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Abstract

Comprehensive interpretation of human genome sequencing data is a challenging bioinformatic problem that
typically requires weeks of analysis, with extensive hands-on expert involvement. This informatics bottleneck
inflates genome sequencing costs, poses a computational burden for large-scale projects, and impedes the
adoption of time-critical clinical applications such as personalized cancer profiling and newborn disease
diagnosis, where the actionable timeframe can measure in hours or days. We developed SpeedSeq, an
open-source genome analysis platform that vastly reduces computing time. SpeedSeq accomplishes read
alignment, duplicate removal, variant detection and functional annotation of a 50X human genome in <24
hours, even using one low-cost server. SpeedSeq offers competitive or superior performance to current methods
for detecting germline and somatic single nucleotide variants (SNVs), indels, and structural variants (SVs) and
includes novel functionality for SV genotyping, SV annotation, fusion gene detection, and rapid identification
of actionable mutations. SpeedSeq will help bring timely genome analysis into the clinical realm.

Availability: SpeedSeq is available at https://github.com/cc2qe/speedseq.
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Background
Technical advances in second-generation DNA se-
quencing technologies have reduced both the cost and
time required to generate whole-genome sequencing
(WGS) data for clinical and research applications. At
the time of writing, a human genome can be sequenced
to ∼30X coverage in ∼3 days for ∼$1000. These im-
provements afford new opportunities in healthcare and
academic research to survey the human genome with
unprecedented depth and scope. Personalized clinical
WGS can reveal causative mutations in patients who
present with rare idiopathic congenital disorders, for
whom performing dozens of individual genetic assays is
financially impractical. It can also elucidate the unique
combination of genetic aberrations in a patient’s tu-
mor, informing clinical decisions when selecting from
a growing number of targeted pharmaceutical agents
designed to specifically neutralize oncogenic drivers.
A growing list of success stories as well as increas-
ing readiness for insurance reimbursement have made
WGS an attractive diagnostic tool for clinicians and
patients alike[1, 2, 3, 4, 5].
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However, major barriers in the speed and repro-
ducibility of WGS data interpretation have hindered
widespread adoption of WGS in clinical and research
applications. Using a standard pipeline based on
BWA[6], GATK[7], SAMtools[8] and Picard[9], com-
putational processing of a 50X human genome from
raw sequence data to variant calls on a single 16-
core server requires 68-94 hours, depending on soft-
ware versions and the level of parallelization. After
variant detection, variants must be annotated and in-
terpreted in the context of an extremely large and di-
verse body of relevant information including genomic
features, known disease-causing alleles, gene ontolo-
gies, various genotype/phenotype databases, and func-
tional variant prediction software. Due to the complex-
ities and ambiguities inherent to this process, current
pipelines for variant interpretation necessitate exten-
sive hands-on involvement from informatics special-
ists and genetic counselors to distinguish pathogenic
from benign mutations, and to prioritize candidates.
This labor-intensive and time-consuming process is es-
timated to require up to 100 hours of manual cura-
tion per patient[10]. The time required to go from raw
data to diagnosis is a crucial issue because delays can
significantly worsen patient outcome, particularly for
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newborn diagnosis where many treatable metabolic
disorders have a brief therapeutic window. In previ-
ous studies, this informatics bottleneck has been cir-
cumvented in one of three ways: by surveying a small
subset of genetic variants previously implicated in cer-
tain diseases[11], by performing low-coverage surveys
of structural variation (SV)[12], or by allocating nearly
two months for detailed analysis[13].

Besides clinical considerations, WGS data analy-
sis time is an increasingly important factor for re-
search projects. Large-scale WGS-based projects in-
volving thousands of individuals are becoming com-
mon as DNA sequencing throughput increases and
costs drop, and such studies demand a rapid and re-
producible genome analysis workflow to achieve high
quality results within time constraints and computa-
tional resource limitations. For smaller projects and
isolated experiments, an intuitive and rigorously val-
idated pipeline can streamline routine analysis tasks
such as alignment and variant calling, liberating re-
sources to address project-specific research aims.

With these objectives in mind, we present Speed-
Seq, a comprehensive and intuitive analysis pipeline
for characterizing and interpreting genetic variation in
less than 24 hours per genome on a single low-cost
commodity server.

