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Abstract

Many models proposed to study the evolution of collective action rely on a formalism that

represents social interactions as n-player games between individuals adopting discrete actions such

as cooperate and defect. Despite the importance of relatedness as a solution to collective action

problems in biology and the fact that most social interactions unavoidably occur between relatives,

incorporating relatedness into these models has so far proved elusive. We address this problem

by considering mixed strategies and by integrating discrete-action n-player games into the direct

fitness approach of social evolution theory. As an application, we use our mathematical framework to

investigate the provision of three different kinds of collective goods, paradigmatic of a vast array of

helping traits in nature: “public goods” (both providers and shirkers can use the good, e.g., alarm

calls), “club goods” (only providers can use the good, e.g., participation in collective hunting), and

“charity goods” (only shirkers can use the good, e.g., altruistic sacrifice). We show that relatedness

relaxes the collective action problems associated to the provision of these goods in different ways

depending on the kind of good (public, club, or charity) and on its economies of scale (constant,

diminishing, or increasing returns to scale). Our findings highlight the importance of explicitly

accounting for relatedness, the kind of good, and economies of scale in theoretical and empirical

studies of collective action.

Keywords. collective action, relatedness, economies of scale, n-player games, inclusive fitness
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1 Introduction

Collective action occurs when individuals work together to provide a collective good (Olson, 1971).

Examples abound in the social and natural sciences: humans collectively build houses, roads, walls, and

mobilize armies to make war; bacteria secrete enzymes that benefit other bacteria; sterile ant workers

build the nest and raise the brood of the queen; lions work together to catch large game. Yet cooperation

of this kind poses the collective action problem: if individual effort is costly, there is an incentive to

reduce or withdraw one’s effort; but if enough individuals follow this logic, the collective good will not be

provided.

Much research in the social sciences has identified several mechanisms for solving collective action

problems, including privatization and property rights, reciprocity in repeated interactions, and institutions

(Hardin, 1982; Sugden, 1986; Taylor, 1987; Ostrom, 2003). The principles behind these mechanisms

have also been explored in evolutionary biology (Boyd and Richerson, 1988; Nunn and Lewis, 2001;

Strassmann and Queller, 2014) where it has been further emphasized that individual effort in collective

action should also increase as the relatedness between interacting individuals increases (Hamilton, 1964).

This is so because an actor investing in the collective good, in addition to the direct fitness benefits

resulting from the collective good allocated to itself, will also indirectly enjoy part of the fitness benefits

resulting from any collective good allocated to related individuals. As social interactions often occur

predominantly between relatives (because of kin recognition, limited dispersal, or both, e.g., Gurven et al.

2012) it is thought that relatedness plays a central role for solving collective action problems in biology.

In particular, relatedness has been identified as the main mechanism of conflict resolution in the fraternal

major transitions in evolution, i.e., those resulting from associations of relatives, such as the transitions

from unicellularity to multicellularity, or from autarky to eusociality (Queller, 2000).

Mathematical models of collective action between relatives often make the assumption that strategies

are defined in a continuous action space, such as effort invested into a public good or level of restrain in

resource exploitation (e.g., Frank 1995; Foster 2004; Lehmann 2008; Frank 2010; Cornforth et al. 2012).

This allows for a straightforward application of the direct fitness method (Taylor and Frank, 1996; Rousset,

2004) to investigate the effects of relatedness on the evolution of collective action. Contrastingly, many

evolutionary models of collective action between unrelated individuals (e.g., Boyd and Richerson 1988;

Motro 1991; Bach et al. 2006; Hauert et al. 2006; Pacheco et al. 2009; Archetti and Scheuring 2011; Sasaki

and Uchida 2014) represent interactions as n-player games in discrete action spaces (e.g., individuals play

either “cooperate” or “defect”). For general payoffs, these models can be mathematically involved, as

identifying polymorphic equilibria might require solving polynomial equations of degree n− 1, for which

there are no general analytical solutions if n ≥ 6. It is then not surprising that attempts to incorporate

the effects of spatial structure and kinship in this type of models have been restricted to particular

classes of games or particular demographic assumptions underlying the evolutionary dynamics (Boyd and

Richerson, 1988; Eshel and Motro, 1988; Archetti, 2009; Van Cleve and Lehmann, 2013; Ohtsuki, 2014).

Yet extending discrete-action n-player games to the more general case of interactions between relatives is

important because it would increase their scope of application to biological situations.

Here we incorporate relatedness into two-action n-player game-theoretic models by integrating them

into the direct fitness method of social evolution theory (Taylor and Frank, 1996; Rousset, 2004). Several

shape-preserving properties of polynomials in Bernstein form allow us to study the resulting evolutionary

dynamics with a minimum of mathematical effort (Peña et al., 2014). Our framework delivers tractable

formulas for games between related individuals which differ from the corresponding formulas for games

between unrelated individuals only in that “inclusive payoffs” (the payoff to self plus relatedness times

the sum of payoffs to others) rather than solely standard payoffs must be taken into account. For a large

class of games, convergence stable strategies can then be analyzed by a straightforward adaptation of
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results for games between unrelated individuals.

As an application of our modeling framework, we study the effects of relatedness on the evolution of

collective action under different assumptions on the kind of collective good and its economies of scale,

thus covering a wide array of biologically meaningful situations. To this aim, we distinguish between three

kinds of collective goods: (i) “public goods” where all individuals in the group can use the good, e.g.,

alarm calls in vertebrates (Searcy and Nowicki, 2005) and the secretion of diffusible beneficial compounds

in bacteria (Griffin et al., 2004; Gore et al., 2009; Cordero et al., 2012); (ii) “club goods” where only

providers can use the good, e.g., cooperative hunting (Packer and Ruttan, 1988) where the benefits of a

successful hunt go to individuals joining collective action but not to solitary individuals; and (iii) “charity

goods” where only nonproviders can use the good, e.g., eusociality in Hymenoptera (Bourke and Franks,

1995) where sterile workers provide a good benefiting only queens.

For all three kinds of goods, we consider three classes of production functions giving the amount

of good created as a function of the total level of effort and hence describing the associated economies

of scale: (i) linear (constant returns to scale), (ii) decelerating (diminishing returns to scale), and (iii)

accelerating (increasing returns to of scale). Although linear production functions are often assumed

because of mathematical simplicity, collective goods are more likely characterized by either decelerating

or accelerating functions, so that the net effect of several individuals behaving socially can be more or

less than the sum of individual effects: interactions can be characterized by (either positive or negative)

synergy. For instance, enzyme production in microbial collective action is likely to be nonlinear, as

in the cases of invertase hydrolyzing disaccharides into glucose in the budding yeast Saccharomyces

cerevisiae (Gore et al., 2009) or virulence factors triggering gut inflammation in the pathogen Salmonella

typhimurium (Ackermann et al., 2008). In the former case, the relationship between growth rate and

glucose concentration in yeast has been reported to be decelerating, i.e., invertase production has

diminishing returns to scale (Gore et al., 2009, fig. 3.c); in the latter case, the relationship between the

level of expression of virulence factors and inflammation intensity appears to be accelerating, i.e., it

exhibits increasing returns to scale (Ackermann et al., 2008, fig. 2.d).

We show that the effect of relatedness on the provision of collective goods, although always positive,

critically depends on the kind of good (public, club, or charity) and on its economies of scale (linear,

decelerating or accelerating production functions). Moreover, we show that relatedness and economies of

scale can interact in nontrivial ways, leading to patterns of frequency dependence and dynamical portraits

that cannot arise when considering any of these two factors in isolation. We discuss the predictions of our

models, their implications for empirical and theoretical work, and their connections with the broader

literature on the evolution of helping.

2 Mathematical model

2.1 Demographics

We consider a spatially structured population of constant and finite size. Spatial structure may fol-

low a variety of schemes, including the island model of dispersal (Wright, 1931), the haystack model

(Maynard Smith, 1964; Matessi and Jayakar, 1976; Ackermann et al., 2008), models where groups split

into daughter groups and compete against each other (Gardner and West, 2006; Traulsen and Nowak,

2006; Lehmann et al., 2007b), the isolation-by-distance model (Malécot, 1975), and evolutionary graphs

(Ohtsuki et al., 2006; Taylor et al., 2007; Lehmann et al., 2007a). The following events occur cyclically

and span a demographic time period. Each individual gives birth to a very large number of offspring and

then survives with a constant probability, so that individuals can be semelparous (die after reproduction)

or iteroparous (survive for a number of demographic time periods). After reproduction, offspring dispersal
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occurs. Then, offspring in each group compete for breeding spots vacated by the death of adults. We

leave other details of the life history unspecified, but assume that they fall within the scope of models of

spatially homogeneous populations with constant population size (Rousset, 2004, ch. 6).

2.2 Games and payoffs

Individuals participate in an n-player game with two available actions: A (e.g., “cooperation”) and B

(e.g., “defection”). We denote by ak the payoff to an A-player when k = 0, 1, . . . , n− 1 co-players choose

A (and hence n− 1− k co-players choose B). Likewise, we denote by bk the payoff to a B-player when k

co-players choose A. These payoffs can be represented as a table of the form:

Opposing A-players 0 1 . . . k . . . n− 1

A a0 a1 . . . ak . . . an−1

B b0 b1 . . . bk . . . bn−1

.

