and the lack of zero values in the sums of
squares approach (Figure S3 in Additional File 1), we focus on the variation or
variability parameters Nst, Nit and Net. On average we find that 33.2% of the
variability in gene expression is found among populations of cells within a single
tissue (Net, permutation of reads among replicates, p = 0.22), 58.9% of the

variability is among individuals within groups (Nit, permutation of libraries among
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individuals within groups, p = 0.048) and 7.9% of the variability is among groups
(Nst, permutation of individuals among groups, p = 0.24) (Figure 2 B-C). These
estimates indicate that even though inter-individual variation is, on average, the
largest component of expression variation, intra-individual variation cannot be
ignored in measuring cellular phenotypes. Similarly, while among group expression
variation does not, on average, reach the levels of structure seen at the genetic level,
the group component does detectably influence expression variation, particularly at

a subset of genes, which we explore below.

When modeling expression variation in a pairwise manner, mean estimates are
similar to those observed in the four-population analysis (Table 1). However, among
group variation (Nst) ranges from 0.045 (for AF:EU) to 0.062 (for EA:SA). A
dendrogram was constructed using mean pairwise Nst distances (Figure 2D-E). We
find that the data are congruent with expectations from genetic data [36], with the

exception that SA tend to be the most distant group.

Mean expression and apportionment estimates

The mean expression of each gene is significantly correlated with the residual (or
intra-individual) sum of squares estimate (Pearson’s r = 0.60, p << 0.001). This
illustrates that as mean expression increases, variation in mRNA abundance among
our sample replicates also increases. As such, we estimate that mean expression
explains 36% of the variation in our error sum of squares. However, the among

group (r = 0.018, p = 0.034) and among individuals within groups (r =-0.029, p =

10
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0.001) sums of squares are more weakly correlated with mean expression.
Consequently, the apportionment parameters are correlated with mean expression
with coefficients of -0.446, 0.388 and 0.166 for Net, Nit and Nst (p << 0.001),
respectively. The proportion of variation explained by mean expression for each
apportionment parameter is thus 20%, 15% and 2.7% for Net, Nit and Nst,
respectively. This suggests that mean expression is having a modest influence on
parameter estimates, and the acquisition of more reads will not greatly influence the

apportionment estimates.

Differential Gene Expression Among Individuals

The proportion of genes that vary significantly among individuals in expression
levels was analyzed via a F-ratio test between inter-individual and intra-individual
variance. We observed that 5880 genes, or 44.5% of all genes (at an FDR 5%),
exhibited significant among individual, within group variation. Additionally, fitting
two linear models to the data (a null model and a second model that includes
individuals as an explanatory variable), followed by a Chi-squared test of model
fitting, results in 5491 genes (41.7% of all genes) with significant inter-individual
variance (at an FDR 5%). There is an 84% overlap between the significant genes in
both analyses. We estimated the proportion of within-group variation explained by
inter-individual variation with the parameter Nis (SSb/SSb+SSe; see Methods). On
average 64% of the within-group variation is attributed to individuals, indicating
substantial inter-individual variation. Those genes that are significantly

differentially expressed (DE) among individuals, as determined by the F-ratio test,

11
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215  have a minimum Nis value of 0.65. To determine if there may be significant variation
attributed to intra-individual variation at some loci, we inverted the F-ratio test by
placing the intra-individual mean squares in the numerator and inter-individual
mean squares in the denominator, but observed no significant loci after Benjamini-
Hochberg correction. Overall, this illustrates that there is substantial inter-

220  individual variation in gene expression variation.

Differential Gene Expression Among Groups

Three different methods were used to identify and quantify genes that may be

differentially expressed among human groups: two published methods (DESeq [30]
225 and tweeDESeq [37] ), and a permutation of the hierarchical ANOVA. The two

published methods can only compare two groups at a time, while permutations of

the hierarchical ANOVA permit the analysis of two or more groups simultaneously.

While there is marked variation in the number of DE genes that each method

230 identified, there are consistent trends (Table 2). For example, the relative
proportion of DE genes for each pair of populations were correlated between
methods (Pearson’s r = 0.927, p < 0.008) and comparisons that included South
Asians tended to have the most DE genes for any one group. Further, 99% and 92%
of the genes identified as DE by the DESeq and tweeDESeq methods respectively

235  were also identified as DE by the permutation method. In the permutation analysis,
the cutoff Nst value for DE genes differs slightly depending on the groups being

compared but averages out to an Nst estimate of at least 0.326. The reduced number

12
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of DE genes identified with the DESeq and tweeDESeq methods is because both
methods are model-based analyses with specific tests and false discovery correction
240  of differential expression. The permutation method presented here simply identifies

extremes in the observed data that are difficult to explain by random chance.

To determine the potential biological relevance of the genes identified as DE, we
tested for enrichment in GO and KEGG pathways. When testing the union of all
245  pairwise permutation DE genes (1784 DE genes), we observed enrichment in 15
KEGG pathways and 371 GO categories at a moderate-confidence FDR of 20% (5
KEGG and 201 GO at a high-confidence FDR of 5%) (Table 3, Additional file 3 - Tab
A). In general, KEGG and GO enrichments indicate that genes involved in cellular
signaling, immune response, tissue and organ development, and metabolism

250 pathways are DE among groups.

Non-Neutral Gene Expression Profiles
Although it is difficult to determine if expression at a particular gene is evolving
according to neutrality or under selection, we are able to identify expression

255  profiles that conform to four specific patterns of selection: directional, balancing,
stabilizing and diversifying. Importantly, these analyses do not test for deviations
from neutrality, but rather identify genes that exhibit expression profiles consistent
with selection on quantitative traits [38, 39]. Traits under directional selection are
expected to exhibit shifts in mean expression among groups exemplified by greater

260 among group variation relative to within group variation, and would hence be

1R
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consistent with previously identified DE genes. Balancing selection is exemplified by
high diversity or variation among individuals within a population but low variation
among populations. Stabilizing selection results in low levels of expression variance
among individuals while diversifying selection is reflected in high levels of

265  expression variance among individuals. We identified genes that typify each
selection profile using apportionment of variation estimates, estimates of total
expression variance, and a series of permutations, as described in Materials and

Methods.