Results and discussion
Software overview
SpeedSeq is a modular suite of open-source software
designed for rapid whole-genome variant detection
and interpretation under a variety of experimental
paradigms including individual, family, tumor/normal
or population scale sequencing (Fig. 1). SpeedSeq
achieves superior processing efficiency without com-
promising performance by engineering non-dependent
pipeline components to run simultaneously, by multi-
threading external applications, and by empirically
partitioning the genome for balanced parallelization.
Its core components - speedseq align, speedseq

var/somatic, and speedseq sv - can be run indepen-
dently or sequentially. Internally, SpeedSeq uses BWA-
MEM[14] for read alignment, SAMBLASTER[15] for
in-memory duplicate marking, and Sambamba[16] for
multi-threaded sorting and indexing to produce BAM
alignment files for downstream analyses. SpeedSeq
runs a parallelized implementation of FreeBayes[17] to
detect single nucleotide variants (SNVs) and small in-
sertion/deletion variants (indels), with optimized pa-
rameters for either germline or somatic mutation de-
tection. SpeedSeq detects genome structural variation
(SV) using a combination of read-pair and split-read
data using LUMPY[18] and read-depth analysis us-
ing CNVnator[19], and includes a novel SV breakpoint

genotyper (SVTyper). SpeedSeq produces VCF files
that are annotated by the Ensembl Variant Effect Pre-
dictor (VEP)[20] and can be loaded into the GEMINI
genome interpretation software[21] for interactive ex-
ploration or automated querying. We added new fea-
tures to GEMINI that enable proper SV annotation
and interpretation of variants in cancer samples.

FASTQ reads

Tumor DNANormal DNAPatient DNA

Single individual
Tumor-normal
matched pair Population study

Many samples

• FreeBayes
• Ensembl Variant Effect Predictor

• LUMPY
• SVTyper
• CNVnator
• Ensembl Variant Effect Predictor

VCF file VCF file

speedseq align
8 hours per genome

speedseq var/somatic
Detect SNVs and indels

3 hours per genome

speedseq sv
Detect structural variants

1 hour per genome

Load into GEMINI (1 hour)

• BWA-MEM
• Samblaster duplicate marking
• Discordant and split-read extraction

Balanced parallelization over
34,123 genomic windows

Prioritized variants

Figure 1 SpeedSeq workflow. SpeedSeq can convert raw,
FASTQ reads from nearly any experimental design into
prioritized variants in ∼13 hours for a 50X human dataset. Its
modular architecture consists of “speedseq align” to generate
BAM files, “speedseq var” to detect SNVs and indels, and
“speedseq sv” to detect structural variants. The function
“speedseq somatic” uses specialized logic to detect somatic
SNVs and indels in a tumor-normal pair. VCF files may then
be loaded into the GEMINI database framework to produce
prioritized variant calls. Timings shown in this diagram were
performed the 50X NA12878 human dataset from the Illumina
Platinum Genomes project (European Nucleotide Archives;
ERP001960) on a single machine with 128 GB RAM and two
Intel Xeon E5-2670 processors.

Many of SpeedSeq’s core algorithms have been pub-
lished previously and are available as standalone tools;
however, several key aspects of this work are new.
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First, we have devised a method to perform read-
alignment, duplicate marking and coordinate sorting
in one data processing step without landing interme-
diate files, which simplifies workflows and greatly re-
duces computing time and disk requirements. Second,
we have developed a Bayesian SV breakpoint genotyp-
ing algorithm (SVtyper) that produces accurate geno-
types for germline breakpoints and quantitative vari-
ant allele frequency estimates for somatic breakpoints,
information that is crucial for clinical SV interpre-
tation yet not provided by most SV detection tools.
Third, we have developed a new algorithm for detect-
ing and interpreting cancer gene fusions from genome
sequencing data. Fourth, we have developed a frame-
work for highly parallelized SNV and indel detection
using FreeBayes, which is based on independent pro-
cessing of 34,123 variably-sized genomic intervals se-
lected to exhibit similar read depth levels. Fifth, to
test our software on real WGS data, we have devel-
oped a novel transmission-based approach for measur-
ing algorithm performance using large human pedi-
grees – in this case the 17 member CEPH 1463 pedigree
that includes the well-studied NA12878 individual. Fi-
nally, we have made notable improvements to existing
software. SpeedSeq implements a streamlined LUMPY
workflow that achieves a 32-fold speedup over the pub-
lished version[18], a custom-designed parallelized build
of CNVnator that is ∼31-fold faster than the origi-
nal algorithm, and a significantly improved version of
GEMINI that is designed for clinical interpretation of
both germline and somatic variants – including struc-
tural variants and fusion genes – and that interacts
with cancer drug databases to facilitate identification
and interpretation of clinically actionable mutations.