Individuals implement mixed strategies, i.e., they play A with probability z (and B with probability

1− z). The set of available strategies is then the interval z ∈ [0, 1]. At any given time only two strategies

are present in the population: z and z + δ. Denoting by z• the strategy of a focal individual and by z`(•)

the strategy of its `-th co-player, the expected payoff π to the focal can be written as

π
(
z•, z1(•), z2(•), ..., zn−1(•)

)
=
n−1∑
k=0

φk
(
z1(•), z2(•), . . . , zn−1(•)

)
[z•ak + (1− z•)bk] , (1)

where φk is the probability that exactly k co-players play action A. A first-order Taylor-series expansion

about the average strategy z◦ =
∑n−1
`=1 z`(•)/(n − 1) of co-players shows that, to first order in δ, the

probability φk is given by a binomial distribution with parameters n− 1 and z◦, i.e.,

φk
(
z1(•), z2(•), . . . , zn−1(•)

)
=

(
n− 1

k

)
zk◦ (1− z◦)n−1−k +O(δ2). (2)

Substituting (2) into (1) and discarding second and higher order terms, we obtain

π (z•, z◦) =
n−1∑
k=0

(
n− 1

k

)
zk◦ (1− z◦)n−1−k [z•ak + (1− z•)bk] (3)

for the payoff of a focal individual as a function of the focal’s strategy z• and the average strategy z◦ of

co-players.

2.3 Evolutionary dynamics and relatedness

We are interested in the long-term evolutionary dynamics of the play probability z. To derive this,

we consider a population of residents playing z in which a single mutant playing z + δ appears due to

mutation, and denote by ρ its fixation probability. We take the selection gradient S = (dρ/dδ)δ=0 as

measure of evolutionary success (Rousset and Billiard, 2000, p. 819); indeed, S > 0 entails that the

fixation probability of the mutant is greater than neutral under weak selection (|δ| � 1). Letting the

expected relative fecundity of an adult be equal to its expected payoff (i.e., the payoffs from the game

have “fecundity effects” as opposed to “survival effects”; Taylor and Irwin 2000), the selection gradient S
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is proportional to

G(z) =
∂π(z•, z◦)

∂z•

∣∣∣∣∣
z•=z◦=z︸ ︷︷ ︸

“direct” effect, −C(z)

+κ
∂π(z•, z◦)

∂z◦

∣∣∣∣∣
z•=z◦=z︸ ︷︷ ︸

“indirect” effect, B(z)

= −C(z) + κB(z) (4)

(see, e.g., Van Cleve and Lehmann 2013, eq. 7).

The “gain function” G(z) is determined by three components. First, the “direct” effect −C(z) describing

the change in expected payoff resulting from the focal infinitesimally changing its own strategy. Second,

the “indirect” effect B(z) describing the change in expected payoff of the focal resulting from the focal’s

co-players changing their strategy infinitesimally. Third, the indirect effect is weighted by the “scaled

relatedness coefficient” κ ∈ [−1, 1], which is a measure of relatedness between the focal individual and its

neighbors, demographically scaled so as to capture the effects of local competition on selection (Queller,

1994; Lehmann and Rousset, 2010).

Scaled relatedness κ is a function of demographic parameters such as dispersal kernel, migration

rate, group size, and vital rates of individuals or groups, but is independent of the evolving trait

z and the payoffs from the game. For instance, in the island model with overlapping generations,

κ = 2s(1−m)/(N [2−m(1− s)] + 2(1−m)s), where m is the migration rate and s is the probability of

surviving to the next generation (Taylor and Irwin, 2000, eq. A10). Scaled relatedness coefficients have

been evaluated for many spatially structured populations and demographic assumptions (see Lehmann

and Rousset 2010; Van Cleve and Lehmann 2013 and references therein; see also Appendix A for values

of κ for the haystack model).

Equation (4) is sufficient to characterize convergent stable strategies (Christiansen, 1991; Geritz et al.,

1998; Rousset, 2004). In our context, candidate convergent stable strategies are either “singular points”

(i.e., values z∗ ∈ (0, 1) such that G(z∗) = 0), or the two pure strategies z = 1 and z = 0. In particular, a

singular point z∗ is convergent stable (or an “attractor”) if dG(z)/dz|z=z∗ < 0 and convergent unstable

(or a “repeller”) if dG(z)/dz|z=z∗ > 0. Regarding the endpoints, z = 1 (resp. z = 0) is convergent stable

if G(1) > 0 (resp. G(0) < 0).

3 Inclusive gains from switching

We start by deriving compact expressions for the direct effect −C(z), the indirect effect B(z), and the gain

function G(z) in terms of the payoffs ak and bk of the game. These expressions provide the foundation for

our subsequent analysis.

Imagine a focal individual playing B in a group where k of its co-players play A. Suppose that the

focal switches its action to A while co-players hold fixed their actions, thus changing its payoff from bk to

ak. As a consequence, it experiences a “direct gain from switching” given by

dk = ak − bk, k = 0, 1, . . . , n− 1. (5)

At the same time, each of the co-players playing A experiences a change in payoff given by ∆ak−1 =

ak − ak−1 and each of the co-players playing B experiences a change in payoff given by ∆bk = bk+1 − bk.

Taken as a block, co-players experience a change in payoff given by

ek = k∆ak−1 + (n− 1− k)∆bk, k = 0, 1, . . . , n− 1, (6)

where we define a−1 = bn+1 = 0. From the focal’s perspective, this change in payoffs represents an
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“indirect gain from switching” to the focal if co-players are related. Adding up direct and indirect gains

weighted by κ allows us to define the “inclusive gains from switching”

fk = dk + κek, k = 0, 1, . . . , n− 1, (7)

in a group where a focal has k of its co-players playing A.

We show in Appendix B that the direct, indirect, and net effects appearing in equation (4) are given

by

−C(z) =
n−1∑
k=0

(
n− 1

k

)
zk(1− z)n−1−kdk, (8a)

B(z) =
n−1∑
k=0

(
n− 1

k

)
zk(1− z)n−1−kek, (8b)

and

G(z) =
n−1∑
k=0

(
n− 1

k

)
zk(1− z)n−1−kfk, (9)

that is, as the expected values of the relevant gains from switching when the number of co-players playing

A is distributed according to a binomial distribution with parameters n− 1 and z.

An immediate consequence of equation (9) is that games between relatives are mathematically

equivalent to “transformed” games between unrelated individuals, where “inclusive payoffs” take the

place of standard, or personal, payoffs. Indeed, consider a game in which an A-player (resp. B-player)

obtains payoffs

a′k = ak + κ [kak + (n− 1− k)bk+1] , (10a)

b′k = bk + κ [kak−1 + (n− 1− k)bk] , (10b)

when k of its co-players play A. Payoffs a′k and b′k can be understood as inclusive payoffs consisting of

the payoff obtained by a focal plus κ times the sum of the payoffs obtained by its co-players. Using

equations (5)–(6) we can rewrite (7) as fk = a′k − b′k, so that the inclusive gains from switching are

identical to the direct gains from switching in a game with payoff structure given by (10).

This observation has two relevant consequences. First, existing results on the evolutionarily stable

strategies of games between unrelated individuals (Peña et al., 2014), which are based on the observation

that the right side of (9) is a polynomial in Bernstein form (Farouki, 2012), also apply here, provided that

the inclusive gains from switching fk are used instead of the standard (direct) gains from switching dk in

the formula for the gain function, and that evolutionary stability is understood as convergence stability.

For a large class of games, these results allow us to identify convergence stable strategies from a direct

inspection of the sign pattern of the inclusive gains from switching fk. Second, we can interpret the effect

of relatedness as inducing the payoff transformation ak → a′k, bk → b′k. For n = 2, such transformation is(
a′0 a′1

b′0 b′1

)
=

(
a0 + κb1 (1 + κ)a1

(1 + κ)b0 b1 + κa0

)
,

where the payoff of the focal is augmented by adding κ times the payoff of the co-player (Hamilton, 1971;

Grafen, 1979; Day and Taylor, 1998).
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4 Application to the evolution of collective action

Let us now apply our mathematical formalism to models of collective action between relatives. To this

end, we let action A (“provide”) be associated with some effort in collective action, action B (“shirk”)

with no effort, and refer to A-players as “providers” and to B-players as “shirkers”. Each provider incurs

a cost γ > 0 in order for a collective good of value βj to be created, where j is the total number of

providers. We assume that the collective good fails to be created if no individual works (β0 = 0), and

the value of the collective good βj is increasing in the number of providers (∆βj = βj+1 − βj ≥ 0). We

distinguish between three kinds of collective goods, depending on which individuals can have access to

the good: (i) “public goods”, (ii) “club goods”, and (iii) “charity goods” (Fig. 1).

Economies of scale are incorporated in the model through the properties of the production function

βj . We investigate three functional forms (Fig. 2): (i) linear (βj = βj for some β > 0, so that ∆βj is

constant), (ii) decelerating (∆βj is decreasing in j), and (iii) accelerating (∆βj is increasing in j). We

also say that returns to scale are (i) constant, (ii) diminishing, or (iii) increasing. To illustrate the effects

of economies of scale, we consider the “geometric production function”:

βj = β

j−1∑
`=0

λ`, (11)

with β > 0 and λ > 0, for which returns to scale are constant when λ = 1, decreasing when λ < 1, and

increasing when λ > 1 (Fig. 2).

