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Abstract10

The matching-allele and gene-for-gene models are widely used in math-11

ematical approaches that study the dynamics of host-parasite interactions.12

Agrawal and Lively (Evolutionary Ecology Research 4:79-90, 2002) cap-13

tured these two models in a single framework and numerically explored the14

associated time discrete dynamics of allele frequencies. Here, we present15

a detailed analytical investigation of this unifying framework in continuous16
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time and provide a generalization. We extend the model to take into account17

changing population sizes, which result from the antagonistic nature of the18

interaction and follow the Lotka-Volterra equations. Under this extension,19

the population dynamics become most complex as the model moves away20

from pure matching-allele and becomes more gene-for-gene-like. While the21

population densities oscillate with a single oscillation frequency in the pure22

matching-allele model, a second oscillation frequency arises under gene-for-23

gene-like conditions. These observations hold for general interaction param-24

eters and allow to infer generic patterns of the dynamics. Our results suggest25

that experimentally inferred dynamical patterns of host-parasite coevolution26

should typically be much more complex than the popular illustrations of27

Red Queen dynamics. A single parasite that infects more than one host can28

substantially alter the cyclic dynamics.29

Running Head: Constant versus changing population size30

Keywords: matching-allele, gene-for-gene, Lotka-Volterra equation, Replicator31

Dynamics, Red Queen hypothesis, stability analysis32
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1 Introduction33

The antagonistic interaction between hosts and their parasites are of particular in-34

terest in ecology and evolution because they are ubiquitous and usually associated35

with high selection pressure that affects numerous life history traits. Because of36

the negative effect of parasites on host fitness, the study of these interactions is37

of central importance in biomedical (Woolhouse et al., 2002, 2005), agricultural38

(Van der Plank, 1984; Gladieux et al., 2011) and species conservation research39

(Altizer et al., 2003; Thompson et al., 2010). The exact dynamics are usually eval-40

uated with the help of mathematical models. Among these, the models including41

an explicit genetic description of host-parasite interaction, such as gene-for-gene42

(GfG) and matching-allele (MA) models, are particularly widespread. Genetic43

interaction is usually incorporated by taking into account the current understand-44

ing of resistance-infectivity patterns in biological systems. The gene-for-gene45

(GfG) model was proposed by Flor (1956) to capture disease resistance patterns46

in plants. Here, a host individual carrying a resistance gene can recognize par-47

asites harboring the corresponding avirulence product and trigger a defense re-48

sponse averting the infection (Jones and Dangl, 2006). Inspired by self-nonself49

recognition in immune systems (Grosberg and Hart, 2000), the matching-allele50

(MA) model was introduced to reflect host-pathogen interactions in animals. In51
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this case, parasites carrying a certain allele can only invade host individuals with52

the corresponding allele. By combining predictive power of mathematical mod-53

eling and their connection to the empirical data, these models successfully served54

to understand key evolutionary problems. To mention only the most important55

examples, these models were used to assess the Red Queen hypothesis for the56

evolution of sexual reproduction (Lively, 2010), the maintenance of genetic diver-57

sity by parasite-mediated selection (Lively and Apanius, 1995), and the role of the58

cost of resistance/virulence in coevolution (Leonard, 1977; Parker, 1994).59

Agrawal and Lively (2002) developed a general model that interpolates be-60

tween a pure matching-allele model and a pure gene-for-gene model, as a single61

parameter is tuned between 0 and 1. This model was introduced for haplotypes62

of two loci with mutation and recombination. Variance in host and parasite allele63

frequency was plotted as an evaluation of the time discrete dynamics. The highly64

dynamical aspects of matching-allele models were observed across most of the65

MA-GfG continuum. Agrawal and Lively showed that cyclic dynamics of host66

and parasite genotypes is observed not only in the MA model, but also in all the67

intermediate models and in the GfG model. This finding indicates that the Red68

Queen theory for the evolution of sex does not hinge upon the use of a particular69

model for host parasite interactions. However, this study was computational and70
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only performed for particular parameter sets due to the complexity of the model.71

Instead of tackling the dynamics from an analytical perspective to allow for gen-72

eral statements for all parameter sets, subsequent theoretical approaches have in-73

creased complexity of the assumed interaction in order to increase the biological74

realism, for instance by defining a multi-locus model that deals with various com-75

binations of MA loci and GfG loci (Agrawal and Lively, 2003).76

The aim of our study is to improve our understanding of host-parasite coevo-77

lution by focusing on an analytical characterization of the involved dynamics. We78

investigate both the impact of different types of interaction and the consequence of79

interaction-dependent population size changes. We simplify the model of Agrawal80

and Lively and focus on a single locus to keep interaction among loci from inter-81

fering with the conclusion, in particular the differences between the GfG model82

(Tellier and Brown, 2007a) and the MA model (Sardanyés and Solé, 2008). We83

use the assumptions of Agrawal and Lively (2002) inspired by Parker (1994) to84

connect the two popular models by a single parameter, but also provide an alter-85

native, linear interpolation in the discussion. To enhance clarity, we focus on a86

system with two host and two parasite genotypes and use their interaction to char-87

acterize the involved evolutionary dynamics. In addition, we depart from the usual88

assumption of constant population size and apply the Lotka-Volterra equations to89
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acknowledge inter-dependent population dynamics during host-parasite coevolu-90

tion. To compare the dynamics with a model assuming constant population den-91

sity, we apply the Replicator Dynamics with the same interaction matrix between92

hosts and parasites. While the dynamics between the two models is different, it93

seems to be crucial to understand both constant as well as changing population94

size, as there are biological examples for both of them.95

We conducted a linear stability analysis at the interior fixed point of the result-96

ing nonlinear dynamical system, which indicates critical differences in dynamical97

patterns between the models of host-parasite coevolution. Either with constant or98

with changing population density, the population densities oscillate with a single99

frequency in a pure MA model. In a model deviating from MA, a second oscil-100

lation frequency arises with changing population density, but not with constant101

population size.102

2 Model103

We consider haploid hosts and parasites with two alleles on a single locus. Hence,104

there are two host types and two parasite types that are denoted by H1, H2, P1,105

and P2, respectively. In the simplest case, each parasite type can only infect the106
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corresponding host type. Hence, no host/parasite type is superior to the other.107