Software runtimes
To test SpeedSeq’s performance, we utilized the Illu-
mina Platinum Genomes data (European Nucleotide
Archive: ERP001960), which comprise ∼50X WGS
datasets for each of the 17 members of the three gen-
eration CEPH 1463 pedigree. For single-genome anal-
yses, we focus on the well-studied NA12878 genome,
which is the mother in this pedigree. To facilitate re-
production of these performance tests and to enable
further testing and optimization by the community,
we have made SpeedSeq available as a public Ama-
zon Machine Instance, which can be cloned for mul-
tiplex analysis of numerous datasets. SpeedSeq trans-
lates raw sequence data into prioritized, clinically in-
terpretable SNV, indel, and SV calls in ∼13 hours for
NA12878 (Fig. 1) using default software parameters
and a single 16-core server (allowing 32 threads) with
128 GB of RAM (current cost: <$10,000). This rep-
resents at minimum a several-fold speed increase over

current practices, reducing computing requirements to
fit within clinically accessible time constraints. In con-
trast to cloud-based software applications that achieve
processing speed by harnessing a distributed network
of independent CPUs, SpeedSeq is designed to pro-
cess data on a single multi-core server. This model of-
fers the benefit of local data processing, which is an
attractive option for applications within the health-
care industry, where patient privacy and data secu-
rity are paramount. However, the general architecture
of SpeedSeq is inherently scalable, allowing flexibility
for cloud implementation of most modules, and we ex-
pect that substantial speed increases can be achieved
through distributed computing. We further note that
in the context of a single WGS dataset, increased
parallelization yields diminishing returns because run-
times are bounded by difficult-to-parallelize steps such
as BAM file sorting and duplicate marking (Fig. 1).

SpeedSeq’s fast runtimes are achieved through sev-
eral parallelization and synchronization steps. A con-
siderable reduction in processing time is achieved
through duplicate marking with our SAMBLASTER
program[15], which operates on streamed input from
the aligner and can harvest idle CPU cycles that are
periodically released by BWA, decreasing duplicate
marking time to ∼12 minutes (a process that takes 8.0
hours using Picard). SpeedSeq also uses Sambamba for
multi-threaded BAM manipulation, providing a 1.6-
fold speed increase for sorting and compression relative
to the widely-used SAMtools package.

Parallelized SNV and indel calling is achieved by run-
ning FreeBayes on 34,123 variably-sized genomic win-
dows that have been selected to contain similar num-
bers of reads based on aggregate aligned read depth
of the 17 CEPH individuals used in this study. Our
binning of the human genome by empirical depth ac-
complished two objectives relevant to improving per-
formance. First, we identified 15.6 Mb (0.6%) of the
GRCh37 genome build with consistently excessive read
depth, presumably due to paralogous genomic seg-
ments absent from the reference assembly. By exclud-
ing these regions we avoided calling variants in ar-
eas where reference artifacts violate assumptions of
ploidy and mappability, while simultaneously reducing
computational time by ignoring massive data pileups.
Secondly, the depth-based exclusion strategy allowed
us to construct variable-width bins to balance paral-
lelized FreeBayes variant calling (Supplementary Fig.
1). While this static set of excluded regions was based
on a single large family, the depth cutoff accommo-
dated a 2-fold increase in copy number relative to the
reference genome - corresponding to a homozygous du-
plication (4 copies) in a genomic region that is single
copy in the reference - minimizing the bias toward fixed
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Figure 2 Germline SNV and indel detection performance. Receiver operating characteristic (ROC) curves comparing the
performance of SpeedSeq (black lines) to GATK Haplotype Caller (red lines) and GATK Unified Genotyper (blue lines) in detecting
germline SNVs and indels in the 50X NA12878 human dataset, with quality score as the varying parameter. (a) SNVs and (b) indels
reported by each algorithm were benchmarked against the NA12878 callset from the Genome in a Bottle Consortium (version 2.17),
with open circles denoting the quality thresholds for sensitivity and specificity metrics reported in the main text (see Germline SNVs
and Indels). (c) SNVs detected by each algorithm benchmarked against an Omni 2.5 SNP array (note the zoomed axes scales in
comparison to panels a and b).

polymorphism in that family. In the future, we envi-
sion that excluded genomic regions will be defined by
a much larger set of high-quality human genomes from
diverse populations.

Germline SNVs and indels
The central goal of SpeedSeq is to achieve fast run-
times without sacrificing variant detection sensitivity
or accuracy. We therefore set out to rigorously test
variant detection performance under typical usage sce-
narios. Perhaps the most common and straightforward
WGS analysis is to map germline SNVs and indels. If
we accept as truth the 2,803,144 SNV and 364,031
indel calls reported for NA12878 by the Genome
in a Bottle (GIAB), SpeedSeq achieves a sensitiv-
ity of 99.9% and 89.9% for SNVs and indels, respec-
tively, and has acceptably low FDRs (0.4% and 1.1%)