270  Using data from the model fitting all four groups simultaneously, we observe that
the among groups variation (log(SSa.)) correlates positively with the among
individuals variation (log(SSy), Pearson’sr = 0.579, p < 2.2e-16), in agreement with
expectations under neutrality [40]. Additionally, the variation within individuals
(log(SSe) also correlates positively with the among individuals variation (Pearson’s r

275 =0.46,p < 2.2e-16) and the among groups variation (Pearson’s r = 0.25, p < 2.2e-16)
(Figure 3A). To estimate the proportion of the human placental transcriptome that
may be consistent with neutral vs. non-neutral expectations, we performed a series
of permutations (see Materials and Methods). We estimate that 64.8% of all genes
are consistent with a neutral-drift model for a quantitative trait [38]. The most

280 prevalent non-neutral profile of gene expression variation is stabilizing selection,
which influences an estimated 26% of all genes, followed by directional (646 genes,
4.9%), diversifying (635 genes, 4.8%), and balancing (173 genes, 1.3%) selection

(Figure 3B; see Additional file 5 for a list of all genes).

14
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When each of these modes of selection are mapped onto the distribution of within-
group and among-group variation (Figure 3A) we can identify near discrete sections
of the distribution that reflect these observations. Interestingly, there are areas of
the distribution where these modes of selection overlap (Figure 3B). For example,
there is a small set of genes for which expression variation is both large among
individuals (diversifying) and among groups (directional) (Figure 4A-B).
Conversely, some genes have more constraint in total variance, consistent with
stabilizing selection, and yet also have significant shifts in mean expression among
groups, consistent with directional selection (Figure 4A and C). And finally,
constrained inter-individual expression (stabilizing selection) can also occur with

reduced among group variation (balancing selection) (Figure 4D).

To determine if genes differentially expressed among groups, i.e. those with a
pattern consistent with directional selection, could effectively recapitulate group
ancestry, we used expression variation across all 646 directional genes (those
identified when modeling all four populations at once) to generate a UPGMA tree
and perform a principle component analysis. We observe that individuals form
monophyletic clades consistent with population ancestry (Figure 5A). Additionally,
increased levels of population structure were observed in the principle component
analysis but are only fully discernable when viewing the first 3 PCs together (Figure

5B). PC1 tends to distinguish individuals of African ancestry from those of non-

18
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African ancestry, while PC2 tends to distinguish SA from EA and PC3 distinguishes

Europeans from non-Europeans (Figure S4 in Additional file 1).

Expression Variance, Genetic Diversity and Network Connectivity

The prevalence of genes that deviate from neutral-drift expectations, particularly
those consistent with stabilizing selection, prompted us to hypothesize that inter-
individual variance in gene expression must have a genetic component. Specifically,
we hypothesized that genes with greater expression constraint would have greater
genetic constraint. Additionally, genes exhibiting large inter-individual expression
variances may allow, through relaxed constraint or by necessity, a relative excess of
variation. To evaluate this hypothesis, we tested for a correlation between
expression variance and pairwise genetic diversity. Pairwise genetic diversity ()
was calculated for each gene, controlling for gene length [41], for 3 populations from
the 1000 Genomes data: CEU-Northern Europeans, ASW- African Americans from
the S.W. USA, and CHS - Han Chinese from Southern China. We chose these three
populations as they are the best available proxies for our sampled individuals. When
diversity is compared from each population to expression variance, we observe a
significant positive correlation (ASW: r=0.213; CEU: r = 0.189; CHS: r = 0.177, p=0,
Figure S5 in Additional file 1). In addition, expression variance also correlates with
Tajima’s D values (ASW:r=0.179; CEU: r = 0.129; CHS: r = 0.132, px0). These
observations indicate that total expression variance has a small (r-squared = 0.04)

albeit significant genetic and thus heritable component.

1A
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Another factor that may influence expression variance is the number of interacting
partners a gene has. Previous work on gene-networks has illustrated that the degree
of connectivity (number of interactions) influences the rate of molecular evolution
[42]. Here, using data from BioGrid we tested if the number of interacting genes also
influences the expression variance of a gene (Figure S6 in Additional file 1). Indeed,
we observe a weak tendency for the expression variance to increase as the number

of interacting genes decreases (Pearson’s r = -0.28, p=0).

To evaluate how both genetic diversity and connectivity may together influence
gene expression variance we built an ANOVA model setting the coefficient of
variation in gene expression as the response variable, and setting gene diversity and
connectivity as explanatory variables with interaction. Each component of the
model significantly influenced expression variance (diversity px0; connectivity pz0;
interaction p = 0.029) explaining an estimated 4.3%, 2.3% and 0.07% of the total

variance in expression variance.

Gene Co-Expresssion Modules & Functionality of Selection Categories

To determine if the sets of genes corresponding to the four non-neutral modes of
evolution have a coherent biological effect, we tested for evidence of co-expression
networks and enrichment in GO gene ontology terms and KEGG functional
pathways. No enrichment was observed for genes consistent with a pattern of
balancing selection. The results from the three other non-neutral modes are

presented below.
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Overall, genes consistent with directional selection (646 genes) were enriched in
145 GO categories and 6 KEGG pathways at an FDR of 20% (70 and 0 respectively at
355 an FDR of 5%). They are associated with extracellular and membrane regions,
response to stress, infectious disease, signaling, binding and metabolism pathways
and categories (Additional file 3 — Tab B). Six coexpression modules were identified
that form compact coexpression networks, but also interact with each other through
areduced number of loci (Figure 6A,B). The only individual module that is enriched
360 for a particular set of functions is module 6 (red Module in Figure 6A). This is the
smallest module, containing just 54 genes, but at an FDR of 20% this module is
enriched for 110 GO categories (52 at FDR 5%, Additional file 3 - Tab C), and 15
KEGG pathways (7 at FDR 5%, Additional file 3 - Tab D). These genes are principally
involved in defense and immune response but are also associated with vitamin

365 absorption and digestion, and arachidonic acid metabolism, a key fatty acid.