For all three kinds of collective goods, the indirect gains from switching are always nonnegative

and hence the indirect effect B(z) is nonnegative for all z. This implies that a higher value of κ never

leads to less selection for individual effort in collective action. Each kind of collective good is however

characterized by a different collective action problem, as it is reflected in the different payoff structures of

the corresponding games (Table 1).

In the following, we characterize the evolutionary dynamics of each of these kinds of collective action

and investigate the effects of relatedness on the set of evolutionary attractors. Although many of our

results also extend to the case of negative relatedness, for mathematical simplicity we restrict attention

to the case of nonnegative relatedness (κ ≥ 0). It will be shown that the evolutionary dynamics fall into

one of the following five dynamical regimes: (i) “null provision” (z = 0 is the only attractor), (ii) “full

provision” (z = 1 is the only attractor), (iii) “coexistence” (there is a unique singular strategy z∗ which is

attracting), (iv) “bistability” (z = 0 and z = 1 are both attracting, with a singular repeller z∗ dividing

their basins of attraction), and (v) “bistable coexistence” (z = 0 is attracting, z = 1 is repelling, and

there are two singular strategies zL and zR, satisfying zL < zR, such that zL is a repeller and zR is an

attractor). Regimes (i)-(iv) are those classical from 2× 2 games (Cressman, 2003, Section 2.2), while

bistable coexistence can only arise for interactions with more than two players.

4.1 Linear production functions

To isolate the effects of the kind of collective good, we begin our analysis with the case where the

production function takes the linear form βj = βj (λ = 1 in eq. (11)). For all three kinds of collective

goods, the gain function can then be written as

G(z) = (n− 1) [−C + κB + (1 + κ)Dz] .

The parameter C > 0 may be thought of as the “effective cost” per co-player of joining collective action

alone. We have C = γ/(n − 1) when a focal provider is not among the beneficiaries of the collective
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good (charity goods) and C = (γ − β)/(n− 1) otherwise (public and club goods). The parameter B ≥ 0

measures the incremental benefit accruing to each co-player of a focal provider when none of the co-players

joins collective action. We thus have B = 0 for club goods and B = β otherwise. Finally, D is null for

public goods (D = 0), positive for club goods (D = β), and negative for charity goods (D = −β).

For public goods (D = 0) selection is frequency independent. There is null provision if −C + κB < 0,

and full provision if −C + κB > 0.

For club goods (D > 0) selection is positive frequency-dependent. There is null provision if −C +

κB + (1 + κ)D ≤ 0, and full provision if −C + κB ≥ 0. If −C + κB < 0 < −C + κB + (1 + κ)D, there is

bistability: both z = 0 and z = 1 are attractors and the singular point

z∗ =
C − κB
(1 + κ)D

(12)

is a repeller.

For charity goods (D < 0), selection is negative frequency-dependent. There is null provision if

−C + κB ≤ 0, and full provision if −C + κB + (1 + κ)D ≥ 0. If −C + κB + (1 + κ)D < 0 < −C + κB,

there is coexistence: both z = 0 and z = 1 are repellers and the singular point z∗ is the only attractor.

This analysis reveals three important points. First, in the absence of economies of scale the gain

function is linear in z, which allows for a straightforward analysis of the evolutionary dynamics for all

three kinds of collective action. Second, because of the linearity of the gain function, the evolutionary

dynamics of such games fall into one of the four classical dynamical regimes arising from 2× 2 games.

Third, which of these dynamical regimes arises is determined by relatedness and the kind of good in

a simple way. For all kinds of collective action, there is null provision when relatedness is low. For

public goods provision, high values of relatedness lead to full provision. For club and charity goods, high

relatedness also promotes collective action, leading to either bistability (club goods) or to the coexistence

of providers and shirkers.

4.2 Public goods with accelerating and decelerating production functions

How do economies of scale change the evolutionary dynamics of public goods provision? Substituting the

inclusive gains from switching given in Table 1 into (9) we obtain the following expression for the gain

function of public goods games:

G(z) =
n−1∑
k=0

(
n− 1

k

)
zk(1− z)n−1−k {−γ + [1 + κ(n− 1)] ∆βk} . (13)

If the production function is decelerating, dk, ek, and fk are all decreasing in k. This implies that

−C(z), B(z) and G(z) are all decreasing in z (Peña et al., 2014, Remark 3). Similarly, if the production

function is accelerating, dk, ek and fk are all increasing in k and hence −C(z), B(z) and G(z) are all

increasing in z. In both cases the evolutionary dynamics are easily characterized by applying existing

results for public goods games between unrelated individuals (Peña et al., 2014, Section 4.3): with

accelerating production functions, there is null provision if γ ≥ [1 + κ(n− 1)]∆β0, and full provision if

γ ≤ [1 + κ(n− 1)]∆βn−1. If [1 + κ(n− 1)]∆βn−1 < γ < [1 + κ(n− 1)]∆β0, there is coexistence. With

decelerating production functions, there is null provision if γ ≥ [1 + κ(n− 1)]∆βn−1, and full provision if

γ ≤ [1 + κ(n− 1)]∆β0. If [1 + κ(n− 1)]∆β0 < γ < [1 + κ(n− 1)]∆βn−1, there is bistability.

The effect of relatedness on the evolution of public goods provision can be better grasped by noting
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that multiplying and dividing (13) by 1 + κ(n− 1) we obtain

G(z) = [1 + κ(n− 1)]
n−1∑
k=0

(
n− 1

k

)
zk(1− z)n−1−k (−γ̃ + ∆βk) , (14)

where γ̃ = γ/[1 + κ(n− 1)]. This is (up to multiplication by a positive constant) equivalent to the gain

function of a public goods game between unrelated individuals with constant cost γ̃, which has been

analyzed under different assumptions on the shape of the production function βk (Motro, 1991; Bach

et al., 2006; Archetti and Scheuring, 2011; Peña et al., 2014). Hence, the effects of relatedness can be

understood as affecting only the cost of cooperation, while leaving economies of scale and patterns of

frequency dependence unchanged.

To illustrate the evolutionary dynamics of public goods games, consider a geometric production

function (11) with λ 6= 1 (see Table 2 for a summary of the results and Appendix C for a derivation). We

find that there are two critical cost-to-benefit ratios:

ε = min
(
1 + κ(n− 1), λn−1[1 + κ(n− 1)]

)
and ϑ = max

(
1 + κ(n− 1), λn−1[1 + κ(n− 1)]

)
, (15)

such that for small costs (γ/β ≤ ε) there is full provision and for large costs (γ/β ≥ ϑ) there is null

provision. For intermediate costs (ε < γ/β < ϑ), there is a singular point given by

z∗ =
1

1− λ

[
1−

(
γ

β [1 + κ(n− 1)]

) 1
n−1

]
, (16)

such that there is coexistence if returns to scale are diminishing (λ < 1) and bistability if returns to

scale are increasing (λ > 1). For a given cost-to-benefit ratio γ/β, higher relatedness makes larger (resp.

smaller) the region in the parameter space where cooperation (resp. defection) dominates. Moreover, z∗

is an increasing (resp. decreasing) function of κ when λ < 1 (resp. λ > 1), meaning that the proportion

of providers at the internal attractor (resp. the size of the basin of attraction of z = 1) is larger for higher

κ (Fig. 3.a and 3.d).

4.3 Club goods with accelerating and decelerating production functions

For club goods the direct gains from switching dk (cf. Table 1) are increasing in k independently of

any economies of scale. This implies that the direct effect −C(z) is positive frequency-dependent. If

the production function is accelerating, the indirect gains from switching ek are also increasing in k, so

that the indirect effect B(z) is also positive frequency-dependent. For κ ≥ 0 this ensures that, just as

when economies of scale are absent, the gain function G(z) is positive frequency-dependent. Hence, the

evolutionary dynamics are qualitatively identical to those arising from linear production functions: for

low relatedness, there is null provision; for high relatedness, there is bistability (see Appendix D.1 and

Fig. 3.e).

If the production function is decelerating, the indirect gains from switching ek may still be increasing

in k because the incremental benefit ∆βk accrues to a larger number of recipients as k increases. In such

scenario, always applicable when n = 2, the evolutionary dynamics are again qualitatively identical to

those arising when economies of scale are absent. A different picture can emerge if the number of players

is greater than two (n > 2) and returns to scale are diminishing. In this case, B(z) can be negative

frequency-dependent for some z, and hence (for sufficiently high values of κ) also G(z). Depending on

the value of relatedness, which modulates how the frequency dependence of B(z) interacts with that of

C(z), and on the particular shape of the production function, this can give rise to evolutionary dynamics
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different from those discussed in Section 4.1. In particular, bistable coexistence is possible.