(Fig. 2a,b). These detection rates exceed the GATK
Unified Genotyper’s (GATK-UG) sensitivity (99.7%,
89.0%; SNVs, indels) with a similar FDR (0.5%, 1.0%;
SNVs, indels). The GATK Haplotype Caller (GATK-
HC) shows superior indel detection sensitivity (99.8%,
95.7%; SNVs, indels) with lower FDR for both vari-
ant types (0.2%, 0.6%; SNVs, indels). SpeedSeq’s im-
plementation of FreeBayes therefore exhibits compa-
rable – albeit slightly inferior – performance relative
to GATK-HC when tested on the GIAB callset. How-
ever, since the GIAB truth set was primarily derived
from GATK-based analyses, it is likely to be biased
towards GATK tools. We therefore assessed Speed-
Seq’s performance against a second truth set derived
from the Illumina Omni 2.5 SNP array results for
NA12878, which contains 2,177,040 informative mark-
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Figure 3 Somatic SNV detection performance of low frequency variants in a simulated tumor-normal pair. (a) Somatic variants in
the simulated 50X tumor dataset (a mixture of 11 grandchildren from the CEPH 1463 pedigree) exhibit a range of variant allele
frequencies in accordance with the expected binomial distribution. (b) Receiver operating characteristic (ROC) curves comparing the
performance of SpeedSeq (black line) to Mutect (blue line), SomaticSniper (red line), and VarScan 2 (orange line). Open circles
denote quality thresholds used for sensitivity and precision plots showing SNV detection sensitivity (c) and precision (d) over the
range of variant allele frequencies in the simulated tumor.

ers that are expected to be unbiased relative to the
different tools (albeit enriched for easy-to-genotype
markers). All variant callers show similar performance
against the Omni microarray truth set, with SpeedSeq
attaining the highest sensitivity at the minor expense
of specificity compared to GATK-UG or GATK-HC
(Fig. 2c). These results show that SpeedSeq detects
germline SNVs and indels with competitive sensitiv-
ity and specificity to GATK, a widely-used software
package that is generally considered to be the indus-
try standard.

Somatic SNVs and indels
Profiling somatic mutations in cancer samples is one
of the most common clinical applications of WGS, and
is a clear example of a situation where fast analysis
turnaround time has the potential to directly affect

patient care. Somatic mutation detection is a difficult
bioinformatic problem that requires specialized logic to
weigh evidence from both samples in a tumor-normal
matched pair, since classifying a variant as somatic re-
quires evidence not only that the tumor carries the
variant, but also that the normal sample does not.
Moreover, many tumors exhibit subclonal heterogene-
ity and/or chromosomal aneuploidy, both of which vi-
olate the assumptions of diploidy made by most vari-
ant callers. Finally, clinically relevant cancer WGS re-
quires reliable detection of variants at or below 10%
variant allele frequency (VAF), since actionable muta-
tions may reside in minor subclones. To overcome these
challenges, we tuned FreeBayes’s algorithmic parame-
ters and filtering criteria to jointly analyze a tumor-
normal pair, probing for subclonal variants as low as
5% VAF in the tumor with no assumption of diploidy.
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To filter out artifacts and misclassified variants, we
established effective filtering criteria for SpeedSeq, re-
quiring variants to meet a log odds threshold for both
the tumor and normal samples based upon FreeBayes
genotype likelihood scores.

We next sought to assess SpeedSeq’s performance.
It is currently infeasible to conduct a realistic compar-
ison of somatic mutation detection performance us-
ing bona fide cancer WGS data and an adequately
large truth set, because comprehensive and unbiased
somatic mutation callsets do not exist. For this rea-
son, most cancer WGS tool comparisons have relied
either on entirely simulated data or artificial injection
of mutations into real data, both of which have limited
value. We instead devised a novel strategy for assessing
somatic mutation detection on real WGS data using
the CEPH 1463 pedigree datasets. To emulate a WGS
dataset from a heterogeneous tumor sample with so-
matic mutations present at varying allele frequencies,
we pooled raw data from each of the 11 grandchildren
in equal proportions to generate a single 50X chimeric
sample. For performance tests, we define this chimeric
dataset as the tumor sample and the father’s dataset
(NA12877) as the normal sample, and we define “so-
matic mutations” as variants that are present in the
mother (NA12878) and absent from the father. Assum-
ing Mendelian segregation, somatic mutations that are
heterozygous in the mother are expected to be present
in the chimeric dataset at a range of VAFs defined
by a binomial distribution centered at 0.25, and vari-
ants that are homozygous in NA12878 will be present
at a VAF of 0.5. This experimental design provided
us with a somatic truth set of 875,206 variants with
known VAFs ranging from 0.05 to 0.5 matching the
expected distribution (Fig. 3a).

Using this evaluation paradigm, we compared Speed-
Seq’s performance to three other leading somatic vari-
ant calling tools: MuTect[22], SomaticSniper[23], and
VarScan 2[24]. SpeedSeq recalled 96.6% of the so-
matic variants in the chimeric tumor with a FDR
of 3.3%, outperforming SomaticSniper in both sensi-
tivity and specificity, and delivering competitive per-
formance against MuTect and VarScan 2 (Fig. 3b).
For variants with a VAF of less than 0.2, SpeedSeq
was more sensitive than both VarScan 2 and Somatic-
Sniper, detecting SNVs at 0.09 VAF with a sensitivity
of 62.8% and a positive predictive value of 84.5% (Fig.
3c,d). These results demonstrate that SpeedSeq identi-
fies somatic SNVs and indels with similar performance
as the current best-in-class mutation callers.