To evaluate if the enrichment observed here is the product of unique expression in a
particular population or variation across all groups, we partitioned all directional
genes by their expression profiles using k-means clustering. When partitioning the

370  expression profile data into two groups (k=2), we observe two opposing profiles
where expression is lowest in Africans, highest in South and East Asians, and
intermediate in Europeans (cluster 1) or highest in Africans, lowest in South and
East Asians, and intermediate in Europeans (cluster 2) (Figure 7, row K2).

Enrichment tests for these two clusters reveal that only cluster 1 exhibits any
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enrichment, with ontology and pathway enrichment consistent with those observed
above. This observation would be consistent with a hypothesis of adaptive
responses in non-African populations during migrations out of Africa. However,
when the data are partitioned into more clusters (k=6), there is no ontology or
pathway enrichment for those clusters that accentuate the expression differences
between Africans and non-Africans (Figure 7, row K6, clusters 4 and 5). Note that
we chose a K of 6 for this particular analysis because it is the first K that uniquely
separates African from non-African populations in both an up-regulated (cluster 4)
and down-regulated (cluster 5) manner. Results for K2 through K8 can be found in
Additional file 1, Figure S7. Interestingly, it is rather cluster 1 (Figure 7, row K6),
with elevated expression in South Asians relative to the other groups, that harbors
the entire enrichment signal. These 111 genes are enriched at an FDR of 20% in 19
KEGG pathways (8 at FDR 5%) and 320 GO categories (136 at FDR 5%). Again, they
are mostly involved in immune response and metabolism, consistent with the

observations above (Additional file 3 - Tab E).

With diversifying genes, 3 coexpression modules (Figure 6D) were identified and 2
highly integrated networks along with 2 smaller networks (Figure 6C), consistent
with the coexpression modules, were observed. Each module was enriched in
numerous GO ontology terms (Additional file 3 - Tab F) and KEGG pathways
(Additional file 3 - Tab G) with both unique and overlapping functions. Module 1
(Figure 6D, cyan) is enriched in 546 GO ontology terms and 22 KEGG pathways at an

FDR 0f 20% (222 GO and 8 KEGG at FDR 5%) and involved in numerous areas of
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biology including growth, development, signaling, metabolism and disease. Module
2 (Figure 6D, blue) is enriched in 131 GO ontology terms and 3 KEGG pathways at an
FDR of 20% (35 GO and 2 KEGG at FDR 5%) and involved with binding and receptor
interaction, specifically cytokine-cytokine receptor interaction and neuroactive
ligand-receptor interaction. Module 3 (Figure 6D, dark red) is enriched in 378 GO
ontology terms and 12 KEGG pathways at an FDR of 20% (132 GO and 9 KEGG at
FDR 5%) and associated with disease and signaling pathways. The union of all
diversifying genes reveals ontological and functional enrichment consistent with the

above data (Table 4, Additional file 3 - Tab H).

Stabilizing genes formed 4 coexpression modules that, as a unit (Additional file 3 -
Tab I), are associated with 1245 GO ontology terms and 51 KEGG pathways at an
FDR of 20% (898 GO and 39 KEGG at an FDR of 5%) and are involved with basic,
largely intracellular, processes (Table 4). These include association with the
splicesome, ribosomes, RNA transport and protein processing. But they are also
associated with neurological diseases such as Huntington'’s, Parkinson’s and
Alzheimer’s disease. Finally, there are also associations with bacterial infection,
hepatitis C, T-cell signaling and cancer pathways. Individually, each module has a
unique functional composition, but there is overlap at varying degrees for a few key
pathways that include basic intracellular functions and associations with

neurological diseases (Additional file 3 - Tab ] and K).

The influence of biological traits on gene expression
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Along with population ancestry, several anthropometric and dietary traits were also
collected from each individual, to evaluate their association with expression
variation. Starting with the model of gene expression used previously, which
included technical (number of mapped reads and RNA quality) and population
factors (group and individual), eight additional traits were added: sex of the child,
weight of the child, length of the child, birthing manner (cesarean or vaginal),
maternal age, maternal body mass index, whether or not the mother drinks alcohol
(outside of the pregnancy), and whether or not the mother is a vegetarian (see
Materials and Methods for model details). Note that each new trait being modeled is
a measure of inter-individual variation. The significance for each factor was
determined by an F-test (FDR of 5%) using the mean square estimates of each factor

over the residual (intra-individual variation).

On average each factor explained roughly 2% of the variation in the data, with intra-
individual (32%) and inter-individual (41%) variation accounting for most of the
variance; among group variation explained 6.3% (Figure 8). As expected the vast
majority of variation explained by each of the new explanatory variable was
previously explained by variation among individuals, thus the reduction in the Nit
estimate from 0.59 (Nit, Figure 2C), to 0.41 (Figure 8). All factors were enriched in
no less than 59 GO ontology (Additional file 4 - Tab A) terms at an FDR of 5% and all
but 3 factors (RIN, sex and length) were enriched in at least one KEGG pathway at an
FDR of 5% (Additional file 4 - Tab B). Importantly, the significance for all factors

was dependent on the within group-among individual variation (Nit) and the mean
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expression of genes (Figure S7 in Additional file 1). As such, if a gene previously
exhibited no significant variation among individuals in our simple model of gene
expression then it did not exhibit any significant variation among any of the eight
additional factors in our full model. Thus, all of the GO ontology terms and KEGG
pathways observed for each of the new factors are simply a subset of those
previously associated with variation among individuals, which was enriched in 104
KEGG pathways and 2720 GO ontology terms at an FDR of 20% (65 KEGG, 1729 GO
at an FDR of 5%). On the technical side, genes that correlated with the number of
mapped reads were overwhelmingly those that are highly expressed and associated
with pathways such as Ribosome (KEGG 03010; adjusted p = 4.75e-23). Such
technical artifacts are known to be an issue with this technology and are precisely
why the number of mapped reads and RNA quality (RIN) values were included as
leading explanatory variables in all models of gene expressions [43]. See Additional

file 4, for all GO and KEGG enrichment data for each trait.