This case corresponds to the matching-allele model, which under the assumption108

of constant population density is equivalent to the evolutionary game of matching109

pennies (Hofbauer and Sigmund, 1998; Traulsen et al., 2005).110

In a GfG model, the virulent parasite P2 can potentially infect both hosts,111

the one with susceptible allele H1 and the one with resistance allele H2. Yet,112

the avirulent parasite P1 can only infect the susceptible host H1, as the host H2113

with the resistance allele can prevent infection by P1. Thus, there is an advantage114

to the virulent parasite and the resistant host. To maintain the different types in115

the population, intrinsic costs of virulence and resistance have been suggested116

(Leonard, 1994).117

Fig. 1 illustrates the fitness of the two parasites on each host for the MA and118

the GfG model and also for two intermediate cases, where the parasite P2 can119

“partially” infect the hostH1.120

We simplified the model of Agrawal and Lively (2002) by regarding only one121

locus. The interactions between hosts and parasites can be expressed with two122

matrices (corresponding to a bi-matrix game in evolutionary game theory). For123

the parasite, we assume that the interactions with the hosts increase birth rates.124

The fitness effects arising from the interactions of the parasite with the host are125
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given by the matrix126

Mp =


H1 H2

P1 σ 0

P2 α(1− ακ)σ (1− ακ)σ

 . (1)

The maximum virulence of the parasite is given by σ. The parameter κ describes127

the cost for the parasite virulence, as usually assumed in the GfG model. This128

model interpolates between the MA and the GfG model as the parameter α is129

varied between 0 and 1.130

For the host, we assume that these interactions increase the death rate accord-131

ing to the matrix132

Mh =


P1 P2

H1 −σ −α(1− ακ)σ

H2 −αγ (1− αγ)(1− (1− ακ)σ)− 1

, (2)

where the parameter γ describes the cost for the host resistance.133

We assume a large population size and focus on the change in population134

densities. The population densities of the two host and two parasite types are135

given by h1, h2, p1, and p2, respectively. The population dynamics of the hosts136

and parasites can be captured by a set of differential equations,137
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ḣ1 = h1(bh + dH1)

(3a)

ḣ2 = h2(bh + dH2)

ṗ1 = p1(bP1 − dp)
(3b)

ṗ2 = p2(bP2 − dp) ,

where bh is the birth rate of both hosts, and dp is the death rate of both parasites.138

As discussed above, the death rates of the hosts and the birth rates of the parasites139

are directly affected by host-parasite interactions. From the interaction matrices140

Eqs. (1) and (2), the death rates for the hosts and the birth rates for the parasites141

are given by142

dH1 =Mh
11p1 +Mh

12p2 = −σ p1 − α(1− ακ)σ p2

(4a)

dH2 =Mh
21p1 +Mh

22p2 = −αγ p1 + ((1− αγ)(1− (1− ακ)σ)− 1) p2

bP1 =Mp
11h1 +Mp

12h2 = σ h1

(4b)

bP2 =Mp
21h1 +Mp

22h2 = α(1− ακ)σ h1 + (1− ακ)σ h2

We will choose the host birth rate bh and parasite death rate dp in two distinct143
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ways. Our first approach assumes constant values for bh and dp, which leads to a144

host/parasite population that is changing in size. This corresponds to the standard145

Lotka-Volterra dynamics. The second approach focuses on relative abundances146

of host and parasite alleles and implies a normalization of the population size.147

This corresponds to the Replicator Dynamics in evolutionary game theory, which148

implies constant population size in our context.149

Changing population size induced by interactions150

With constant host birth rate bh and parasite death rate dp, inserting the host para-151

site interactions Eqs. (4) into the dynamical system Eqs. (3) leads to152

ḣ1 = h1 (bh − p1σ − p2α(1− ακ)σ)

(5a)

ḣ2 = h2 (bh − p1αγ − p2 ((1− αγ)(1− ακ)σ + αγ))

ṗ1 = p1(σh1 − dp)
(5b)

ṗ2 = p2 (σ (h1α(1− ακ) + h2(1− ακ))− dp) .

This model results in changes in the population sizes of both hosts and parasites.153

In particular, the changes are caused by the antagonistic interactions between the154

hosts and the parasite - as a consequence of the Lotka-Volterra relationship.155
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Constant population size156

To obtain a model of constant population size that is comparable to the one de-157

scribed above, we retain the interaction matrices and adjust the host birth rate and158

parasite death rate to maintain the population size. Requiring constant h1+h2 and159

constant p1 + p2 implies ḣ1 + ḣ2 = 0 as well as ṗ1 + ṗ2 = 0. This leads to160

bh = −h1dH1 + h2dH2

h1 + h2
(6a)

dp =
p1bP1 + p2bP2

p1 + p2
. (6b)

The normalization h1 +h2 = 1 implies that a single equation for h1 is sufficient to161

describe the dynamics for the host. Similarly, due to the normalization p1+p2 = 1162

the parasite dynamics are fully captured by tracking p1. Applying the dynamical163

host birth and parasite death rates in the dynamical system Eqs. (3), the equations164

become identical to the Replicator Dynamics (RD) (Hofbauer and Sigmund, 1998;165

Taylor and Jonker, 1978; Schuster and Sigmund, 1983),166

ḣ1 = h1(1− h1)(dH1 − dH2) (7a)

ṗ1 = p1(1− p1)(bP1 − bP2) . (7b)
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While the death rates of the host still depend on the parasites and the birth rates167

of the parasites still depend on the hosts, the dynamics of this system is in gen-168

eral less complex than in the case of changing population size, as it is only two-169

dimensional.170

3 Population dynamics171

To obtain first information about the population dynamics, we calculated the tra-172

jectories of the system numerically for a particular set of parameters. In addition,173

we identify the fixed points of the differential equations and study their stabil-174

ity to gain insight into the coevolutionary dynamics for all parameter sets. More175

specifically, we can use a linear stability analysis of the unique interior fixed point176

to infer the dynamical patterns arising in this system (Strogatz, 2000; Tellier and177

Brown, 2007a). Finally, we also assess constants of motion.178

3.1 Numerical solution of the dynamics179

To illustrate the differences in the population dynamics described in Eqs. (5) and180

(7), we show numerical solutions side by side in Fig. 2.181

The dynamics in models with constant host and parasite population sizes re-182
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semble the common Red Queen pattern. Under changing population sizes the sys-183

tem is uncoupled into two independent host-parasite pairs in a pure MA model.184

As the model deviates from the MA model with increasing α, the dynamics be-185

comes more complex, since the four population densities of the types P1, P2,H1,186

andH2 are coupled.187

3.2 Stability of boundary fixed points188

The fixed points of the system are the points where all population sizes remain189

constant in time, ḣ1 = ḣ2 = ṗ1 = ṗ2 = 0. The position of the fixed points and190

their stability change with changing parameters.191

For the Lotka-Volterra dynamics, a trivial fixed point is (h1, h2, p1, p2) =192

(0, 0, 0, 0) where both the hosts and parasites are absent, cf. Eqs. (5). Additionally,193

extinction of one host and the associated parasite leads to two further fixed points,194