Strategy for detecting genome structural variation
Comprehensive ascertainment of structural variation
(SV) is a critical yet technically difficult component of

diagnostic sequencing. SV is a broad class of genome
variation that includes copy number variants (CNVs)
such as deletions and duplications, balanced rear-
rangements (e.g., inversions or translocations), com-
plex rearrangements, and mobile element insertions.
Although SVs are rare in number compared to SNVs
and indels – a typical human genome harbors approx-
imately 5,000 germline SVs that are detectable with
current technologies – they can affect large genomic
segments and can have severe functional consequences
due to their ability to disrupt genes, cause gene fusions,
rearrange regulatory elements, and alter gene dosage.

SV poses two key challenges for clinical implementa-
tion of WGS. First, for various technical reasons, SV
is recognized to be by far the most difficult form of
variation to detect reliably[25]. Second, functional in-
terpretation of SV requires specialized logic due to the
variable size and diverse configurations that SVs ex-
hibit, and because SV breakpoints are often mapped
imprecisely. Due to these challenges, few established
genome analysis pipelines attempt to rigorously de-
tect and interpret SV. Yet, given the large body of
literature supporting a role for SV in various human
diseases, perhaps most notably in the etiology of ge-
nomic disorders and cancer, it is clear that sensitive
and accurate SV detection is a prerequisite for clinical
WGS.

SpeedSeq uses LUMPY as the core component of its
structural variation module. LUMPY identifies dele-
tions, duplications, inversions and other rearrange-
ments by combining multiple evidence types (e.g. read-
pair and split-read) within a probabilistic framework,
and has recently been demonstrated to match or out-
perform other leading tools for detecting germline and
somatic SVs across diverse variant types and allele
frequencies[18]. SpeedSeq includes significant improve-
ments to the LUMPY workflow to improve runtimes
and usability. SpeedSeq simplifies LUMPY execution
by automatically pre-processing the BAM files for in-
sert size distributions and configuring multiple sam-
ples and libraries for joint variant calling. Extraction
of discordant read-pair and split-read alignments by
SAMBLASTER during duplicate marking enables ex-
tremely fast LUMPY runtimes, requiring merely ∼74
minutes to call SV breakpoints on the 50X NA12878
dataset. This is in contrast to 23.9 hours and 18.3
hours of processing time for two other leading SV de-
tection tools, DELLY[26] and GASVPRO[27]. Finally,
we have enhanced LUMPY’s output format to ease hu-
man readability and facilitate downstream analyses by
producing an annotated VCF file as well as a standard
BEDPE[28] file.

Besides mere detection, differentiating SV genotypes
and estimating breakpoint allele frequencies is crucial
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Figure 4 Structural variant validation by long-reads and 1000 Genomes Project data. SpeedSeq reported 6,696 structural variants
(SVs) in the 50X NA12878 human dataset. The subsets of SVs with read-depth support from CNVnator (red lines) and with both
paired-end and split-read support from LUMPY (blue lines) are displayed alongside the full set of reported variants (black lines) in
each plot. (a) These variants were validated using deep ( 30X) long-read data from Pacific Biosciences or Illumina Moleculo
technologies, showing positive predictive value for SVs at different quality thresholds and different evidence types. (b) We also
validated the subset of 3,438 deletions reported by SpeedSeq against deletions reported in the pilot or phase 1 callsets of the 1000
Genomes Project. (c) We combined these two approaches into a hybrid validation metric, whereby SVs could be validated either by
long-read support or by overlap with 1000 Genomes data. Gray hashed lines in panels a, b, and c denote the validation rate of 100
random permutations of the data. (d) The number of SVs meeting each quality thresholds.

for assessing pathogenicity. For example, at haplosuf-
ficient loci, homozygous, but not heterozygous loss of
function mutations can result in a pathogenic phe-
notype. At somatic variants, quantitative estimates
of breakpoint allele frequencies allow inference of the
fraction of tumor cells that carry a particular vari-
ant, which can help inform treatment options. Due to
technical challenges, most SV detection algorithms do
not provide SV genotypes nor quantitative estimates
of breakpoint allele frequency. We therefore developed
SVTyper, a Bayesian likelihood algorithm to genotype
SV breakpoints based on reference and alternate read
observations at each junction. This strategy serves as
a complementary approach to genotyping deletions by
read-depth analysis[29], as it can interrogate copy neu-

tral events such as inversions or translocations as well
as deletions that lack an observable reduction in depth
due to their small size or the presence of repetitive se-
quence. SVTyper assumes a random sampling of reads
at each breakpoint, with the number of reference and
alternate observations being approximately equal in a
heterozygote, and skewing toward either type of evi-
dence in a homozygote, using Bayesian classifiers to as-
cribe confidence scores to each variant call (see Meth-
ods).