One striking observation from the trait model fitting was that newborn weight was
associated with three cancer pathways and the hematopoietic cell lineage pathway.
This observation is consistent with reports of newborn birth weight being
associated with increased risks of childhood leukemia [44, 45]. Are the genes
associated with this effect being down regulated as birthweight increases, or are
they being up regulated? To evaluate this specific example and all other associated
trait enrichments we partitioned the correlations between gene expression and the

trait by the direction of their effect and then re-evaluated pathway associations
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(Figure 9, Additional file 4 - Tab C). The results indicate large coordinated changes
in expression for each factor. For example, as newborn birth weight increases there
is a decrease of expression in genes associated with the hematopoietic cell lineage,

470  cancer pathways, bile secretion, dilated cardiomyopathy and vascular smooth
muscle contraction, but genes associated with protein processing in the
endoplasmic reticulum increases. Further, individuals who normally consume
alcohol have decreased expression in pathways such as glycolysis and fat digestion.
Placentas from female children have increased expression in protein digestion,

475  ECM-receptor interaction, amoebiasis, and focal adhesion. Placentas from Cesarean
births exhibit decreased expression in glycolysis, protein processing in the
endoplasmic reticulum and antigen processing. As a final example - as maternal
body mass index increases there is a correlated increase in expression for genes
involved in staphylococcus aureus infection, complement and coagulation cascades

480 and systemic lupus erythematosus pathways. These data, as presented in Figure 9,
illustrate the correlated effect that gene expression changes may have on specific

functional pathways and by inference on the physiology of an organ or individual.

Discussion and Conclusion

485  Using a population genetics framework, we have demonstrated that both intra- and
inter-individual variation account for the vast majority of total gene expression
variation. Significantly, intra-individual variation in gene expression cannot be
ignored in evaluating expression variation, consistent with studies of single cell

gene expression that have illustrated the stochastic nature of expression variation
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[28]. While this is particularly true for the placenta it also holds true for other
tissues [46, 47]. If intra-individual variation is not measured it will be erroneously
attributed to inter-individual variation, thereby inflating estimates of inter-

individual variation.

Gene expression profiles were dissected to evaluate the impact that non-neutral
evolutionary forces may play in shaping expression variation. We observed that the
majority of placental expression variation is consistent with a neutral-drift model,
but an estimated 35% of the placental transcriptome is influenced by selection.
Stabilizing selection plays a large role on transcriptome variation maintaining
significant regulatory control over some 25% of the genes. Genes influenced by
stabilizing selection are largely limited to basic intra-cellular functions. In contrast,
the ~4% of genes influenced by diversifying selection typically encode extra-cellular
proteins involved in cell signaling, metabolism and immune pathways. Interestingly,
the genes influenced by directional selection span the range of inter-individual
variation observed, overlapping with profiles consistent with stabilizing and
diversifying selection (Figure 3A). That is, directional selection can act on any gene
regardless of the range of inter-individual variance. Therefore, measurements of
fold change in gene expression that do not account for total expression variance can
be misleading (Figure 4). Additionally, we find that expression diversity correlates
with genetic diversity, substantiating a role for genetic selection in influencing inter-

individual expression variation.
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Among group variation in placental gene expression averages out to an Mst of 0.045
(Nst =0.079), which is less than that found for human genetic variation (Fst =
0.111) [36]. This suggests that placental transcriptome variation among groups is
more similar than genetic variation alone would predict. Our estimates and thus our
conclusions are certainly influenced by the accuracy with which we can measure
and apportion variation for such a dynamic and quantitative trait. However, these
estimates are qualitatively consistent with similar recent estimates of among group

variation derived from lymphoblastoid cell lines [19, 21].

Interestingly, where significant variation in expression level is manifested among
human groups, it associates with genes pivotal to placental biology, fetal growth and
fetal development. This includes cell-cell interaction pathways like cell adhesion
molecules [48], arachidonic acid metabolism [49], tryptophan metabolism [50], and
immune response pathways including malaria, which is known to present serious
health risks to the fetus [51, 52]. While these inter-individual and inter-group
observations are of potential interest for clinicians and biologists, a crucial point
concerning the evolutionary consequences of these observations is heritability. In
both the pairwise population analyses and k-means clustering of directional genes,
individuals of South Asian ancestry appear to have experienced both the greatest
change and the most biologically specific changes in placental gene expression.
However, the mothers of all of these individuals were born in South Asia, and it is
unknown how long they resided in the sample location prior to sampling. Thus,

whether these observations are the product of a heritable, evolutionary adaptive
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response or the product of these particular individuals being exposed to an
individually novel environment and presenting a plastic response cannot be
determined. Nonetheless, those genes with expression profiles consistent with
models of directional selection exemplify genes and pathways that may be most

frequently targeted during adaptive responses to novel environments.

We have also demonstrated that by incorporating biological trait variation in
models of gene expression, we can identify genes and pathways that have correlated
changes with the modeled traits. By evaluating the direction of the correlated
change and combining this information with biological and/or clinical information,
this framework allows the potential influence of the trait to be dissected. For
example, pre-pregnancy alcohol consumption is associated with the regulation of

essential pathways like glycolysis/glycogenesis.

Finally, these observations provide a first insight into human, in vivo, gene
expression variation among populations of cells within a tissue, among individuals
and among continental groups. The model of gene expression variation presented
here is adaptable to any system and the apportionment parameters based on the
sums of squares provide a set of stable statistics that can be compared across
studies. Importantly, classifying genes into selection categories is difficult as there
are a number of assumptions involved. We stress that no formal tests of selection
were performed in this study. Instead, we presented a framework to identify genes

with expression profiles that are consistent with theoretical expectations of
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selection on a quantitative trait. Hopefully, this work will provide a foundation for

560 the development of a neutral theory of gene expression in which formal tests of
selection may be conducted. Further, we note that precision in the apportionments
can be strengthened by increasing the number of sequencing reads, adding technical
replicates, and increasing the number of both tissue replicates and individuals.
Notably, only a single complex tissue was evaluated in this study - additional

565 biological and evolutionary insight can be gained by studying other tissues or, as
single-cell transcriptomic methodologies become more mature, specific cell types. In
addition, sampling individuals of similar ancestry at multiple locations would allow
one to estimate the influence of both environment and ancestry on expression
variation. The framework and methodologies present here provide a foundation for

570 further such studies of transcriptome variation.