As an example, consider the case of a geometric production function (11) with λ < 1, and n > 2 (see

Table 2 for a summary of results, and Appendix D.2 for proofs). Defining the critical returns-to-scale

value

ξ =
κ(n− 2)

1 + κ(n− 1)
, (17)

and the two critical cost-to-benefit ratios

ς =
1− λn

1− λ
+ κ(n− 1)λn−1, and τ =

1

1− λ

[
1 + λκ

(
(n− 2)κ

1 + κ(n− 1)

)n−2
]
, (18)

which satisfy ξ < 1 and ς < τ , our result can be stated as follows. For λ ≥ ξ the evolutionary dynamics

depends on how the cost-to-benefit ratio γ/β compares to 1 and to ς. If γ/β ≤ 1 (low costs), there is

full provision, while if γ/β ≥ ς (high costs), there is null provision. If 1 < γ/β < ς (intermediate costs),

there is bistability. For λ < ξ, the classification of possible evolutionary dynamics is as in the case λ ≥ ξ,
except that, if ς < γ/β < τ , there is bistable coexistence, with z = 0 stable, z = 1 unstable, and two

singular points zL (unstable) and zR (stable) satisfying 0 < zL < zR < 1. Numerical values for zL and zR

can be obtained by searching for roots of G(z) in the interval (0, 1), as we illustrate in Fig. 3.b.

For κ ≥ 0, the critical values ξ, ς, and τ are all increasing functions of κ. Hence, with larger relatedness

κ, the regions of the parameter space where some level of collective action is stable expand at the expense

of the region of dominant nonprovision. Moreover, inside these regions the stable positive probability of

providing increases with κ (Fig. 3.b). When the production function is “sufficiently” decelerating (λ < ξ)

and for intermediate cost-to-benefit ratios (ς < γ/β < τ), relatedness and economies of scale interact in a

nontrivial way, leading to saddle-node bifurcations whereby two singular points (zL, unstable; zR, stable)

appear as κ increases (Fig. 3.b).

4.4 Charity goods with accelerating and decelerating production functions

In the absence of economies of scale, and as discussed in Section 4.1, the evolutionary dynamics of charity

goods provision are negative frequency-dependent. From the formulas for dk and ek given in Table 1, it is

clear that the direct gains from switching dk are always decreasing in k. Hence, the direct effect −C(z) is

negative frequency-dependent. If the production function is decelerating, the indirect gains from switching

ek are also decreasing in k, implying that the indirect effect B(z) is also negative frequency-dependent

and that the same is true for the gain function G(z) = −C(z) + κB(z). Hence, diminishing returns to

scale lead to evolutionary dynamics that are qualitatively identical to those arising when economies of

scale are absent: for low relatedness, there is null provision, and for sufficiently high relatedness, a unique

interior attractor appears (see Appendix E.1 and Fig. 3.c).

If the production function is accelerating, the indirect gains from switching ek may still be decreasing in

k because the incremental benefit ∆βk accrues to a smaller number of recipients (n− 1− k) as k increases.

In such a scenario, always applicable when n = 2, the evolutionary dynamics are again qualitatively

identical to those arising when economies of scale are absent. A different picture can emerge if n > 2 holds

and the economies of scale are sufficiently strong. In this case, B(z) can be positive frequency-dependent

for some z, and hence (for sufficiently high values of κ) also G(z). Similarly to the case of club goods

provision with diminishing returns to scale, this can give rise to patterns of frequency dependence that go

beyond the scope of collective action with constant returns to scale. In particular, bistable coexistence is

possible.

For a concrete example, consider the case of the geometric production function (11) with λ > 1 (see
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Table 2 for a summary of results, and Appendix E.2 for their derivation). In this case, the evolutionary

dynamics for n > 2 depend on the critical value

% =
1 + κ(n− 1)

κ(n− 2)
, (19)

and on the two critical cost-to-benefit ratios

ζ = κ(n− 1), and η =
1

λ− 1

[
1 + λκ

(
(n− 2)λκ

1 + κ(n− 1)

)n−2
]
, (20)

which satisfy % > 1 and ζ < η.

With these definitions our results can be stated as follows. For λ ≤ % the dynamical outcome depends

on how the cost-to-benefit ratio γ/β compares to ζ. If γ/β ≥ ζ (high costs), there is null provision, while

if γ/β < ζ (low costs), there is coexistence. For λ > %, the dynamical outcome also depends on how

the cost-to-benefit ratio γ/β compares to η. If γ/β ≥ η (high costs), there is null provision. If γ/β ≤ ζ
(low costs), we have coexistence. In the remaining case (ζ < γ/β < η, intermediate costs) the dynamics

are characterized by bistable coexistence, with z = 0 stable, z = 1 unstable, and two singular points zL

(unstable) and zR (stable) satisfying 0 < zL < zR < 1. Numerical values for zL and zR can be obtained

by searching for roots of G(z) in the interval (0, 1), as we illustrate in Fig. 3.e.

It is evident from the dependence of %, ζ, and η on κ that relatedness plays an important role in

determining the stable level(s) of expression of helping. With higher κ, the regions of the parameter space

where some level of effort in collective action is stable expand at the expense of the region of dominant

nonprovision. This is so because ζ and η are increasing functions of κ and % is a decreasing function of

κ. Moreover, inside these regions the stable non-zero probability of providing is bigger the higher the κ

(see Fig. 3.c and 3.f ). Three cases can be however distinguished as for the effects of increasing κ. First,

z = 0 can remain stable irrespective of the value of relatedness, which characterizes high cost-to-benefit

ratios. Second, the system can undergo a transcritical bifurcation, destabilizing z = 0 and leading to the

appearance of a unique interior attractor (Fig. 3.c). This happens when λ and γ/β are relatively small.

Third, there is a range of intermediate cost-to-benefit ratios such that, for sufficiently large values of λ,

the system undergoes a saddle-node bifurcation, whereby two singular points (zL, unstable; zR, stable)

appear (Fig. 3.f ). In this latter case, economies of scale are strong enough to interact with the kind of

good and relatedness in a nontrivial way.

4.5 Connections with previous models

Our formalization and analysis of specific collective action dilemmas are connected to a number of results

in the literature of cooperation and helping; we discuss these connections in the following paragraphs.

Our results on public goods games with geometric production functions (Section 4.2 and Appendix C)

extend the model studied in (Hauert et al., 2006, p. 198) from the particular case of interactions between

unrelated individuals (κ = 0) to the more general case of interactions between relatives (κ ∈ [−1, 1])

and recover the result in (Archetti, 2009, p. 476) in the limit λ→ 0, where the game is also called the

“volunteer’s dilemma” (Diekmann, 1985). Although we restricted our attention to the cases of linear,

decelerating, and accelerating production functions, it is clear that equation (14) applies to production

functions βj of any shape. Hence, general results about the stability of equilibria in public goods games

with threshold and sigmoid production functions (Peña et al., 2014) carry over to games between relatives.

Ackermann et al. (2008) consider a model of “self-destructive cooperation”, which can be reinterpreted

as a charity goods game with no economies of scale together with a haystack model of population structure

implying κ = (No −N)/(No(N − 1)), where n = No ≥ N is the number of offspring among which the
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game is played (see eq. (A.4)). Identifying our γ and β with (respectively) their β with b, the main result

of Ackermann et al. (2008) (eq. 7 in the supplementary material) is recovered as a particular case of our

result that the unique attractor for this case is given by z∗ = [κ(n− 1)β − γ]/[(1 + κ)(n− 1)β] (eq. (12)).

The fact that in this example κ is a probability of coalescence within groups shows that social interactions

effectively occur between family members, and hence that kin selection is crucial to the understanding of

self-destructive cooperation (Gardner and Kümmerli, 2008).

Eshel and Motro (1988) consider a model in which one individual in the group needs help, which can

be provided (action A) or denied (action B) by its n − 1 neighbors: a situation Eshel and Motro call

the “three brothers’ problem” when n = 3. Suppose that the cost for each helper is a constant ε > 0

independent on the number of volunteers (the “risk for each volunteer”, denoted by c in Eshel and Motro

1988) and that the benefit for the individual in need when k co-players offer help is given by vk (the

“gain function”, denoted by bk in Eshel and Motro 1988). Then, if individuals need help at random,

the payoffs for helping (A) and not helping (B) are given by ak = −ε(n− 1)/n+ vk/n and bk = vk/n.

Defining γ = ε(n− 1)/n and βk = vk/(n− 1), we have ak = −γ + βk and bk = βk. Comparing these with

the payoffs for public goods games in Table 1, it is apparent that the key difference between the case

considered by Eshel and Motro (1988) and the public goods games considered here is that a provider

cannot benefit from its own helping behavior. As we show in Appendix F, our results for public goods

games carry over to such “other-only” games (Pepper, 2000). In particular, our results for public goods

games with geometric benefits can be used to recover Results 1,2, and 3 of Eshel and Motro (1988).