Finally, certain SV breakpoints contained within
large repeats may be difficult or impossible to map
precisely using current sequencing technologies. No-
table examples include the recurrent pathogenic mu-
tations that underlie a number of human genomic
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NA12880 maternal chromosome 1

NA12880 paternal chromosome 1

NA12880

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ●

● ●
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Undetected SV

Detected SV
(consistent haplotype)

Detected SV
(inconsistent haplotype)

a

b

Figure 5 Haplotype-based structural variant validation. (a) The structure and haplotype maps of chromosome 1 for each member
of the CEPH 1463 pedigree show the transmission of grandparental haplotype blocks to the grandchildren. (b) An example of this
validation method on chromosome 1 of NA12880. The grandparental founder of each genome segment is denoted by the color of the
chromosome (dark blue: paternal grandfather, light blue: paternal grandmother, pink: maternal grandfather, red: maternal
grandmother). Circles above the chromosomes represent the SVs that are expected to be in NA12880 by transmission, with the color
of the circumference denoting the founding grandparent predicted by the haplotype map, and the interior shading denoting the
founding grandparent as defined by segregation of the SV. Hollow circles represent SVs that were predicted to be in NA12880 by the
haplotype map, but undetected with SpeedSeq.

disorders[30]. When such variants alter the copy num-
ber of relatively large genomic segments (e.g., >1 kb),
they can be detected via read-depth analysis. We have
therefore packaged SpeedSeq with a well-tested CNV
detection algorithm, CNVnator[19], that allows the
user to optionally perform read-depth analysis in con-
junction with LUMPY and SVTyper. To achieve ac-
ceptably fast runtimes, we implemented an optimized
and parallelized version of CNVnator that processes
the 50X NA12878 genome in ∼26 minutes compared
to 13.5 hours for the original algorithm, representing
a 31-fold speed increase (with virtually identical re-
sults). We also use CNVnator’s genotyping module to
predict the copy number of the genomic interval af-
fected by each LUMPY SV call, which aids functional
interpretation.

Structural variation performance benchmarking
Measuring SV detection performance on real data is
difficult because there are not well-established truth
sets that allow simple calculations of sensitivity and
accuracy. If we accept the 1000 Genomes Project
(1KGP) deletion callset for NA12878 as ground truth,
SpeedSeq achieves a sensitivity of 61.9% (2,089/3,376)
and positive predictive value of 60.8% (2,089/3,438)

for detecting deletions, which is consistent with our
recent comparative performance tests for LUMPY[18]
and by inference shows that SpeedSeq achieves state-
of-the-art SV detection relative to other tools. How-
ever, this test underestimates absolute performance
because the 1KGP callset is known to contain false
positives and false negatives. We therefore developed
a multi-pronged validation strategy in which SVs re-
ported by SpeedSeq in NA12878 could be validated
either by overlap with split-read mapping of deep
(∼30X) NA12878 long-read data (Fig. 4a, see Meth-
ods) or by overlap with deletions from the 1KGP pi-
lot or phase 1 callsets (Fig. 4b). Based on this hybrid
approach, SVs with quality scores of 100 or greater
show a positive predictive value of 86.0% (2,823/3,282)
(Fig. 4c,d). Virtually none of these SVs are likely to
have been validated by random chance, as 100 permu-
tations of the callset resulted in a validation rate of
0.073% (± 6.1E-3, 95% CI) (Fig. 4c). Moreover, these
Phred-scaled quality scores, derived from SVTyper’s
probabilistic framework, provide a tunable parameter
through which users may refine callsets to a desired
confidence threshold. By further requiring both paired-
end and split-read support, users may generate an ex-
tremely high confidence callset of 1,663 SVs with a
97.8% validation rate.
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Table 1 Detection and genotyping accuracy of structural variants in the CEPH 1463 grandchildren. SNV-based haplotype phasing of
genomic segments in the CEPH 1463 produced 1,722 variants (1,505 heterozygous and 217 homozygous) that were predicted in the 11
grandchildren. We used these 1,722 variants to assess detection sensitivity and genotyping accuracy across different variant classes and
zygosities.