Methods

Ethics Statement

All placentas were collected in October - November 2006 at Northside Hospital in
575  Atlanta, Georgia, with the approval of the Northside Hospital Institutional Review

Board (NSH #804) and with the written informed consent of the donors.

Samples
A total of 66 human placentas were collected and processed within an hour of
580 delivery from both natural and cesarean births. Placentas were quartered, wrapped

in aluminum envelopes, and immediately snap frozen in liquid nitrogen. All samples
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were stored at -80°C prior to shipping on dry ice to the Max Plank Institute in
Leipzig, Germany, where they were again stored at -80°C. Each contributing family
completed a questionnaire which asked for self-described ancestry and birthplace
going back three generations and anthropometric, health and life-style questions
about the mother including: height, weight, weight at full term, number of
pregnancies, number of children, smoking status, alcohol intake, illness during
pregnancy, chronic illnesses, medication taken during pregnancy, diet and any other
volunteered information. Finally, the sex, weight, length and the delivery manner of
the child were recorded. From this collection and the provided data, we selected 40
samples to include in the study. Samples were chosen only from those families with
self-described ancestry from a single group, with no major illnesses during birth,
and with the most complete questionnaires. The final 40 samples include ten
samples each of African-American (AF), European-American (EU), South Asian-
American (India; SA) and East Asian-American ancestry (Korea, China, Vietham and
Taiwan; EA). All SA individuals are first-generation immigrants, and all but one of
the EA individuals are first-generation immigrants; the exception is a second-

generation American.

Dissections

Given the mosaic composition of the placenta, possible maternal blood/tissue
contributions to any dissection, and previous observations that placental sample
location influences expression variation [27], we produced tissue sample replicates

for each individual. Tissue sample or dissection replicates were generated to
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quantify expression variation introduced in the dissection process. Specifically,

605 tissue replicates quantify intra-individual variation in the form of (a) cell-type
heterogeneity, (b) biological variation across a tissue and (c) temporal and
stochastic variation in gene expression, thus allowing for a more accurate
estimation of the variation found among individuals. From three of the four quarters
of each placenta we dissected 100mg of centrally located villus parenchyma tissue

610  (taking care to avoid decidua, chorion, or amnion tissue) from five nonadjacent
locations, totaling 600 dissections. The five dissections from each quarter were
pooled, resulting in three sample replicates from each placenta. Five non-adjacent
dissections were taken in an effort to homogenize the cell-type composition among
samples. All dissections were carried out on a sterilized steel plate situated on top of

615 dryice, thereby keeping the samples frozen at all times. Samples for dissection were
chosen at random to avoid any possible dissection processing effect that would

correlate with individual ancestry.

Total RNA Isolation

RNA was extracted and isolated from each of the three sample replicates from each
620 placenta using TRIZOL reagent (Invitrogen) following manufacturer

recommendations. Total RNA was purified using the Qiagen RNAeasy minElute

Cleanup kits and RNA quality was determined using Agilent 6000 Nano kits and an

Agilent Bioanalyzer.
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Construction of indexed RNA-Seq Libraries

Based on the RNA integrity numbers (RIN values) the two best sample replicates
from each placenta were chosen to construct indexed Illumina RNA-Seq libraries.
The indices are sample-specific and allow for the pooling and sequencing of all
libraries together, thereby minimizing lane and run effects on the RNA-Seq data.
Library construction followed a merging of lllumina’s RNA-Seq library preparation
and an indexing protocol [53] which introduces barcodes for each library during an
enrichment PCR step. Library construction included the following steps: two rounds
of mRNA capture with oligo dT magnetic beads, mRNA fragmentation, 1st strand
synthesis, 2M strand synthesis, end repair, index adapter ligation, adapter fill-in,
size-selection, indexing/enrichment PCR, and finally quantification. All steps,
including SPRI bead reaction clean-ups, were processed in parallel in a 96 well plate,
where all samples were randomized across the plate, thereby eliminating any

library processing batch effect.

Sequencing, Base Calling and Mapping

The 80 indexed libraries were pooled in equimolar ratios and sequenced on nine
lanes over three runs on the [llumina Genome Analyzer IIx platform. Eight lanes
were single-end 76bp (base pair) reads and a ninth lane was a 76bp paired-end run.
Base calling was done using Ibis [53] and mapping was performed with TopHat2
[54], a spliced-read mapper which is built on top of the Bowtie mapper [55]. Reads
were mapped to the human reference genome build hg19 (GRCh37). Reads were

annotated to known Ensembl 70 genes. All count data was normalized (variance
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stabilized) using protocols described in the DESeq2 package [30]. In instances
where data for individuals are used (such as in PCAs), the raw count data from each
replicate for each individual were summed and data for individuals was

independently normalized with the aforementioned method.

Apportioning Expression Variation

We decomposed variation in expression level into multiple factors of interest using
models derived from those previously established [17, 56] . Data were fit to both a
normal and a negative binomial distribution (glm.nb in R), with significant
correlations among model estimates (r = 0.9998, p < 2.2e-16). We therefore present
all subsequent analyses assuming a normal distribution. Apportionment estimates
were calculated using two different components of the data, (1) the sums of squares
(SS) and (2) the additive components of variances (0?). The latter is derived from
the expected mean squares (EMS) formulas for each explanatory variable [56].
There are several reasons for using these two different parameterizations of the
apportionment of expression variance. First, the sum of squares based parameters
can be directly compared across ANOVA model types (model I, model II and mixed
models). Second, the sum of squares based parameters are more dynamic in that
they preclude the possibility of having 0 values. Third, the parameters based on the
additive components of variances are a previously published set of parameters that
are direct analogs to Wright's F-statistics (Fst and Fis), a desirable feature that will
allow for comparisons between genetic and phenotypic variation [39]. Finally, when

using generalized linear models, such as when fitting a negative binomial

21


https://doi.org/10.1101/012468
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/012468; this version posted December 8, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