(h1, h2, p1, p2) = (dp
σ
, 0, bh

σ
, 0) and (h1, h2, p1, p2) = (0, dp

σ(1−ακ) , 0,
bh

αγ(1−σ)+σ(1−ακ(1−αγ))).195

In gene-for-gene-like models, α > 0, the susceptible host H1 and the virulent P2196

can coexist in the absence ofH2 andP1, (h1, h2, p1, p2) = ( dp
ασ(1−ακ) , 0, 0,

bh
ασ(1−ακ)).197

The opposite case, coexistence betweenH2 and P1 in the absence ofH1 and P2 is198

not possible, as our host-parasite interaction model assumes that the birth rate of199

P1 is zero in the absence of H1. A linear stability analysis of the Lotka-Volterra200
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model shows that all boundary fixed points are unstable for αγ < σ. That is, if201

the cost of resistance αγ (which is scaled by the amount of GfG influence) is less202

than the maximum host fitness reduction caused by infection σ, then all host and203

parasite types will coexist.204

The Replicator Dynamic system, Eq. (7), has four fixed points at the bound-205

aries, each is reflecting fixation of one host and one parasite: (h1, p1) = (0, 0),206

(h1, p1) = (1, 0), (h1, p1) = (0, 1), (h1, p1) = (1, 1). A linear stability analysis207

reveals that all these fixed points are unstable.208

3.3 Stability of the interior fixed point209

In addition to the boundary fixed points, the system has a unique fixed point in210

the interior. In the Lotka-Volterra system, we obtain a non-trivial fixed point of211

the four dimensional dynamical system described in Eqs. (5) when αγ < σ. This212

fixed point, where all types coexist, is given by213
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h∗1 =
1

σ
dp

(8a)

h∗2 =
1

σ

1− α(1− ακ)

1− ακ dp

p∗1 =
1

σ

σ(1− α)(1− ακ) + αγ(1− σ(1− ακ)

σ(1− αγ)(1− ακ) + αγ(1− α(1− ακ))
bh

(8b)

p∗2 =
1

σ

(σ − αγ)

σ(1− αγ)(1− ακ) + αγ(1− α(1− ακ))
bh .

For αγ > σ, the resistant host is always disadvantageous because of the high cost214

of the resistance allele (γ). Consequently, extinction of H2 and P2 then becomes215

a stable fixed point. For αγ < σ, h∗1 and h∗2 increase linearly with parasites’216

death rate dp, while p∗1 and p∗2 increase linearly with hosts’ birth rate bh. A linear217

stability analysis of the interior fixed point (see Appendix A for details) shows that218

the equilibrium is neutrally stable. Close to the interior fixed point, the system219

exhibits undamped oscillations. More specifically, the four eigenvalues of the220

Jacobi-matrix are two distinct pairs of complex conjugates without real parts. This221

means there are two distinct oscillation frequencies in the system,222

1

2π

√
bhdp and

m

2π

√
bhdp , (9)
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where223

m =

√
σ(1− α)(1− ακ) + αγ(1− σ(1− ακ))

√
1− α(1− ακ)

√
σ
√
σ(1− αγ)(1− ακ) + αγ(1− α(1− ακ))

√
σ − αγ

(10)

measures the ratio between the two oscillation frequencies. This ratio decreases224

when we move away from the MA interaction model. For α ≈ 0, we find225

m ≈ 1− α
(

1 +
γ

2σ

)
. (11)

In particular, for the MA model both oscillation frequencies collapse into a single226

one. However, all solutions for α > 0 exhibit both of the frequencies (Fig. 3).227

For the Replicator Dynamics system in which the population size is constant,228

the non-trivial fixed point of Eqs. (7) is given by229

h∗1 =
1− ακ

2− ακ− α(1− ακ)
(12a)

p∗1 =
αγ(1− σ(1− ακ)) + σ(1− α)(1− ακ)

σ((1− αγ(1− ακ)) + (1− α)(1− ακ))
. (12b)

A linear stability analysis shows that the interior fixed point is again neutrally230

stable, as the two eigenvalues are a pair of purely imaginary, complex conjugated231

numbers when αγ < σ (see Appendix B for details). Hence, there is only one232
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characteristic oscillation frequency of the dynamical system at the fixed point,233

l =

√
(1− ακ)(1− α(1− ακ))(αγ(1− σ(1− ακ)) + (1− α)σ(1− ακ))√

(1 + (1− α)(1− ακ))(1− αγ(1− ακ) + (1− α)(1− ακ))

√
σ − αγ

2π

(13)

l has a maximum value, σ/(4π), in the pure matching-allele model (α = 0).234

Close to the matching-allele model, α ≈ 0, the oscillation frequency decreases235

with increasing α as236

l ≈ σ

4π
− α

16π
(2 + γ + 2κ)σ . (14)

The solutions around the fixed point exhibit the oscillation frequency described by237

Eq. (13). The trajectories are closed circles as shown on the right side of Fig. 3.238

3.4 Disentangling evolutionary and ecological dynamics239

To clarify the ecological effect on the dynamics, particularly at the interior fixed240

point, we derive the dynamics of the host and parasite population sizes, h = h1 +241

h2 and p = p1 + p2, and the relative abundance of H1 and P1 in the population,242

x = h1/h and y = p1/p, from Eqs. (3). According to Eqs. (3) the differential243

equations for the population sizes of hosts h and parasites p are244
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ḣ = h(pf(x, y) + b) (15a)

ṗ = p(hg(x, y)− d) (15b)

where245

f(x, y) =Mh
11xy +Mh

12x(1− y) +Mh
21(1− x)y +Mh

22(1− x)(1− y) (16)

g(x, y) =Mp
11yx+Mp

12y(1− x) +Mp
21(1− y)x+Mp

22(1− y)(1− x)

and the differential equations for relative abundances ofH1 and P1 are246

ẋ = px(1− x)((Mh
11 −Mh

21)y + (Mh
12 −Mh

22)(1− y)) (17a)

ẏ = hy(1− y)((Mp
11 −Mp

21)x+ (Mp
12 −Mp

22)(1− x)) , (17b)