Finally, Van Cleve and Lehmann (2013) discuss an n-player coordination game. They assume payoffs

given by ak = 1 + S(R/S)k/(n−1) and bk = 1 + P (T/P )k/(n−1), for positive R,S, T , and P , satisfying

R > T , P > S and P > T . It is easy to see that both the direct effect −C(z) and the indirect effect B(z)

are strictly increasing functions of z having exactly one sign change. This implies that, for κ ≥ 0, the

evolutionary dynamics are characterized by bistability, with the basins of attraction of the two equilibria

z = 0 and z = 1 being divided by the interior unstable equilibrium z∗. Importantly, and in contrast to

the kinds of collective action analyzed in this article, expressing the payoff dominant action A does not

always qualify as a helping trait, as B(z) is negative for some interval z ∈ [0, ẑ). As a result, increasing

relatedness κ can have mixed effects on the location of z∗. Both of these predictions are well supported

by the numerical results reported by Van Cleve and Lehmann (2013), where increasing κ leads to a steady

increase in z∗ for R = 2, S = 0.5, P = 1.5, T = 0.25, and a steady decrease in z∗ for R = 2, S = 0.5,

P = 1.5, T = 1.25 (see their Fig. 5). This illustrates that relatedness (and thus spatial structure) plays

an important role not only in the specific context of collective action games but also in the more general

context of nonlinear n-player games.

5 Discussion

Many discrete-action n-player games have been proposed to study the evolutionary dynamics of collective

action, but most analytical results so far describe only well-mixed populations and hence interactions

between unrelated individuals. We extended these models to the more general case of spatially structured

populations, and hence of interactions between relatives. We showed that, when selection is weak on mixed

strategies, the evolutionary dynamics are equivalent to those of a transformed game between unrelated

individuals, where the payoffs of the transformed game can be interpreted as “inclusive payoffs” given by

the original payoffs to self plus relatedness times the sum of original payoffs to others. The evolutionary

dynamics of games between relatives can then be obtained from existing results on games between

unrelated individuals (Peña et al., 2014) which exploit the shape-preserving properties of polynomials in

Bernstein form (Farouki, 2012).
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We applied these general results to the evolution of collective action under different assumptions

on the kind of good and its economies of scale, thereby unifying and extending previous analyses. We

considered three kinds of collective action, each aimed at the provision of a particular kind of good,

characterized by a different version of the collective action problem, and illustrative of a different class

of helping traits in nature. Firstly, public goods (both providers and shirkers have access to the good)

for which the collective action problem is the well known free-rider problem (shirkers are cheaters who

benefit from the good without helping to create it). Secondly, club goods (only providers have access to

the good) for which there is no longer a free-rider but a coordination problem (individuals might prefer

to stay alone rather than join a risky collective activity). Thirdly, charity goods (only shirkers use the

good) for which the collective action problem takes the form of an altruism problem (individuals would

prefer to enjoy the collective good rather than provide it for others).

We showed that relatedness relaxes each of these collective action problems, but that such effect can

come in a different form, depending on the kind of good and on its economies of scale. Simply put:

relatedness transforms different collective action problems into different games. For public goods this

transformation does not qualitatively affect the evolutionary dynamics, as it only reduces the cost of

providing but otherwise leaves economies of scale (and hence patterns of frequency dependence) unaffected.

Contrastingly, for club goods with diminishing returns to scale and charity goods with increasing returns

to scale, relatedness can change patterns of frequency dependence in a nontrivial way. In particular, and

in some regions of the parameter space, increasing relatedness might induce a saddle-node bifurcation

resulting in the creation of an attracting equilibrium with positive helping and a repelling helping

threshold.

This type of evolutionary dynamics, that we call bistable coexistence, is different from usual scenarios

of frequency dependence in that selection favors mutants at some intermediate frequencies, but neither

when rare nor common. Bistable coexistence had been previously predicted in models of public goods

provision with sigmoidal (first accelerating, then decelerating) production functions both between unrelated

individuals (Bach et al., 2006; Archetti and Scheuring, 2011) and between relatives (Cornforth et al.,

2012). Here we showed that bistable coexistence can also arise in models of club goods with diminishing

returns and of charity goods with increasing returns when interactants are related. These situations

might be common in nature. For instance, participation in cooperative hunting (a club good, as hunted

prey is available to hunters but not to solitary individuals) is likely to exhibit diminishing returns

to scale because hunting success is subadditive in the number of hunters (Packer and Ruttan, 1988,

fig. 4-9). Also, eusociality in insects (a charity good, as the benefits of goods created by workers are

enjoyed only by reproducing queens) might exhibit increasing returns to scale because of division of

labour and other factors (Pamilo, 1991; Fromhage and Kokko, 2011). Our results suggest that bistable

coexistence might be more common than previously considered, thus expanding the repertoire of types of

frequency-dependence selection beyond classic paradigms of either stabilizing (negative) or disruptive

(positive) frequency-dependent selection (Levin et al., 1988).

Our results have implications for theoretical and empirical work on microbial cooperation. Although

most of the research in this area has focused on collective action in the form of provision of public goods

(Griffin et al., 2004; Gore et al., 2009; Cordero et al., 2012), it is clear that club and charity goods are also

common in microbes. First, cases of “altruistic sacrifice” (West et al., 2006), “self-destructive cooperation”

(Ackermann et al., 2008), and “bacterial charity work” (Lee et al., 2010), by which providers release

chemical substances that benefit shirkers, are clear examples of charity goods. Second, “greenbeards”

(Gardner and West, 2010; Queller, 2011), where providers produce an excludable good such as adherence

or food sources (Smukalla et al., 2008; White and Winans, 2007), are examples of club goods. In all these

examples, economies of scale are likely to be present, and hence also the scope for the complex interaction

between relatedness and the shape of the production function predicted by our model. In particular,
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the possibility of bistable coexistence has to be acknowledged and taken into account both in models

and experiments. It is important for experimenters to realize that, under bistable coexistence, even if

providers are less fit than shirkers both when rare and when common, they are fitter than shirkers for

some intermediate frequencies. Consequently, competition experiments should test for different starting

frequencies before ruling out the possibility of polymorphic equilibria where providers and shirkers coexist.

More generally, we encourage empirical work explicitly aimed at identifying collective action involving

club and charity goods and at measuring occurrences of economies of scale in microbial systems.

We assumed that the actions implemented by players are discrete. This is in contrast to standard

models of games between relatives, which assume a continuum of pure actions in the form of continuous

amounts of effort devoted to some social activity. Such continuous-action models have the advantage that

fitness or payoff functions (the counterparts to our eq. (3)) can be usually assumed to take simple forms

that facilitate mathematical analysis. On the other hand, there are situations where individuals can

express only few morphs (e.g., worker and queen in the eusocial Hymenoptera; Wheeler 1986), behavioral

tactics (e.g., “producers” and “scroungers” in house sparrows Passer domesticus; Barnard and Sibly 1981)

or phenotypic states (e.g., capsulated and non-capsulated cells in Pseudomonas fluorescens; Beaumont

et al. 2009). These situations are more conveniently modeled by means of a discrete-action model like the

one presented here, but we expect our qualitative results about the interaction between kind of good,

economies of scale and relatedness to carry over to continuous-action models.

We assumed that the number of interacting individuals n is constant. However, changes in density

will inevitably lead to fluctuating group sizes, with low densities resulting in small group sizes and high

densities resulting in large group sizes. It is clear from the dependence of the critical cost-to-benefit ratios

and the critical returns-to-scale parameters on group size (Table 2) that the effects of varying group sizes

on the evolutionary dynamics of collective action will critically depend on the the kind of good and its

economies of scale. It would be interesting to integrate this phenomenon into our model, thus extending

previous work on the effects of group size in the evolution of helping (Motro, 1991; Peña, 2012; Shen

et al., 2014).

We assumed that players play mixed strategies and that the phenotypic deviation δ is small (i.e.,

“δ-weak selection”; Wild and Traulsen 2007). Alternatively, one may consider that individuals can only

express either full provision or null provision so that, say, mutants always play A and residents always

play B. This pure-strategy setup has been adopted to investigate interactions between relatives and

explored under the additional assumption of global population regulation by Ohtsuki (2014), who shows

that the number of coefficients of genetic association necessary to describe the evolutionary dynamics can

be as large as n− 1. The complexity of such model is in contrast with the relative simplicity of the model

presented here, where only one genetic association coefficient (relatedness, demographically scaled) is

necessary to fully describe the evolutionary dynamics.

Collective action problems in nature are likely to be more diverse than the usually assumed model of

public goods provision with constant returns to scale. Given the local demographic structure of biological

populations, interactions between relatives are also likely to be the rule rather than the exception.

Empirical work on the evolution of helping and cooperation should thus aim at measuring the relatedness

of interactants, the kind of good, and the associated economies of scale, as it is the interaction between

these three factors which will determine the evolutionary dynamics of collective action in real biological

systems.
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A The haystack model

Many models of social interactions (e.g., Matessi and Jayakar 1976; Ackermann et al. 2008) have assumed

different versions of the haystack model (Maynard Smith, 1964), where several rounds of unregulated

reproduction occur within groups before a round of complete dispersal. In these cases, as we will see below,

κ takes the simpler interpretation of the coalescence probability of the gene lineage of two interacting

individuals in their group. Here, we calculate κ for different variants of the haystack model.

The haystack model can be seen as a special case of the island model where dispersal is complete

and where dispersing progeny compete globally. In this context, the fecundity of an adult is the number

of its offspring reaching the stage of global density-dependent competition. The conception of offspring

may occur in a single or over multiple rounds of reproduction, so that a growth phase within patches

is possible. In this context, the number N of “adults” is better thought of as the number of founding

individuals (or lineages, or seeds) on a patch.