distribution to the data, the deviance estimates can be used as sums of squares to
derive both parameter types. Our simple model for each gene is a model Il nested
670  hierarchical ANOVA:
Vijk = W+ X + Z + A; + Bjj + eijji,
where y is normalized gene expression for the kth sample replicate in the jth
individual in the ith group, x and z are technical explanatory variables (x is the
number of mapped reads for each library and z the RIN value), and u is mean
675  expression for any gene g. The group (A), individual (B) and sample replicate (e)
effects are assumed to be random with variance oa?, os? and o2, respectively. After
removing the variance from technical factors (x and z), the total variance in gene
expression can then be apportioned as 0%t = 0a? + 0% + 0%2. We summarize the
amount of expression variance attributed to groups as o0a? /0%t and define this
680  correlation coefficient as Mst, the expression variance analog to the standard
among-group component of the total genetic variance, Fst [1, 57]. Further we can
define the correlation coefficients Met and Mit as the amount of expression variance
attributed to sample replicates and error (Met = 62/0?7), and to individuals (Mit =
og? /o?r). Each parameter ranges in value from 0 to 1 and the sum of these

685  parameters, for each gene, equals 1.

Similarly we also estimated a complementary (n?) statistic for each explanatory
factor, using the sums of squares (SS). In this instance, total gene expression
variation can be expressed as SSt = SSa + SSg + SSe, and we can subsequently define

690  the parameters Net (SS /SSt), Nit (SSg/SSt) and Nst (SSa/SSt), which mirror the

R?2
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aforementioned parameters derived from the additive components of variance (Met,
Mit, and Mst, respectively). Additionally, we defined Nis as SSg/ (SSg + SSe) to
quantify the amount of inter-individual variation relative to the total inter- and
intra-individual variation. Finally, we defined Nig as SSg/ (SSa + SSg) to quantify the

695 amount of inter-individual variation relative to the total inter-individual and inter-
group variation. We will refer to these two sets of parameters as the apportionment
of variance (using 02) and apportionment of variation (using SS) parameters,
respectively. An ANOVA table providing further details of the models can be found
in Table S1 and S2 in Additional file 1.

700
We also derived a more complex model for gene expression variation, which
accounts for other possible factors that might influence the expression of each gene,
namely: sex of the child (s), birth weight of the child (w), birth length of the child (1),
manner of birth (c; cesarean or natural), maternal age (f), maternal body mass index

705 (o), if the mother drinks alcohol on a regular basis (d), and if the mother is a
vegetarian (v). This is a partially nested model Il anova with no interaction:
Vik=u+xX+zZ+s+w+l+c+f+o0+d+v+A;+Bj+ejx
Total variation in expression was apportioned using the n? statistic in a manner
similar to that described above, except in this instance all explanatory variables

710 were used and yield:

SSt =SS« +SS, + SSs + SSw + SS; + SS¢ + SSf + SSo + SSq + SSy + SSa + SSg + SSe.
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Mode of Selection Permutations

To determine if variation at each gene may be consistent with a particular mode of
selection, a series of permutations were performed, building on the models of
Whitehead and Crawford [38]. There are four types of selection to consider:
directional, balancing, stabilizing and diversifying. First, directional selection, or
simply differential expression (DE), is typified by large variation among groups. To
test for directional selection, we permuted individuals among groups 1000 times,
maintaining replicate associations, randomly sampled 100 genes for each
permutation, and apportioned variation as described above. The 99t percentile of
the permuted Nst distribution was taken as a cutoff for extreme Nst values and thus

DE genes.

The second type of selection is balancing selection, typified by high among

individual variation along with low among population variation [38, 58, 59] .

Balancing selection was examined by permuting sample replicates among
individuals within groups 1000 times (randomizing inter-individual differences),
randomly sampling 100 genes for each permutation and apportioning variation. The
parameter Nig was used to identify genes with significantly more variation among
individuals than among groups. The 99t percentile of the permuted Nig distribution

was taken as a cutoff for extreme Nig values.

The other types of selection are stabilizing selection (characterized by low among

individual variation) and diversifying selection (characterized by high individual
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variation). In these later two modes of selection we specifically assume that
selection does not vary spatially and is thus uniform across populations. To identify
profiles consistent with stabilizing or diversifying selection, we generated a random
distribution of inter-individual variances as follows. Gene expression was
normalized across all genes, so that all genes have the same mean expression. We
then randomly selected the expression level of any one gene from each individual to
create a new artificial gene. We did this 10,000 times and calculated the variance
across all individuals with no regard for population association. The 1st percentile
and 99t percentile of this distribution were taken as cutoffs for stabilizing and

diversifying selection, respectively.

GO & KEGG Enrichment

Enrichment in GO (Gene Ontology) categories and KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathways were performed using the GOSeq [60] R package,
designed to account for read count biases in transcript length from RNA-Seq data. In
all enrichment analyses we present results using two false discovery rate (FDR)
cutoffs - a high confidence FDR of 5% and a moderate confidence FDR of 20%. All p-

values and FDRs are provided in supplementary materials.

Coexpression Modules, Network Construction and Profile Partitioning

Gene coexpression modules were identified using a weighted gene coexpression
network analysis (WGCNA) [61]. Network graphs were constructed using the
graph.adjacency function from the igraph package. Interacting genes, used to build

the network, were identified by using the dissimilarity values from the WGCNA
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analysis but limiting them to those that were additionally significant in a linear
regression correlation analysis at an FDR of 1%. For our data and this analysis, an
FDR of 1% corresponds roughly to a Pearson’s r >= 0.6 and a dissimilarity value
<=0.3. Gene expression profile partitioning was performed using k-means clustering
(kmeans function in the stats package in R). Data from individuals was used and
expression at each gene was normalized, prior to clustering, to have a mean of 0 and

a standard deviation of 1.

Statistical Analyses

All analyses were carried out in the programming language R [62] with in house
scripts and the aforementioned packages. All p-values are Benjamini-Hochberg [63]
adjusted using the p.adjust function from the R package stats, and significance is

taken at a p-adjust/FDR of 0.05, unless stated otherwise.

Validation

We validate three genes with extreme Mst values by performing rt-qPCR. In this
analysis one of the two original sample replicates was used, along with the third
RNA sample processed at the same time as the study samples but not used to create
an RNA-Seq library. The Maxima SYBR Green qPCR Master Mix from Fermentas was
used following the manufacturer’s instructions. Primer sequences are presented in
Table S3 in Additional file 1.