If f(x, y) and g(x, y) are constant in time Eqs. (15) yield simple Lotka-Volterra247

dynamics, while Eqs. (17) result in Replicator Dynamics with rescaled time if the248

population sizes are kept constant.249

At the interior fixed point one of the oscillation frequencies,
√
bhdp/(2π),250
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results solely from Lotka-Volterra dynamics. The other oscillation frequency251

√
bhdp

2π
m =

√
bhdp

2π

√
(Mh

11 −Mh
21)(Mh

12 −Mh
22)(Mp

11 −Mp
21)(Mp

12 −Mp
22)√

(Mh
11Mh

22 −Mh
12Mh

21)
√

(Mp
11Mp

22 −Mp
12Mp

21)

(18)

(see Eq. (35) in Appendix C) is the product of the oscillation frequency with con-252

stant population size253

l =

√
(Mh

11 −Mh
21)(Mh

22 −Mh
12)(Mp

11 −Mp
21)(Mp

22 −Mp
12)

2π
√

(Mh
11 +Mh

22 −Mh
12 −Mh

21)(Mp
12 +Mp

21 −Mp
11 −Mp

22)
(19)

(see Eq. (39) in Appendix C) and the geometric mean of host and parasite popu-254

lation size
√
h∗ · p∗, i.e.,255

m
√
bhdp

2π
= l
√
h∗ · p∗ , (20)

with256

h∗ =
d(Mp

11 −Mp
12 −Mp

21 +Mp
22)

Mp
11Mp

22 −Mp
12Mp

21

(21a)

p∗ =
b(Mh

12 +Mh
21 −Mh

11 −Mh
22)

Mh
11Mh

22 −Mh
12Mh

21

(21b)

(calculated from Eqs. (32) in Appendix C). Thus, one of the oscillations results257
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purely from ecological interactions, while the other one arises from the combina-258

tion of ecology and evolution in our system.259

3.5 Constants of motion260

The system with constant population size has a constant of motion (Eq. (10.22) in261

(Hofbauer and Sigmund, 1998)) given by262

L = +
(
Mh

12 −Mh
22

)
ln p1 +

(
Mh

21 −Mh
11

)
ln(1− p1) (22)

− (Mp
12 −Mp

22) lnh1 − (Mp
21 −Mp

11) ln(1− h1)

= + (αγ(1− σ(1− ακ)) + (1− α)σ(1− ακ)) ln p1 + (σ − αγ) ln(1− p1)

+ (1− ακ)σ lnh1 + (1− α(1− ακ))σ ln(1− h1).

Due to L̇ = 0, we obtain sustained oscillations for any initial condition, even far263

away from the interior fixed point Eq. (12)264

The case of changing population size is more intricate. In the case of a match-265

ing allele model α = 0, the two equations decouple and we have two independent266

Lotka-Volterra systems with sustained oscillations, characterized by the two con-267
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stants of motion268

L1 = bh ln p1 − σp1 + dp lnh1 − σh1 (23a)

L2 = bh ln p2 − σp2 + dp lnh2 − σh2 . (23b)

While we do not find a constant of motion for the general case of α > 0,269

particular initial conditions can lead to invariants. If the initial condition fulfills270

h1
h2

=
Mp

22 −Mp
12

Mp
11 −Mp

21

and (24a)

p1
p2

=
Mh

22 −Mh
12

Mh
11 −Mh

21

(24b)

which corresponds to a two-dimensional subspace, then there are two constants271

that remain invariant over time,272

L1 = bh ln p1 +Mh
11p1 +Mh

12p2 + dp lnh1 −Mp
11h1 −Mp

12h2 (25a)

L2 = bh ln p2 +Mh
21p1 +Mh

22p2 + dp lnh2 −Mp
21h1 −Mp

22h2. (25b)

Note that with the condition Eq. (24a) the ratio p1/p2 remains constant and with273

the condition Eq. (24b), the ratio h1/h2 remains constant. This shows that the274
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nature of the dynamics in this case does not only depend on the choice of parame-275

ters, but also on the initial state of the system, which in principle leads to a further276

complication for the corresponding experimental systems.277

4 Discussion278

4.1 Short overview279

Host-parasite interactions are acknowledged as a driving evolutionary force pro-280

moting biological diversity and sexual reproduction (Lively and Apanius, 1995;281

Lively, 2010), with the MA and GfG model being the most popular models to282

describe the genetic interaction for coevolving hosts and parasites (Frank, 1993b;283

Otto and Michalakis, 1998; Lively, 2009; Gokhale et al., 2013; Luijckx et al.,284

2013; Clay and Kover, 1996; Brown and Tellier, 2011). Despite a number of im-285

portant insights provided within their framework, the generality of findings often286

suffers from the complexity of the models employed and, as a consequence, the287

difficulty to fully understand them analytically (Bergelson et al., 2001).288

In this study, we present a very general yet parsimonious model of host-289

parasite coevolution spanning from MA to GfG with either constant or interaction-290

driven changing population size. Derived analytical solutions revealed that the291
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coevolution dynamics differs qualitatively between the models with constant and292

changing population sizes. Apart from the pure MA situation, the well known293

Red Queen dynamics with trajectories on closed circles is only observed in mod-294

els with constant population size. This implies that the patterns of host-parasite295

dynamics to be expected in real biological systems can be much more intricate296

than suggested by the most popular theoretical models.297

4.2 Main results and analytical solution298

Our study is based on a simplification of the model suggested by Agrawal and299

Lively (2002) that explores a continuum between the MA and GfG models. We300

study the model in the context of haplotypes with a single locus, but relax the301

restriction to constant population size. With a coevolutionary system of two host302

and two parasite types we achieved an analytical characterization across the en-303

tire parameter space. To study ecological effects caused by the victim-exploiter304

interaction (Tellier and Brown, 2007b) between hosts and parasites, we consider305

models with changing population size aside of models with constant population306

size. Under the assumption of constant population size, the dynamics in MA and307