Two cases need to be distinguished when it comes to social interactions. First, the game can be played

between the adult individuals (founders) in which case

κ = 0, (A.1)

since relatedness is zero among founders on a patch and there is no local competition. Alternatively,

the game is played between offspring after reproduction and right before their dispersal. In this case

two individuals can be related since they can descend from the same founder. Since there is no local

competition, κ is directly the relatedness between two interacting offspring and is obtained as the

probability that the two ancestral lineages of two randomly sampled offspring coalesce in the same

founding individual (relatedness in the island model is defined as the cumulative coalescence probability

over several generations, see e.g., Rousset 2004, but owing to complete dispersal gene lineages can only

coalesce in founders).

In order to evaluate κ for the second case, we assume that, after growth, exactly No offspring

are produced and that the game is played between them (n = No). Founding individuals, however,

may contribute a variable number of offspring. Let us denote by Oi the random number of offspring

descending from the “adult” individual i = 1, 2, ..., N on a representative patch after reproduction, i.e.,

Oi is the size of lineage i. Owing to our assumption that the total number of offspring is fixed, we have

No = O1 +O2 + ...+ON , where the Oi’s are exchangeable random variables (i.e., neutral process, δ = 0).

The coalescence probability κ can then be computed as the expectation of the ratio of the total number

of ways of sampling two offspring from the same founding parent to the total number of ways of sampling

two offspring:

κ = E

[
N∑
i=1

Oi(Oi − 1)

No(No − 1)

]
= N

(
σ2 + µ2 − µ
No(No − 1)

)
, (A.2)

where the second equality follows from exchangeability, µ = E [Oi] is the expected number of offspring

descending from any individual i, and σ2 = E
[
(Oi − µ)2

]
is the corresponding variance. Due to the

fact that the total number of offspring is fixed, we also necessarily have µ = No/N (i.e., No = E [No] =

E [O1 +O2 + ...+ON ] = Nµ), whereby

κ =
No −N
N(No − 1)

+
σ2N

No(No − 1)
, (A.3)

which holds for any neutral growth process.

We now consider different cases:
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(i) Suppose that there is no variation in offspring production between founding individuals, as in the

life cycle described by Ackermann et al. (2008). Then σ2 = 0, and equation (A.3) simplifies to

κ =
(No −N)

N(No − 1)
. (A.4)

(ii) Suppose that each of the No offspring has an equal chance of descending from any founding

individual, so that each offspring is the result of a sampling event (with replacement) from a parent

among the N founding individuals. Then, the offspring number distribution is binomial with parameters

No and 1/N , whereby σ2 = (1− 1/N)No/N . Substituting into equation (A.3) produces

κ =
1

N
. (A.5)

In more biological terms, this case results from a situation where individuals produce offspring according

to a Poisson process and where exactly No individuals are kept for interactions (i.e., the conditional

branching process of population genetics; Ewens 2004).

(iii) Suppose that the offspring distribution follows a beta-binomial distribution, with number of trials

No and shape parameters α > 0 and β = α(N − 1). Then, µ = No/N and

σ2 =
No(N − 1)(αN +No)

N2(1 + αN)
,

which yields

κ =
1 + α

1 + αN
. (A.6)

In more biological terms, this reproductive scheme results from a situation where individuals produce

offspring according to a negative binomial distribution (larger variance than Poisson, which is recovered

when α→∞), and where exactly No individuals are kept for interactions.

B Gains from switching and the gain function

In the following we establish the expressions for C(z) and B(z) given in equations (8a)–(8b); equation (9)

is then immediate from the definition of fk (7) and the identity G(z) = −C(z) + κB(z).

Recalling the definitions of C(z) and B(z) from equation (4) as well as the definitions of dk and ek

from equations (5)–(6) we need to show

∂π(z•, z◦)

∂z•

∣∣∣∣
z•=z◦=z

=
n−1∑
k=0

(
n− 1

k

)
zk(1− z)n−1−k [ak − bk] , (B.1)

∂π(z•, z◦)

∂z◦

∣∣∣∣
z•=z◦=z

=
n−1∑
k=0

(
n− 1

k

)
zk(1− z)n−1−k [k∆ak−1 + (n− 1− k)∆bk] , (B.2)

where the function π has been defined in equation (3). Equation (B.1) follows directly by taking the

partial derivative of π with respect to z• and evaluating at z• = z◦ = z, so it remains to establish equation

(B.2).

Our derivation of equation (B.2) uses properties of polynomials in Bernstein form. Such polynomials,
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which in general can be written as
∑m
k=0

(
m
k

)
xk(1− x)m−kck for x ∈ [0, 1], satisfy

d

dx

m∑
k=0

(
m

k

)
xk(1− x)m−kck = m

m−1∑
k=0

(
m− 1

k

)
xk(1− x)m−1−k∆ck.

Applying this property to equation (3) and evaluating the resulting partial derivative at z• = z◦ = z,

yields

∂π(z•, z◦)

∂z◦

∣∣∣∣∣
z•=z◦=z

= (n−1)z
n−2∑
k=0

(
n− 2

k

)
zk(1−z)n−2−k∆ak+(n−1)(1−z)

n−2∑
k=0

(
n− 2

k

)
zk(1−z)n−2−k∆bk.

(B.3)

In order to obtain equation (B.2) from equation (B.3) it then suffices to establish

x
m−1∑
k=0

(
m− 1

k

)
xk(1− x)m−1−kck =

m∑
k=0

(
m

k

)
xk(1− x)m−k

kck−1

m
(B.4)

and

(1− x)
m−1∑
k=0

(
m− 1

k

)
xk(1− x)m−1−kck =

m∑
k=0

(
m

k

)
xk(1− x)m−k

(m− k)ck
m

, (B.5)

as applying these identities to the terms on the right side of equation (B.3) yields the right side of equation

(B.2).

Let us prove equation (B.4) (eq. (B.5) is proven in a similar way). Starting from the left side of

equation (B.4), we multiply and divide by m/(k + 1) and distribute x to obtain

x
m−1∑
k=0

(
m− 1

k

)
xk(1− x)m−1−kck =

m−1∑
k=0

m

k + 1

(
m− 1

k

)
xk+1(1− x)m−(k+1)ck

k + 1

m
.

Applying the identity
(
r
k

)
= r

k

(
r−1
k−1

)
and changing the index of summation to k = k + 1, we get

x
m−1∑
k=0

(
m− 1

k

)
xk(1− x)m−1−kck =

m∑
k=1

(
m

k

)
xk(1− x)m−k

kck−1

m
.

Finally, changing the lower index of the sum by noting that the summand is zero when k = 0 gives

equation (B.4).

C Public goods games with geometric production function

For a geometric production function, we have ∆βk = βλk, so that the inclusive gains from switching for

public goods games are given by fk = −γ + [1 + κ(n− 1)]βλk. Using the formula for the probability

generating function of a binomial random variable, equation (9) can be written as

G(z) = −γ + [1 + κ(n− 1)]β (1− z + λz)
n−1

. (C.1)

As G(z) is either decreasing (λ < 1) or increasing (λ > 1) in z, A (resp. B) is a dominant strategy if and

only if min [G(0),G(1)] ≥ 0 (resp. if and only if max [G(0),G(1)] ≤ 0). Using equation (C.1) to calculate

G(0) and G(1) then yields the critical cost-to-benefit ratios ε = min [G(0),G(1)] and ϑ = max [G(0),G(1)]

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 24, 2015. ; https://doi.org/10.1101/012229doi: bioRxiv preprint 

https://doi.org/10.1101/012229
http://creativecommons.org/licenses/by-nc-nd/4.0/


given in equation (15). The value of z∗ given in equation (16) is obtained by solving G(z∗) = 0.

D Club goods games

For club goods games, the inclusive gains from switching are given by

fk = −γ + βk+1 + κk∆βk. (D.1)

D.1 Accelerating production function

In the case where the production function is accelerating, we have the following general result.

Result 1 (Club goods games with accelerating production function). Let fk be given by equation (D.1)

with βk and ∆βk increasing in k and let κ ≥ 0. Then

1. If γ ≤ β1, z = 1 is the only stable point (full provision).

2. If β1 < γ < βn + κ(n− 1)∆βn−1, both z = 0 and z = 1 are stable and there is a unique internal

unstable point z∗ ∈ (0, 1) (bistability).

3. If γ ≥ βn + κ(n− 1)∆βn−1, z = 0 is the only stable point (null provision).

The assumptions in the statement of the result imply that fk is increasing in k. In particular, we have

f0 < fn−1. The sign pattern of the inclusive gain sequence thus depends on the values of its endpoints in

the following way. If f0 ≥ 0 (which holds if and only if γ ≤ β1), fk has no sign changes and a positive

initial sign. If fn−1 ≤ 0 (which holds if and only if γ ≥ βn + κ(n− 1)∆βn−1), fk has no sign changes and

a negative initial sign. If f0 < 0 < fn−1 (which holds if and only if β1 < γ < βn + κ(n− 1)∆βn−1) fk has

one sign change and a negative initial sign. Result 1 follows from these observations upon applying (Peña

et al., 2014, Result 3).

D.2 Geometric production function

For a geometric production function, we obtain the following result.