Additional Material

Additional file 1 (word doc; .doc), Supplementary Table and Figures: contains all
supplementary figures and tables
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Additional file 2 (excel doc, .xIs), PCA Enrichment: contains GO and KEGG
enrichment results for the top 4 principle components derived from total gene
expression variation across individuals.

Additional file 3 (excel doc, xls), Selection Mode Enrichment: contains GO and KEGG
enrichment results for genes under different forms of selection and for particular
co-expression modules. Results are partitioned onto different worksheet/tabs as
denoted in the text.

Additional file 4 (excel doc, .xlIs), Trait Enrichment: contains GO and KEGG
enrichment results for those genes associated with each technical, biological or
dietary factor modeled in or full model of gene expression variation.

Additional file 5 (excel doc, .xlIs), Gene Selection Categories: contains four lists of
Ensembl identifiers for genes classified as being influenced by Directional,
Stabilizing, Diversifying or Balancing selection.
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Figure Legends

Figure 1

Overview of total gene expression variation at 13156 expressed genes. (A) A cluster
dendrogram of libraries based on the following expression distance between each
pair of libraries: 1-abs(r), where r is Pearson’s correlation coefficient for expression
levels across all genes. Individual libraries and branches are colored to designate
their group affiliation; asterisks indicate three pairs of replicate libraries that do not
cluster together. (B) Scatter plots of the first three principle components (PC) using
data from individuals and all genes. The explained proportion of variation is
annotated on each axis. (C) Scatter plots between the first few PCs and correlated

explanatory variables.

Figure 2

Apportionment Summaries. (A) The distribution of variance apportionments
derived from the additive component of variance estimates. (B) The distribution of
variation apportionments derived from the sum of squares. (C) Mean estimates for
each apportionment parameter using both the variance and variation. (D) A
dendrogram of weighted mean population distances derived from the Mst
parameter. (E) A dendrogram of weighted mean population distances derived from

the Nst parameter.

Figure 3
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Evaluating neutral vs. non-neutral evolution of the human placental transcriptome.
(A) A scatter plot of among group and among individual variation as measured by
the log of the corresponding sum of squares. Genes that were identified as having
patterns of variation consistent with neutrality or with directional, diversifying,
stabilizing or balancing selection are color-coded. (B) A pie chart illustrating the

proportion of genes consistent with a particular mode of evolution.

Figure 4

Boxplots of non-neutral expression variation. The y-axis of all plots illustrates the
same range of expression. Each population is color-coded and the estimated Nst
value for each gene is in the bottom left corner of each plot. (A) A gene consistent
with directional selection. (B) A gene consistent with both directional and
diversifying selection. (C) A gene consistent with both stabilizing and directional
selection, with a dotted grey horizontal line to help view the shift in mean
expression, while also presenting constrained among group, within individual

variation. (D) A gene consistent with both stabilizing and balancing selection.
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Figure 5

Population structure revealed by genes consistent with directional selection. (A) A
UPGMA tree of expression distances among all libraries and individuals at genes
consistent with directional selection. (B) A 3D scatter plot of the first 3 PCs based on
variation in the 646 genes consistent with directional selection. The proportion of
explained variation is annotated on each axis and each individual’s group affiliation

is color-coded to match the annotation in plot A.

Figure 6

Co-expression heatmaps and networks. Heatmaps of gene x gene expression
correlations for genes under directional selection (A) and diversifying selection (D),
respectively. Each row and column is the same set of genes, annotated by the same
cluster dendrogram of gene expression distance. Additionally, each row and column
is color-coded to its associated gene co-expression module. In the heatmap plot
itself, the color red indicates more similar co-expression and blue indicates greater
dissimilarity. Gene co-expression networks for genes under directional selection (B)
and diversifying selection (C) are also presented. Nodes of interaction were only
created for genes which present significant co-expression at an FDR of 1%. Black
nodes are genes with at least 32 significant interactions. Red nodes are genes with
at least 7 significant interactions. Blue nodes are genes with at least 2 significant

interactions. Green dots are genes with no significant interactions at an FDR of 1%.

Figure 7
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Expression levels for genes consistent with directional selection. Each dot

1065 represents an individual spaced across the x-axis and with mean normalized gene
expression on the y-axis. The results of the cluster analysis are illustrated for two
clusters (K2) and for six clusters (K6). Individuals are color-coded with respect to

their associated group.

1070  Figure 8
Apportionment bar plot. Each gene was fit to a single model accounting for 13
explanatory variables and the proportion of variation explained by each variable

was estimated using the sum of squares approach.

1075 Figure9
Enrichment heatmap. A heatmap of Benjamini-Hochberg adjusted p-values for the
association between each explanatory variable (x-axis) and KEGG pathway
categories (y-axis). To be included in the heatmap a KEGG pathway had to be
associated with at least one explanatory variable at an FDR of 1%. Additionally, each

1080 explanatory variable was partitioned by the direction of its association with gene
expression. For example, the variable “All Veg. Genes” annotates all genes that
demonstrated a significant vegetarian diet effect, while the variable “Increased Exp.
in Veg.” annotates those vegetarian diet associated genes whose expression profile
increased relative to non-vegetarians. Similarly “Pos. Age Genes” annotates all genes

1085 that significantly correlated with maternal age in a positive manner.
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Table Legend

Table 1

Apportionment estimates. Variation apportionment estimates for each pairwise
population comparison and the single model that evaluates all populations at once
(4pop). Population annotations are as follows: AF = African American, EU =
European Americans, SA = South Asian Americans, EA = East Asian Americans. Nst =
porportion of total variation explained by groups, Nit = proportion of total variation
explained by individuals within groups, Net = proportion of total variation explained
by dissection replicates within individual and by error, Nis = proportion of inter-

and intra- individual variation explained by variation observed among individuals.

Table 2
Number of Differentially Expressed Genes. The estimated number of differentially
expressed genes between each pair of populations, determined using three different

methodologies.