GfG models appear to be very similar, both showing sustained oscillations with308

only one oscillation frequency. Yet, introducing changing population size accord-309
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ing to the Lotka-Volterra equations, we obtain distinct patterns of the population310

dynamics. For changing population sizes, a single oscillation frequency is present311

only in the MA model. An additional oscillation frequency arises for all other312

points on the MA-GfG continuum in that case. In other words, changing popula-313

tion size leads to a much more complex dynamics in GfG-like models, but not in314

the pure MA model.315

In Gokhale et al. (2013) the analysis of allele fixation time for the MA model316

revealed that Lotka-Volterra dynamics in combination with the associated stochas-317

tic effects quickly break down the Red Queen circle. As the dynamics in GfG-like318

models take a completely different nature with changing population size, the in-319

fluence of Lotka-Volterra dynamics on the Red Queen circle is yet unclear and320

remains to be assessed in more detail in the future, especially as our current anal-321

ysis did not take stochastic effects into account.322

4.3 Generality of results323

To test the generality of our findings we additionally analyzed the interaction ma-324

trix suggested by Parker (1994) (Eqs. (36)). There a factor that denotes the fitness325

reduction of the avirulent parasite encountering the resistant host and an advan-326

tage of the virulent parasite meeting the resistant host are assumed in addition.327
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These two parameters together with the costs of resistance and virulence deter-328

mine whether the model is MA or GfG. Again we obtain two distinct oscillation329

frequencies for the population dynamics with changing population sizes in GfG-330

like models (the ratio is shown in Eq. (37) in the Appendix C).331

Despite the convincing biological relevance of the interaction matrix elements332

in (Agrawal and Lively, 2002), they do not change monotonically on the MA-GfG333

continuum, e.g., with a cost of virulence κ > 0.5,Mp
21 in Eq. (1) first increases334

then decreases as α increases from 0 to 1. As an alternative interpolation, we335

therefore also considered interaction matrices that describe a linear transition from336

MA to GfG model, such that337

Mh =


P1 P2

H1 −σ −α(1− κ)σ

H2 −αγ −αγ − (1− ακ)σ

 (26a)

Mp =


H1 H2

P1 σ 0

P2 α(1− κ)σ (1− ακ)σ

 . (26b)

The analysis in Appendix D shows that our conclusion also holds for the linear338
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interpolation. One should keep in mind that both MA and GfG models and even339

the intermediate models proposed by Parker or Agrawal & Lively or us are only340

a small subset of the possible models for host-parasite interaction. An observa-341

tion that will hold for any such model is that as long as the population sizes are342

kept constant, the population dynamics follows a closed circle with a single os-343

cillation frequency. However, with changing population size a second oscillation344

frequency arises when the model become GfG-like, which can lead to much more345

intricate dynamics. For a pure MA model or an inverse MA model (where the346

diagonal instead of the off-diagonal matrix elements are zero), there still is only347

one oscillation frequency (see Eqs. (35) in Appendix C).348

4.4 Impact of eco-evo feedback in genetically explicit models349

In the last two decades it has been realized that evolutionary changes can be faster350

than previously thought and, thus, occurring on the same time-scale as ecological351

interactions, especially in case of coevolving hosts and parasites (Hendry and Kin-352

nison, 1999; Thompson, 1998; Hairston et al., 2005; Schoener, 2011). Population353

dynamics can influence the pace of coevolution via so called eco-evolutionary354

feedbacks, or even give rise to a new type of coevolutionary dynamics as we355

showed in our study. Interestingly enough, a comprehensive part of the theoretical356
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studies on eco-evolutionary feedbacks is conducted within the framework of game357

theory and adaptive dynamics (Hofbauer and Sigmund, 1998; Dieckmann, 2002).358

In contrast to our model, these approaches usually do not include an explicit def-359

inition of genetic interaction between the species, which limits their application360

for interpreting patterns of genetic variability in natural populations (Day, 2005).361

Rapid changes in genetic composition may lead to perturbation in host demog-362

raphy and disease dynamics, as was observed for the myxoma virus epidemic363

in Australian populations of European rabbit (Fenner and Fantini, 1999). Ge-364

netic adaptation can improve overall population fitness and ”buffer” the unfavor-365

able impact of pathogens (evolutionary rescue) (Gomulkiewicz and Holt, 1995).366

However population perturbations may constrain adaptability, for example, via en-367

hancing inbreeding, affecting trait heritabilities and disturbing allele composition368

irrespective of natural selection (O’Brien and Evermann, 1988; Lande, 1988; Go-369

mulkiewicz and Houle, 2009; Saccheri and Hanski, 2006). Thus, models account-370

ing simultaneously for the genetic basis of host-parasite interaction and associated371

population dynamics may be necessary to fully understand ongoing coevolution372

among species and the effect it would have on genetic diversity. We are aware of373

only a few such models (Frank, 1991, 1993a; Gandon et al., 1996; Quigley et al.,374

2012; Gokhale et al., 2013; Ashby and Gupta, 2014), and most of them confirm375
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that ecological parameters can have a very strong effect on coevolution.376

4.5 Implications for maintenance of genetic diversity377

Numerous field studies identified the presence of comprehensive heritable varia-378

tion in resistance-infectivity patterns for plant and animal populations and their re-379

spective pathogens, suggesting that coevolution acts to maintain genetic diversity380

(Van der Plank, 1984; Thompson and Burdon, 1992; Lively and Apanius, 1995;381

Carius et al., 2001; Wilfert and Jiggins, 2010; Luijckx et al., 2012). However,382

already the first studies, which attempted to explain such variation by cycling dy-383

namics, encountered the problem of stability. This is especially true for the GfG384

model as a parasite with the virulent allele would be quickly fixed, unless hav-385

ing a cost of virulence (Jayakar, 1970; Leonard, 1977; Van der Plank, 1984). In386

addition to the cost, other factors have been examined for their potential role in387

maintaining variation, including epidemiological feedback (May and Anderson,388

1983; Ashby and Gupta, 2014), spatial structure (Frank, 1993a; Gandon et al.,389

1996; Thrall and Burdon, 1997, 2002), genetic drift (Salathé et al., 2005), dif-390

fuse multi-species coevolution(Karasov et al., 2014), models with multiple alleles391

and multiple loci (Sasaki, 2000; Salathé et al., 2005; Tellier and Brown, 2007a).392