Type
Correctly

genotyped
% correctly
genotyped

Detected
Detection
sensitivity

Informative
occurrences

Unique
variants

All SVs

All 7,201 95.0% 7,578 90.2% 8,397 1,722
Deletion 5,764 95.4% 6,042 90.8% 6,651 1,342

Duplication 859 93.7% 917 89.5% 1,025 217
Inversion 558 93.2% 599 85.9% 697 152
Distant 20 100.0% 20 83.3% 24 11

Heterozygous
SVs

All 6,840 96.6% 7,083 89.9% 7,883 1,505
Deletion 5,418 96.0% 5,641 90.4% 6,240 1,173

Duplication 853 97.9% 871 89.2% 976 193
Inversion 549 99.6% 551 85.7% 643 128
Distant 20 100.0% 20 83.3% 24 11

Homozygous
SVs

All 361 72.9% 495 96.3% 514 217
Deletion 346 86.3% 401 97.6% 411 169

Duplication 6 13.0% 46 93.9% 49 24
Inversion 9 18.8% 48 88.9% 54 24
Distant 0 - 0 - 0 0

As an independent measure of SV detection and
genotyping performance, we developed a novel haplotype-
based test that exploits the structure of the CEPH
1463 pedigree. We performed SNV-based phasing to
produce haplotype lineage maps, allowing us to at-
tribute an average of 63.0% of the mappable genome
of each F2 individual to a particular founding grand-
parent (Fig. 5). We then used SpeedSeq to perform
joint multi-sample SV analysis of the entire pedigree to
identify SVs that could be unambiguously attributed
to a grandparental haplotype. Joint calling alleviates
ascertainment bias by allowing us to identify high con-
fidence SVs that meet a minimum level of support in
at least one of the 17 individuals, thus minimizing false
positive SV calls, and to positively detect the presence
of an SV in an individual based on a single discordant
or split-read alignment, thus maximizing sensitivity for
defining segregation patterns. This analysis resulted
in 8,546 high confidence autosomal SV calls of which
1,722 could be assigned to a founding grandparental
haplotype, with 8,397 predicted SV observations in
the 11 grandchildren. SpeedSeq showed a detection
sensitivity of 90.2% (7,578/8,397) for these SVs en-
compassing 1,660 of the 1,722 unique variants (Table
1).

To test whether the 1,722 informative SVs were rep-
resentative of the dataset as a whole, and not of mis-
leadingly high quality due to their ascertainment cri-
teria, we assessed their validation rate as above using
the 1KGP callset and long-read sequencing (Table 2).
The 1,722 informative SVs have a similar validation
rate as the remaining 6,734 SVs, which suggests that
they are representative of overall callset quality.

To evaluate SV detection accuracy, we reasoned that
true positive SV calls should exhibit presence/absence
patterns within the pedigree that are consistent with

familial relationships and haplotype transmission pat-
terns, whereas false positive calls should exhibit ran-
dom patterns. Based on this logic, two lines of evi-
dence suggest that SpeedSeq’s SV detection accuracy
is extremely high. First, only 422 of the 8,456 SVs
(5.0%) have presence/absence patterns among the 17
individuals that violate the laws of Mendelian segre-
gation. Of these, 51.7% are known variants based on
1KGP and/or long-read sequencing, indicating that
false negatives are as common as false positives in
causing Mendelian violations. Second, if we consider
all observations of the 1,722 informative SVs among
the 11 F2 individuals, only 3.1% contradict the SNV-
based grandparental haplotype, and only 8.3% of vari-
ants show one or more contradictory observations.
Since we expect false positive calls to co-segregate with
grandparental haplotypes merely 50% of the time by
chance, this result suggests that only a small fraction
(521/8,397) of SV observations reported by SpeedSeq
are false positives. To estimate SV detection sensi-

Table 2 Filtering schematic for 8,456 high confidence SVs
detected by SpeedSeq in the CEPH 1463 pedigree. Here we show
the number of SVs and their validation efficiency at each stage of
filtering to produce the 1,722 SVs that were used in SV
benchmarking (Table 1).

Number
of SVs

Number of
deletions

Number of
deletions
validated

% of
deletions
validated

≥ 7 support 8,456 5,540 4,369 78.9%

Monomorphic 2,525 1,356 1,151 84.9%

Polymorphic 5,931 4,184 3,218 76.9%

Mendelian
transmission

5,509 3,853 3,047 79.1%

Mendelian
violation

422 331 171 51.7%

Traceable from
grandparent

1,722 1,342 1,059 78.9%
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Table 3 Sensitivity in detecting somatic mutations in tumor-normal pairs. We analyzed five tumor-normal pairs to assess SpeedSeq’s
sensitivity in detecting 2,746 somatic mutations that had been previous detected by The Cancer Genome Atlas (TCGA) through deep
exome sequencing and validated by an orthogonal method. The subset of cancer variants contains the variants within genes in the
COSMIC cancer census gene set[31].