Table 3

Enriched pathways for the pairwise union of all DE Genes. Shown are the KEGG
pathways and GO categories observed to be enriched when using the union of genes
identified as DE (1784 genes) in each pairwise comparison found in Table 2
“Permutation”. The table provides the category identifiers (in the case of GO the

ontology: CC, cellular component; BP, biological process; MF, molecular function),
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the associated term or brief description, and the Benjamini-Hochberg adjusted p-

value.

Table 4
Enriched pathways for stabilizing and diversifying genes. The table provides the
selective mode, the category identifier (as in Table 3), the associated term or brief

description, and the Benjamini-Hochberg adjusted p-value.
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Table 1 Apportionment Estimates

Nst Nit Net Nis
4pop 0.079 0.589 0.332 0.641
AF:EU 0.045 0.629 0.326 0.66
AF:SA 0.061 0.607 0.331 0.649
AF:EA 0.059 0.599 0.343 0.638
EU:SA 0.054 0.617 0.329 0.653
EU:EA 0.049 0.611 0.34 0.643
SA:EA 0.062 0.589 0.348 0.63

1120

Table 2 Number of Genes Determined to be DE by Methodology

tweeDESeq 5%

DESeq 20%FDR FDR Permutation
AF:EU 42 51 329
AF:SA 142 342 633
AF:EA 67 196 477
EU:SA 13 42 393
EU:EA 3 57 286
SA:EA 71 262 493
Total Unique 273 719 1784

&1
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1125 Table 3 GO and KEGG Enriched pathways for pairwise union of DE Genes

category KEGG TERM padj GO Category Ontology GO Term padj
4514 Cell adhesion molecules 0.0046 G0:0032501 BP multicellular organismal 6.64E-10
(CAMs) process

single-multicellular

5144 Malaria 0.0059 G0:0044707 BP . 4.57E-09
organism process
4142 Lysosome 0.0059 G0:0006950 BP response to stress 5.06E-09
5143 African trypanosomiasis 0.0143 G0:0044699 BP single-organism process  1.27E-08
4512 ECM-receptor interaction  0.0238 G0:0044763 BP Smg]e"’rpi'?:sr? cellular 4 59508
4145 Phagosome 0.0678 G0:0050896 BP response to stimulus 1.01E-07
380 Tryptophan metabolism 0.0751 G0:0004872 MF receptor activity 2.07E-06
5020 Prion diseases 0.0751 G0:0002376 BP immune system process  2.07E-06
4610 Complfement and 0.0751 GO:0007275 BP multicellular organismal 2 07E-06
coagulation cascades development
5416 Viral myocarditis 0.1024 G0:0032502 BP developmental process 2.34E-06
4640 Hematopoietic cell 0.1366 G0:0007154  BP cell communication 5.70E-06
lineage
5414 Dilated cardiomyopathy 0.1513 G0:0023052 BP signaling 6.39E-06
5150 Staphylococcus aureus ) 4543 G0:0044700 BP single organism signaling  6.39E-06
infection
Arachidonic acid
590 . 0.1513 G0:0048731 BP system development 7.32E-06
metabolism
480 Glutathione metabolism 0.1683 G0:0006955 BP immune response 7.32E-06

5?2
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Table 4

1130 Top 10 GO and KEGG Enriched Categories for Stabilizing and Diversifying Selection

Mode %8  KRGGTERM padj GO Ontol GO Term padj
Category ogy
Stabilizing ~ 3040  Spliccosome  6.47E-23 [ C0:001607  pp  mRNAmetabolic ¢ 5qp 54
1 process
cellular
Stabilizing 3010 Ribosome 3.19E-22 GO'O(())4426 BP macromolecule 3.99E-65
metabolic process
Stabilizing 3013 RNA transport  2.75E-15 G0:020551 MF protein binding 8.51E-61
Stabilizing 3050 Proteasome 6.39E-15 G0:020372 MF RNA binding 1.30E-59
Protein
Stabilizing 4141  Processingin g ggp 15 [ GO:004426 gy cellular protein 5 5, p 59
endoplasmic 7 metabolic process
reticulum
Stabilizing 190 Oxidative . 1.03E-12 G0:004317 BP macrorpolecule 5 79F-57
phosphorylation 0 metabolic process
Stabilizing 5016 Hun.tlngton s 123E-11 G0:004423 BP cellular metabolic 4.46E-55
disease 7 process
Stabilizing 5012 AMKINSON'S g5 g0p qq [ GO000815 pppiological process  2.03E-52
disease 0
Ubiquitin ) cellular
Stabilizing 4120 mediated 4.53E-09 GO'O(;‘MZG BP macromolecule 1.00E-50
proteolysis catabolic process
mRNA
Stabilizing 3015 surveillance 2.02E-07 G0'030998 BP cellular process 2.03E-50
athwa
Cytokine-
Diversifying 4060 cytokine 1.47E-08 G0:004470 BP smgle-multlcellular 1 .66E-15
receptor 7 organism process
interaction
Neuroactive .
Diversifying 4080  ligand-receptor 1.88E-06 [ 00:003250  pp multicellular 2.66E-15
) . 1 organismal process
interaction
Diversifying 5144 Malaria 0'033537 GO:O(;OHS BP cell adhesion 5.78E-14
. s Rheumatoid 0.000823 G0:002261 . . .
Diversifying 5323 arthritis 394 0 BP biological adhesion  5.78E-14
Cell adhesion
Diversifying 4514 molecules 0.0823304 GO'OgOBOS MF groxg‘vimor 4.19E-12
(CAMs) y
. e . o 0.010748 G0:000553 glycosaminoglycan )
Diversifying 5140 Leishmaniasis 899 9 MF binding 6.15E-12
. e African 0.014357 G0:000512 . -
Diversifying 5143 trypanosomiasis 329 5 MF cytokine activity 7.81E-12
Hedgehog
. e . . 0.014357 G0:009736 carbohydrate
Diversifying 4340 signaling 322 7 MF derivative binding 2.26E-11
pathway
Glycine, serine )
Diversifying 260 and threonine 0.053?7173 G0'020820 MF heparin binding 2.26E-11
metabolism
Diversifying 4976 Bile secretion 0.027173 G0:000510 MF receptor binding 4.08E-11

137 2
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