Several studies proposed that multiple factors need to act jointly for long-term393
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coexistence of multiple resisto- and infectotypes (Bergelson et al., 2001). The394

view of a multifactorial basis of the maintenance of diversity creates an additional395

challenge for theoretical and empirical studies to disentangle them. As opposed to396

that, Tellier and Brown (2007b) presented a simple GfG framework showing that397

the general condition for stability is the presence of direct frequency-dependent398

selection (where fitness of an allele declines with increasing frequency of that399

allele itself). In this context, the distinction is made between direct frequency400

dependence and indirect frequency-dependent selection where fitness is mediated401

by the frequency of the corresponding antagonist. Direct frequency-dependent402

selection can be introduced in the model by incorporation of epidemiological or403

ecological factors (Brown and Tellier, 2011, Table 1). If we introduce a direct404

frequency-dependent element by applying competitive Lotka-Volterra equations405

or the concept of empty spaces (Hauert et al., 2006) (implying the existence of a406

carrying capacity) into our model, the neutrally stable interior fixed point becomes407

stable. Instead of forming tori or moving along closed circles, the deterministic408

trajectory spirals inwards. In this case, the oscillation of allele frequencies lasts409

longer in stochastic simulations, hence the polymorphic state is more stable.410

The stability analysis derived the condition for coexistence αγ < σ, suggest-411

ing that departing from the GfG end of the continuum would increase a range of412
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parameters at which the oscillation of allele frequencies is maintained. Therefore,413

patterns of ”partial” infectivity by a virulent parasite are more likely to result in414

cycling dynamics compared to a pure GfG situation. Agrawal and Lively (2002)415

came to the same conclusion by evaluating computational simulations. This rein-416

forces the importance of exploring dynamics for intermediate points on the MA-417

GfG continuum, especially as experimental studies provide some examples of418

such types of interaction (Garcı́a-Arenal and Fraile, 2013). In contrast to (Tellier419

and Brown, 2007b) and many other studies (Agrawal and Lively, 2002; Thrall420

and Burdon, 2002; Tellier and Brown, 2007a), our model is implemented on a421

continuous time-scale and, therefore, covers host and parasite systems with over-422

lapping generations. Interestingly, it has been proposed that models with discrete423

generations would favor coevolutionary cycling by synchronizing ecological and424

epidemiological processes (Ashby and Gupta, 2014), while in (Tellier and Brown,425

2007b) the condition for stable cycling is more restrictive for discrete generations426

when compared to the continuous model.427
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5 Summary428

In summary, we have shown that only a small and possibly biased subset of pos-429

sible host-parasite interaction dynamics is captured by the mathematical models430

that assume fixed population size or particular genetics for the interaction, such431

as the MA model. Even in a simple model that allows for a full analytical de-432

scription, the dynamics can vary substantially between subsequent coevolutionary433

cycles. We showed analytically that the complex dynamics found for changing434

population sizes is not a result of choosing a particular interaction matrix. The435

complex pattern is not limited to the set of models considered here, but rather a436

general property of models beyond fixed population size. Our findings highlight437

the importance of the interconnectedness between coevolution and population dy-438

namics, and its potential role in understanding the generation and maintenance of439

genetic variation.440
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Figure 1: Fitness of avirulent parasiteP1 and virulent parasiteP2 on the two hosts
H1 and H2 for the matching-allele model (α = 0, top), the gene-for-gene model
(α = 1, bottom), and two intermediate models (α = 1/3 and α = 2/3). Gray
areas represent the fitness reduction for P2 due to the cost of virulence κ = 1/2,
which is ακσ in H2 (Eq. (1b)), hence, σ/2 in GfG model. In H1 the fitness
reduction for P2 due to the cost of virulence is α2κσ.
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Lotka-Volterra Replicator Dynamics
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Figure 2: Example of population dynamics based on the Lotka-Volterra equa-
tions (left) and the Replicator Dynamics (right). While the dynamics on the right
side resembles the common Red Queen pattern, the left side is more complex. In
a pure matching-allele model (top), the plot on the left shows two independent
sets of Lotka-Volterra dynamics, one for H1 and P1 (blue and red solid lines,
correspondingly) and a second one for H2 and P2 (blue and red dotted lines).
As the model deviates from MA model with increasing α (rows 2-4) more com-
plicated dynamics arise, since the four population densities of H1, H2, P1, and
P2 are coupled (parameters γ = 0.005, κ = 0.5, and σ = 0.01 for both Lotka-
Volterra and Replicator Dynamics. Host birth rate bh = 1.5 and parasite death rate
dp = 1.0 in the Lotka-Volterra case. Initial population densities h1 = p1 = 150,
h2 = p2 = 50).

45

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 9, 2014. ; https://doi.org/10.1101/012435doi: bioRxiv preprint 

https://doi.org/10.1101/012435


↵ = 1 (GfG)

↵ = 0 (MA)

↵ = 2/3

↵ = 1/3

Lotka-Volterra
- Fluctuating pop sizes -

Replicator Dynamics
- Constant pop sizes -

 90

 100

 110

 140  150  160

 90

 100

 110

 100  110  120

 90

 100

 110

 90  100  110

 90

 100

 110

 90  100  110

H2

H1

H1

H2

H2

H1

H1

H2

P1

 90

 100

 110

 140  150  160

 70

 80

 90

 100

 120  130  140  150

 80

 90

 100

 110  120  130

 90

 100

 110

 90  100  110

P2

 70

 80

 90

 100

 110

 120

 100  120  140  160

MA to GfG

 0.45

 0.5

 0.55

 0.45  0.5  0.55

 0.5

 0.55

 0.6

 0.4  0.45  0.5

 0.5

 0.55

 0.6

 0.4  0.45  0.5

 0.45

 0.5

 0.55

 0.45  0.5  0.55

P1

H1

H1

H1

H1

 0.45

 0.5

 0.55

 0.6

 0.4  0.45  0.5  0.55

MA to GfG

P1, P2

H1, H2

P1

H1

Figure 3: Trajectories close to the interior fixed points (black points) on the h1 − p1 plane (dark
green solid lines both for LV and RD equations) and the h2−p2 plane (light green dashed lines LV
only). The black crosses mark the initial conditions. The black rectangle represent a special set
of initial condition while the black solid/dashed lines show the corresponding trajectories. With
Replicator Dynamics the h1 − p1 trajectory is a closed circle. With Lotka-Volterra dynamics,
the trajectories are closed circle when the initial conditions fulfill Eq. (24) (black lines). For the
closed circles (black in LV and green in RD) the initial host population densities, h1 and h2 are
5% above the corresponding fixed point, while the parasite population densities are 5% beneath
the fixed point. Except for α = 0 (MA) the green trajectories with LV resemble tori instead of
closed circles, an implication for two oscillation frequencies. To show the shift of the interior fixed
point as α increases from 0 to 1, the trajectories are plotted all in the same coordinate system at
the bottom. 46
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A Stability of the interior fixed point in the Lotka-645

Volterra dynamics646

In order to analyse the system at the interior fixed point (h∗1, h
∗
2, p
∗
1, p
∗
2), we first647

linearise the system around this point. For general points (h1, h2, p1, p2), the lin-648

earised system is given by by the Jacobian matrix J(h1, h2, p1, p2) =649



bh−p1σ−p2α(1−ακ)σ 0 −h1σ −h1α(1−ακ)σ

0 bh−p1αγ+p2((1−αγ)(1−(1−ακ)σ)−1) −h2αγ h2((1−αγ)(1−(1−ακ)σ)−1)

p1σ 0 h1σ−dp 0

p2α(1−ακ)σ p2(1−ακ)σ 0 (h2(1−ακ)+h1α(1−ακ))σ−dp


.