Result 2 (Club goods games with geometric production function). Let fk be given by equation (D.1)

with βk given by equation (11) and let κ ≥ 0 and n > 2 (the cases κ < 0 or n = 2 are trivial). Moreover,

let ξ, ς and τ be defined by equations (17) and (18). Then

1. If λ ≥ ξ, G(z) is nondecreasing in z. Furthermore

(a) If γ/β ≤ 1, z = 1 is the only stable point (full provision).

(b) If 1 < γ/β < ς, both z = 0 and z = 1 are stable and there is a unique internal unstable point

z∗ ∈ (0, 1) (bistability).

(c) If γ/β ≥ ς, z = 0 is the only stable point (null provision).

2. If λ < ξ, G(z) is unimodal in z, with mode given by ẑ = 1+κ
[1+κ(n−1)](1−λ) . Furthermore

(a) If γ/β ≤ 1, z = 1 is the only stable point (full provision).

(b) If 1 < γ/β ≤ ς, both z = 0 and z = 1 are stable and there is a unique internal unstable point

z∗ ∈ (0, ẑ) (bistability).

(c) If ς < γ/β < τ , there are two interior singular points zL and zR satisfying zL < ẑ < zR. The

points z = 0 and zR are stable, whereas zL and z = 1 are unstable (bistable coexistence).
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(d) If γ/β ≥ τ , z = 0 is the only stable point (null provision).

Observing that ξ < 1 holds and ignoring the trivial case λ = 1, there are three cases to consider: (i)

λ > 1, (ii) 1 > λ ≥ ξ, and (iii) ξ > λ.

For λ > 1 the production function is accelerating and hence Result 1 applies with β1 = β and

βn + κ(n− 1)∆βn−1 = βς. This yields Result 2.1 for the case λ > 1.

To obtain the results for the remaining two cases, we calculate the first and second forward differences

of the production function (11) and substitute them into

∆fk = ∆βk+1 + κ
{

(k + 1)∆2βk + ∆βk
}
, k = 0, 1, . . . , n− 2,

to obtain

∆fk = βλk [λ(1 + κ) + κ(λ− 1)k] , k = 0, 1, . . . , n− 2.

For λ < 1, the sequence ∆fk is decreasing in k and hence can have at most one sign change. Moreover,

as ∆f0 = βλ(1 + κ) > 0 always holds true, the initial sign of ∆fk is positive and whether or not the

sequence ∆fk has a sign change depends solely on how ∆fn−2 compares to zero. Observe, too, that for

λ < 1 we have ς > 1 as λn < λ holds.

Consider the case ξ ≤ λ < 1. By the definition of ξ (eq. (17)) this implies ∆fn−2 ≥ 0. In this case

∆fk has no sign changes and fk is nondecreasing. The sign pattern of the inclusive gain sequence can

then be determined by looking at how the signs of its endpoints depend on the cost-to-benefit ratio γ/β.

If γ/β ≤ 1, then f0 ≥ 0, implying that fk has no sign changes and its initial sign is positive. If γ/β ≥ ς,
then fn ≤ 0 and hence fk has no sign changes and its initial sign is negative. If 1 < γ/β < ς, then

f0 < 0 < fn, i.e., fk has one sign change and its initial sign is negative. Result 2.1 then follows from an

application of Peña et al. 2014, Result 3.

For λ < ξ we have ∆fn−2 < 0, implying that ∆fk has one sign change from + to −, i.e., fk is

unimodal. Hence, the gain function G(z) is also unimodal (Peña et al., 2014, Section 3.4.3) with mode ẑ

determined by G′(ẑ) = 0. Using the assumption of geometric benefits, we can express G(z) is closed form

as

G(z) = −γ +
β

1− λ
+ βλ

{
[1 + κ(n− 1)] z − 1

1− λ

}
(1− z + λz)n−2,

with corresponding derivative

G′(z) = (n− 1)βλ {1 + κ− (1− λ) [1 + κ(n− 1)] z} (1− z + λz)n−3.

Solving G′(ẑ) = 0 then yields ẑ as given in Result 2.2. The corresponding maximal value of the gain

function is

G(ẑ) = −γ +
β

1− λ

[
1 + λκ

(
(n− 2)κ

1 + κ(n− 1)

)n−2
]
.

Result 2.2 then follows from applying Peña et al. 2014, Result 5. In particular, if γ/β ≤ 1, we also have

γ/β < ς, ensuring that f0 ≥ 0 and fn−1 > 0 hold (with unimodality then implying that the gain function

is positive throughout). If 1 < γ/β ≤ ς, we have f0 < 0 and fn−1 ≥ 0 (with unimodality then implying

G(ẑ) > 0). If ς < γ/β, we have f0 < 0 and fn−1 < 0. Upon noticing that G(ẑ) ≤ 0 is satisfied if and only

if γ/β ≥ τ holds, this yields the final two cases in Result 2.2.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 24, 2015. ; https://doi.org/10.1101/012229doi: bioRxiv preprint 

https://doi.org/10.1101/012229
http://creativecommons.org/licenses/by-nc-nd/4.0/


E Charity goods games

For charity goods games, the inclusive gains from switching are given by

fk = −γ − βk + κ(n− 1− k)∆βk. (E.1)

E.1 Decelerating production function

If the production function is decelerating, we have the following general result.

Result 3 (Charity goods games with decelerating production function). Let fk be given by equation

(E.1) with β0 = 0, βk increasing and ∆βk decreasing in k and let κ ≥ 0 (the case κ < 0 is trivial). Then

1. If γ ≥ κ(n− 1)∆β0, z = 0 is the only stable point (null provision).

2. If γ < κ(n− 1)∆β0, both z = 0 and z = 1 are unstable and there is a unique internal stable point

z∗ ∈ (0, 1) (coexistence).

The arguments used for deriving this result are analogous to those used for deriving the results for

the case of club goods with accelerating production function (Result 1 in Appendix D). The assumptions

in the statement imply that fk is decreasing in k. In particular, we have fn−1 < f0. Consequently, if

f0 ≤ 0 (which holds if and only if γ ≥ κ(n− 1)∆β0) the inclusive gain sequence has no sign changes and

its initial sign is negative. Observing that fn−1 = −γ − βn−1 < 0 always holds true, the inequality f0 > 0

(which holds if and only if γ < κ(n− 1)∆β0) implies that the decreasing sequence fk has one sign change

and that its initial sign is positive. Result 3 is then obtained by an application of Peña et al. 2014, Result

3.

E.2 Geometric production function

For a geometric production function, we obtain the following result.

Result 4 (Charity goods games with geometric production function). Let fk be given by equation (E.1)

with βk given by equation (11) and let κ ≥ 0 and n > 2 (the cases κ < 0 or n = 2 are trivial). Moreover,

let %, ζ and η be defined by equations (19) and (20). Then

1. If λ ≤ %, G(z) is nonincreasing in z. Furthermore:

(a) If γ/β < ζ, both z = 0 and z = 1 are unstable and there is a unique internal stable point

z∗ ∈ (0, 1) (coexistence).

(b) If γ/β ≥ ζ, z = 0 is the only stable point (null provision).

2. If λ > %, G(z) is unimodal in z with mode given by ẑ = κ[(n−2)λ−(n−1)]−1
[1+κ(n−1)](λ−1) . Furthermore:

(a) If γ/β ≤ ζ, both z = 0 and z = 1 are unstable and there is a unique internal stable point

z∗ > ẑ (coexistence).

(b) If ζ < γ/β < η, there are two interior singular points zL and zR satisfying zL < ẑ < zR. The

points z = 0 and zR are stable, whereas zL and z = 1 are unstable (bistable coexistence).

(c) If γ/β ≥ η, then z = 0 is the only stable point (null provision).

The arguments used for deriving this result are analogous to those used for deriving the results for

club goods games with geometric production function (Result 2 in Appendix D). Observing that % > 1

holds for κ ≥ 0 and that the case λ = 1 (constant returns to scale) is trivial, we can prove this result by

considering three cases: (i) λ < 1, (ii) 1 < λ ≤ %, and (iii) % < λ.
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For λ < 1, the production function is decelerating and hence Result 3 applies with ∆β0 = β. Recalling

the definition of ζ = κ(n − 1) from equation (20) and rearranging, this yields Result 4.1 for the case

λ ≤ 1 < %.

To obtain the result for the remaining two cases, we calculate the first and second forward differences

of the benefit sequence (11) and substitute them into

∆fk = −(1 + κ)∆βk + κ(n− 2− k)∆2βk, k = 0, 1, . . . , n− 2.

to obtain

∆fk = βλk {κ [(n− 2)λ− (n− 1)]− 1 + κ(1− λ)k} , k = 0, 1, . . . , n− 2.

For λ > 1, the sequence ∆fk is decreasing in k and hence can have at most one sign change. Moreover,

since ∆fn−2 = −βλn−2(1 + κ) < 0 always holds true, the sign pattern of ∆fk depends exclusively on

how ∆f0 = β {κ [(n− 2)λ− (n− 1)]− 1} compares to zero. Observe, too, that fn−1 < 0 always holds

true and that the sign of f0 is identical to the sign of ζ − γ/β.