At the interior fixed point (h∗1, h
∗
2, p
∗
1, p
∗
2), we have J(h∗1, h

∗
2, p
∗
1, p
∗
2) =650



0 0 −dp dpα(ακ−1)

0 0
dpαγ(α(ακ−1)+1)

(ακ−1)σ

dp(α(ακ−1)+1)(αγ+(αγ−1)(ακ−1)σ)

(ακ−1)σ

bh(αγ+(γα+α−1)(ακ−1)σ)

αγ(α(ακ−1)+1)+(αγ−1)(ακ−1)σ
0 0 0

bhα(1−ακ)(σ−αγ)
αγ(α(ακ−1)+1)+(αγ−1)(ακ−1)σ

bh(1−ακ)(σ−αγ)
αγ(α(ακ−1)+1)+(αγ−1)(ακ−1)σ

0 0


.

(27)

The eigenvalues of this matrix determine linear stability at the fixed point (Stro-651

gatz, 2000). If there is at least one eigenvalue with positive real part, the point652

would be unstable. If all eigenvalues have negative real parts, the point would be653
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stable. In our case, the four eigenvalues are654

Λ1,2 = ±i
√
bhdp and (28)

Λ3,4 = ±
√
bhdp

√
σ(1− α)(1− ακ) + αγ(1− σ(1− ακ))

√
1− α(1− ακ)

√
σ
√
σ(1− αγ)(1− ακ) + αγ(1− α(1− ακ))

√
αγ − σ,

Except the term
√
αγ − σ, the remaining factors in in Λ3,4 are positive. For αγ >655

σ, allele H1 is always beneficial. Consequently, the fixed point is unstable as one656

of the eigenvalues Λ3 or Λ4 is positive. For αγ < σ, the fixed point is a center657

with neutral stability as all eigenvalues are purely imaginary. Only the case of658

αγ < σ is of further interest in this manuscript, as the result is straightforward in659

the opposite case.660

B Stability of the interior fixed point in the Replica-661

tor Dynamics662

For the system with constant population size, the Jacobian matrix in general is663

J(h1, p1) =664

 (1−2h1)(α(γ−σ(1−p1)(γ+(−γα−α+1)κ+1))−2p1σ+σ) σh1(1−h1)(−κ(γ+1)α2+(γ+κ+1)α−2)

σp1(1−p1)(−(1−α)κα−α+2) σ(1−2p1)(h1(−κ(1−α)α−α+2)+ακ−1)

 .
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At the interior fixed point (h∗1, p
∗
1), the matrix is given by J(h∗1, p

∗
1) =665


0

(ακ−1)((γ+1)κα2−(γ+κ+1)α+2)(α(ακ−1)+1)σ

((α−1)κα−α+2)2

− ((α−1)κα−α+2)(αγ−σ)(αγ+(γα+α−1)(ακ−1)σ)

((γ+1)κα2−(γ+κ+1)α+2)2σ
0

 .

(29)

The eigenvalues are666

Λ1,2 = ∓i
√

(1− ακ)(1− α(1− ακ))(αγ(1− σ(1− ακ)) + (1− α)σ(1− ακ))√
(1 + (1− α)(1− ακ))(1− αγ(1− ακ) + (1− α)(1− ακ))

√
σ − αγ .

(30)

For αγ < σ, the eigenvalues are purely imaginary, hence, the fixed point is a667

neutral center.668

C Stability of the interior fixed point for general in-669

teraction matrices670

The appearance of the second oscillation frequency at the interior fixed point in671

gene-for-gene-like models with changing population sizes does not depend on the672

exact choice of the interaction matrices in Eq. (2). To show this, we recalculate673

the interior fixed point and apply linear stability analysis on interaction matrices674
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of a general form,675

Mh =


P1 P2

H1 Mh
11 Mh

12

H2 Mh
21 Mh

22

 (31a)

Mp =


H1 H2

P1 Mp
11 Mp

12

P2 Mp
21 Mp

22

 . (31b)

The interior fixed point for our host parasite system with Lotka-Volterra dynamics676

(Eq. (3)) is then677

h∗1 =
Mp

12 −Mp
22

Mp
12Mp

21 −Mp
11Mp

22

dp

(32a)

h∗2 =
Mp

21 −Mp
11

Mp
12Mp

21 −Mp
11Mp

22

dp

p∗1 =
Mh

12 −Mh
22

Mh
11Mh

22 −Mh
12Mh

21

bh

(32b)

p∗2 =
Mh

21 −Mh
11

Mh
11Mh

22 −Mh
12Mh

21

bh .
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The Jacobian matrix at any defined point is J(h1, h2, p1, p2) =678



bh+Mh
11p1+Mh

12p2 0 h1Mh
11 h1Mh

12

0 bh+Mh
21p1+Mh

22p2 h2Mh
21 h2Mh

22

Mp
11p1 Mh

12p1 −dp+h1Mp
11+h2M

p
12 0

Mp
21p2 Mp

22p2 0 −dp+h1Mp
21+h2M

p
22

 . (33)

At the interior fixed point (h∗1, h
∗
2, p
∗
1, p
∗
2), we now have679

J(h∗1, h
∗
2, p
∗
1, p
∗
2) =

0 0
Mh

11(M
p
12−M

p
22)dp

Mp
12M

p
21−M

p
11M

p
22

Mh
12(M

p
12−M

p
22)dp

Mp
12M

p
21−M

p
11M

p
22

0 0
Mh

21(M
p
11−M

p
21)dp

Mp
11M

p
22−M

p
12M

p
21

Mh
22(M

p
11−M

p
21)dp

Mp
11M

p
22−M

p
12M

p
21

Mp
11(M

h
12−M

h
22)bh

Mh
11M

h
22−M

h
12M

h
21

Mp
12(M

h
12−M

h
22)bh

Mh
11M

h
22−M

h
12M

h
21

0 0

Mp
21(M

h
21−M

h
11)bh

Mh
11M

h
22−M

h
12M

h
21

Mp
22(M

h
21−M

h
11)bh

Mh
11M

h
22−M

h
12M

h
21

0 0


. (34)

There are four eigenvalues680

Λ1,2 = ±i
√
bhdp and (35)

Λ3,4 = ±i
√
bhdp

√
(Mh

11 −Mh
21)(Mh

12 −Mh
22)(Mp

11 −Mp
21)(Mp

12 −Mp
22)√

(Mh
11Mh

22 −Mh
12Mh

21)
√

(Mp
11Mp

22 −Mp
12Mp

21)
.

It is often assumed that (i)Mh
11 <Mh

21 ≤ 0 (H2 is beneficial if there is only P1681

in the population), (ii)Mh
22 < Mh

12 ≤ 0 (H1 is beneficial if there is only P2 in682

the population), (iii)Mp
11 >Mp

21 ≥ 0 (P1 is beneficial if there is only H1 in the683
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population), and (iv)Mp
22 >Mp

12 ≥ 0 (P1 is beneficial if there is only H1 in the684

population). With these minimal assumptions the eigenvalues are pure imaginary,685

i.e., the interior fixed point is a neutrally stable center. The ratio between the686

eigenvalues, which determines the oscillation frequencies at the center, differs in687

different interaction models. For example, in Parker (Parker, 1994) the interaction688

matrices for haploid types are689

Mh =


P1 P2

H1 −σ −(1− κ)σ

H2 −γ − σ(1− τ) −σ(α− κ+ 1)− γ

 (36a)

Mp
i,j =


H1 H2

P1 σ σ(1− τ)

P2 (1− κ)σ σ(1 + α− κ)

 , (36b)

where the notations a, c, k, t, and s in (Parker, 1994) are changed to α, γ, κ,690

τ , and σ, respectively. According to Parker (1994), the fitness of the “narrowly691

virulent pathogen” P1 is reduced by a factor τ by interacting with the resistant692

host H2; a fitness penalty κ (the cost of virulence) is inflicted on the “broadly693

virulent pathogen” P2 independent of which host it exploits; α the “advantage of694
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adapted pathogens on resistant host” measures a special advantage of P2 on H2;695

a fitness penalty γ (the cost of resistance) is paid by the resistant host H2. When696

τ = κ = α = 1 and γ = 0 the fitnesses conform to the pattern of pure MA697

model. When τ = 1 and α = 0 the fitnesses revert to a pure GfG pattern. The698

ratio between the two oscillation frequencies at the interior fixed point is699

m =

√
κ
√
ασ + γ

√
α− κ+ τ

√
στ − γ

√
σ
√
α− κτ + τ

√
σ(α− κτ + τ) + γκ

. (37)

The ratio is 1 for pure MA model. With a set of parameter used in (Parker, 1994),700

α = 0.33, γ = 0, κ = 0.05, and σ = τ = 1 the ratio is about 0.1.701

The same method can be applied for the system with constant population size.702

There the interior fixed point expressed by the general interaction matrices ele-703

ments is704

h∗1 =
Mp

22 −Mp
12

Mp
11 +Mp

22 −Mp
12 −Mp

21

(38a)

p∗1 =
Mh

22 −Mh
12

Mh
11 +Mh

22 −Mh
12 −Mh

21

, (38b)

while h∗2 = 1− h∗1 and p∗2 = 1− p∗1. The eigenvalues of the Jacobian matrix at the705

interior fixed point are706
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Λ1,2 = 0 and (39)

Λ3,4 = ±i
√
− (Mh

11 −Mh
21)(Mh

22 −Mh
12)(Mp

11 −Mp
21)(Mp

22 −Mp
12)

(Mh
11 +Mh

22 −Mh
12 −Mh

21)(Mp
11 +Mp

22 −Mp
12 −Mp

21)

Hence, there only is one oscillation frequency at the interior fixed point in mod-707

els with constant population size, regardless of the specific assumption for the708

interaction matrices.709

D Linear interpolation between MA and GfG mod-710

els711

Alternatively to the models of Agrawal and Lively (2002) and Parker (1994), one712

could also use a linear interpolation between MA and gene-for-gene model, where713

the matrix elements linearly spans over the values of the two models as a single714

parameter α varies between 0 and 1715

Mh =


P1 P2

H1 −σ −α(1− κ)σ

H2 −αγ −αγ − (1− ακ)σ

 (40a)
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Mp =


H1 H2

P1 σ 0

P2 α(1− κ)σ (1− ακ)σ

 . (40b)

The fixed point with Lotka-Volterra dynamics is then716

h∗1 =
1

σ
dp

(41a)

h∗2 =
1− α(1− κ)

σ(1− ακ)
dp

p∗1 =
α(γ − σ) + σ

σ(αγ(1− α(1− κ)) + σ(1− ακ))
bh

(41b)

p∗2 =
σ − αγ

σ(αγ(1− α(1− κ))− σ(1− ακ))
bh ,

and the eigenvalues of the Jacobian matrix at this point are717

Λ1,2 = ±i
√
bhdp and (42)

Λ3,4 = ±i
√
bhdp

√
1− α(1− κ)

√
(σ − αγ)(αγ + (1− α)σ)

√
σ
√
αγ(1− α(1− κ)) + σ(1− ακ)

.

As long as αγ < σ the ratio m = Λ3,4/Λ1,2 increases with increasing cost of718
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virulence κ while m decreases with increasing α. For α ≈ 0, we find719

m ≈ 1− α(γ + 2(1− κ)σ)

2σ
. (43)

Hence, there are always two distinct oscillation frequencies at the interior fixed720

point in gene-for-gene-like models with changing population size.721

With Replicator Dynamics the interior fixed point is722

h∗1 =
1− ακ
2− α (44a)

p∗1 =
αγ + σ(1− α)

σ(2− α)
, (44b)

while h∗2 = 1− h∗1 and p∗2 = 1− p∗1. The eigenvalues of the Jacobian matrix at the723

interior fixed point are724

Λ1,2 = 0 and (45)

Λ3,4 = ±i
√

1− α + α2κ(1− κ)
√

(σ − αγ)(αγ + (1− α)σ)

2− α

Hence, there is only one oscillation frequency l = Λ3/(i2π) at the interior fixed725

point in models with constant population size. As long as αγ < σ, the oscillation726

frequency l decreases with α and increases with γ and σ, while l increases with κ727
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until κ reaches the value 1/2, then l decreases as κ increases from 1/2 to 1. For728

α ≈ 0,729

l ≈ 1

2π

(σ
2
− ασ

4

)
. (46)
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