Consider the case 1 < λ ≤ %. Recalling the definition of % (eq. (19)) we then have ∆f0 ≤ 0, implying

that ∆fk has no sign changes and that its initial sign is negative, i.e., fk is nonincreasing. Hence, if

f0 ≤ 0 (which holds if and only if γ/β ≥ ζ), the inclusive gain sequence has no sign changes and its initial

sign is negative. Otherwise, that is, if γ/β < ζ holds, we have f0 > 0 > fn−1 so that the inclusive gain

sequence has one sign change and its initial sign is positive. Result 4.1 then follows from (Peña et al.,

2014, Result 3).

For λ > % we have ∆f0 > 0, implying that ∆fk has one sign change from + to −, i.e., fk is unimodal.

This implies that the gain function G(z) is also unimodal with its mode ẑ being determined by G′(ẑ) = 0

(Peña et al., 2014, Section 3.4.3). Using the assumption of geometric benefits, we can express G(z) is

closed form as

G(z) = −γ +
β

λ− 1
+ β

{
κ(n− 1)− 1

λ− 1
− [1 + κ(n− 1)] z

}
(1− z + λz)

n−2

with corresponding derivative

G′(z) = (n− 1)β(λ− 1) (1− z + λz)
n−3

{
κ(n− 2)− 1 + κ

λ− 1
− [1 + κ(n− 1)] z

}
.

Solving G′(ẑ) = 0 then yields ẑ as given in Result 4.2. The corresponding maximal value of the gain

function is

G(ẑ) = −γ +
β

λ− 1

[
1 + κλ

(
(n− 2)κλ

1 + κ(n− 1)

)n−2
]
.

Result 4.2 follows from an application of (Peña et al., 2014, Result 5) upon noticing that f0 ≥ 0 (precluding

the stability of z = 0 and ensuring G(ẑ) > 0) holds if and only if γ/β ≤ ζ and that G(ẑ) ≤ 0 (ensuring

that B dominates A) is satisfied if and only if γ/β ≥ η. (We note that the range of cost-to-benefit ratios

γ/β for which bistable coexistence occurs is nonempty, that is η > ζ holds. Otherwise there would exist

γ/β satisfying both γ/β ≤ ζ and γ/β ≥ η which in light of Result 4.2.(a) and Result 4.2.(c) is clearly

impossible.)
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F Other-only games

In other-only games, providers are automatically excluded from the consumption of the good they create,

although they can still reap the benefits of goods created by other providers in their group. Payoffs for

such other-only games are given by ak = −γ + βk and bk = βk, so that the inclusive gains from switching

are given by fk = −γ + κ [k∆βk−1 + (n− 1− k)∆βk].

For this payoff constellation, it is straightforward to obtain the indirect benefits B(z) from equation

(B.3) in Appendix B. Observing that ∆ak = ∆bk = ∆βk holds for all k, we have

B(z) =
∂π(z•, z◦)

∂z◦

∣∣∣∣∣
z•=z◦=z

=
n−2∑
k=0

(
n− 2

k

)
zk(1− z)n−2−k(n− 1)∆βk.

Using equation (8a) and the equality ak−bk = −γ, we have that the direct benefit is given by −C(z) = −γ.

Substituting these expressions for C(z) and B(z) into equation (4), we obtain

G(z) =
n−2∑
k=0

(
n− 2

k

)
zk(1− z)n−2−k [−γ + κ(n− 1)∆βk] . (F.1)

If κ ≤ 0, our assumption that the production function βk is increasing implies that G(z) is always

negative, so that z = 0 is the only stable point (null provision).

To analyze the case where κ ≥ 0, it is convenient to observe that equation (F.1) is of a similar form

as equation (13). The only differences are that the summation in equation (F.1) extends from 0 to n− 2

(rather than n−1) and that the term multiplying the incremental benefit ∆βk is given by κ(n−1) (rather

than 1 + κ(n− 1)). All the results obtained for public goods games can thus be easily translated to the

case of other-only games.

Specifically, we have the following characterization of the resulting evolutionary dynamics. In the

absence of economies of scale, selection is frequency-independent with null provision if κ < γ/[(n− 1)β]

and full provision if κ > γ/[(n− 1)β]. With diminishing returns to scale, the gain function is decreasing

in z (negative frequency dependence). There is null provision if γ ≥ κ(n− 1)∆β0, and full provision if

γ ≤ κ(n− 1)∆βn−2. If κ(n− 1)∆βn−2 < γ < κ(n− 1)∆β0 holds, there is coexistence. With increasing

returns to scale, the gain function is increasing in z (positive frequency dependence). There is null provision

if γ ≥ κ(n− 1)∆βn−2, and full provision if γ ≤ κ(n− 1)∆β0. If κ(n− 1)∆β0 < γ < κ(n− 1)∆βn−2, there

is bistability.

If the production function is geometric (11), the gain function is given by

G(z) = −γ + κ(n− 1)β(1− z + λz)n−2,

so that, for λ 6= 1, the evolutionary dynamics are similar to the case of public goods games after redefining

the critical cost-to-benefit ratios as

ε = min
(
κ(n− 1), λn−2κ(n− 1)

)
and ϑ = max

(
κ(n− 1), λn−2κ(n− 1)

)
and letting

z∗ =
1

1− λ

[
1−

(
γ

βκ(n− 1)

) 1
n−2

]
.
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Figure 1: Three kinds of collective goods. Providers (A) and shirkers (B) interact socially. Providers
(e.g., vigilants, cooperative hunters, or sterile workers) work together to create a collective good (e.g.,
alarm calls, increased hunting success, or nest defense), which can be used exclusively by a subset of
individuals in the group (filled circles). Shirkers do not make any effort in collective action. a, Public
goods (both providers and shirkers use the good). b, Club goods (only providers use the good). c, Charity
goods (only shirkers use the good).
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Figure 2: Linear, decelerating and accelerating production functions (here, geometric production functions
as given by equation (11) with different values for the returns-to-scale parameter λ). Left panel, benefits
βj from the collective good are additive for linear functions, subadditive for decelerating functions and
superadditive for accelerating functions. Right panel, incremental benefits ∆βj from the collective good are
constant for linear functions (constant returns to scale), decreasing for decelerating functions (diminishing
returns to scale), and increasing for accelerating functions (increasing returns to scale).
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Figure 3: Bifurcation plots illustrating the evolutionary dynamics for public (a, d), club (b, e), and
charity (c, f ) goods with geometric production function. The scaled relatedness coefficient κ ≥ 0 serves
as a control parameter. Arrows indicate the direction of evolution for the probability of providing. Solid
lines stand for stable equilibria; dashed lines for unstable equilibria. a, b, c, Diminishing returns to scale
(λ = 0.7) and low cost-to-benefit ratio (γ/β = 3.5). d, e, f, Increasing returns to scale (λ = 1.25) and
high cost-to-benefit ratio (γ/β = 15). In all plots, n = 20.
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kind of good ak bk dk ek fk
public −γ + βk+1 βk −γ+∆βk (n−1)∆βk −γ+(1 + κ(n−1))∆βk
club −γ + βk+1 0 −γ+βk+1 k∆βk −γ+βk+1+κk∆βk
charity −γ βk −γ−βk (n−1−k)∆βk −γ−βk+κ(n−1−k)∆βk

Table 1: Payoff structures and gains from switching for the three classes of collective action. In each case
providers incur a cost γ > 0 to create a collective good of value βj ≥ 0, where j is the number of providers
in the group. The number of providers experienced by a focal is j = k if the focal is a shirker, and
j = k + 1 if it is a provider. Direct gains (dk) and indirect gains (ek) are calculated by substituting the
formulas for ak and bk into equations (5) and (6). Inclusive gains from switching (fk) are then obtained
from equation (7).
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public goods game

λ < 1 λ > 1
γ/β ≤ ε full provision γ/β ≤ ε full provision
ε < γ/β < ϑ coexistence ε < γ/β < ϑ bistability
γ/β ≥ ϑ null provision γ/β ≥ ϑ null provision

club goods game

λ < 1/% λ ≥ 1/%
γ/β ≤ 1 full provision γ/β ≤ 1 full provision
1 < γ/β < ς bistability 1 < γ/β < ς bistability
ς ≤ γ/β < τ bistable coexistence

γ/β ≥ ς null provision
γ/β ≥ τ null provision

charity goods game

λ ≤ % λ > %
γ/β < ζ coexistence γ/β < ζ coexistence

γ/β ≥ ζ null provision
ζ ≤ γ/β < η bistable coexistence
γ/β ≥ η null provision

Table 2: Dynamical regimes for the three classes of collective action with geometric production function.
The results hold for κ ≥ 0, with the critical cost-to-benefit ratios given by ζ = κ(n − 1), ε = min(1 +

ζ, λn−1(1 + ζ)), ϑ = max(1 + ζ, λn−1(1 + ζ)), η = [1/(λ− 1)]
{

1 + λκ [(n− 2)λκ/(1 + ζ)]
n−2
}

, ς =

(1−λn)/(1−λ) + ζλn−1, τ = [1/(1− λ)]
{

1 + λκ [(n− 2)κ/(1 + ζ)]
n−2
}

, and the critical returns-to-scale

parameters given by ξ = κ(n− 2)/[1 + κ(n− 1)], and % = 1/ξ.
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