Sample Type Detected Known Sensitivity
Cancer
variants
detected

Cancer
variants
known

Cancer
variant

sensitivity
TCGA-B6-A0I6 Breast 74 79 93.7% 2 2 100.0%
TCGA-A6-6141 Colorectal 485 510 95.1% 14 14 100.0%
TCGA-CA-6718 Colorectal 1,280 1,307 97.9% 44 44 100.0%
TCGA-D5-6540 Colorectal 779 819 95.1% 19 20 95.0%
TCGA-13-0751 Ovarian 30 31 96.8% 3 3 100.0%

Overall 2,648 2,746 96.4% 82 83 98.8%

tivity and genotyping accuracy, we constructed a SV
truth set for F2 individuals using the observed haplo-
type transmission patterns. Based on inherited grand-
parental haplotypes, we derived the expected genotype
for each of the 1,722 SVs (1,505 heterozygous and 217
homozygous) in each of the 11 F2 individuals, resulting
in a truth set comprising 8,397 informative SV geno-
type observations. Of these, 7,833 are expected to be
heterozygous for the alternate allele, 514 homozygous
for the alternate allele. SVTyper reported the correct
genotype 95.8% of the time for heterozygous variants
and 70.1% for homozygous variants. This shows that
SpeedSeq achieves clinically relevant levels of SV de-
tection sensitivity and genotyping accuracy when run
on a single individual in isolation.

Taken together, the above analyses demonstrate that
SpeedSeq achieves clinically relevant SV detection per-
formance with excellent sensitivity – at least for SVs
detectable with current technologies – clinically ac-
ceptable levels of accuracy, and highly accurate SV
genotype information.

Interpreting genomic variants
We have engineered SpeedSeq to seamlessly interface
with GEMINI, a flexible software package for genome
mining[21]. GEMINI is a local database framework
that integrates variant calls (in VCF format) with in-
formation from various external databases including
dbSNP, ENCODE, UCSC, ClinVar, and KEGG, al-
lowing users to efficiently annotate and filter variants
through succinct command line queries or a graphical
browser interface. Published features of GEMINI en-
able users to filter variants based on predicted sever-
ity, and refine their significance with comparisons to
ClinVar for health relationships or KEGG and HPRD
catalogs for pathway burden enrichment. In concert
with SpeedSeq, we have made numerous enhancements
to GEMINI, particularly in handling structural vari-
ants and interpreting somatic mutations. Two new
databases have been added to GEMINI: the COS-
MIC catalogue of somatic mutations in cancer[31] and
DGIdb, the Drug-Gene Interaction database[33]. Users

can interrogate these databases with several novel
GEMINI operations designed to rapidly prioritize vari-
ants in a tumor-normal pair. The “gemini set somatic”
command uses tunable stringency settings to classify
somatic variants. These variants may be subsequently
refined using the “gemini actionable mutations” com-
mand, which retrieves mutations predicted to have
medium or high severity consequences in genes in the
COSMIC cancer census database, and automatically
reports their interactions with available therapeutic
agents in DGIdb. In addition, GEMINI can now parse
standard VCF files to quickly identify structural vari-
ants that alter gene dosage or interrupt transcripts.
We have woven SV functionality into somatic muta-
tion annotation to create the “gemini fusions” module,
which reports putative somatic gene fusions affecting
COSMIC cancer genes. SpeedSeq automatically pre-
pares VCF files of SNVs, indels, and SVs by annotat-
ing them with the Ensembl Variant Effect Predictor
(VEP)[20] so that they may be directly loaded into
GEMINI.

A case study: rapid-turnaround clinical analysis and
interpretation of cancer genomes
Finally, to test SpeedSeq’s performance on real can-
cer data, we obtained deep (50X tumor, 30X normal)
WGS data from five tumor-normal pairs (three col-
orectal, one ovarian, and one breast cancer) with val-
idated somatic mutations from The Cancer Genome
Atlas (TCGA) and processed them with SpeedSeq us-
ing default parameters. SpeedSeq recalled 96.4% of
the orthogonally validated mutations across all five
datasets including 98.8% of validated mutations in
COSMIC census genes that have been causally impli-
cated in cancer (Table 3). These are excellent levels of
sensitivity considering that these mutations were orig-
inally ascertained by deep exome sequencing. To pro-
vide an example of a typical cancer analysis workflow,
we next focused on an invasive breast carcinoma from
TCGA that carries a known gene fusion[32]. We per-
formed somatic variant calling on the tumor-normal
pair using the standard SpeedSeq workflow. With four
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$ gemini load -v tumor.vcf.gz -t VEP -p sample.ped tumor.db

$ gemini set_somatic tumor.db

$ gemini fusions --in_cosmic_census --min_qual 1 tumor.db

chr3  178905990   chr3    176909982   -   +   complex PIK3CA  TBL1XR1

$ gemini actionable_mutations tumor.db

chr17   7578460     7578461     TP53    non_syn_coding
chr17   59861630    59861641    BRIP1   inframe_codon_loss
chr2    128046288   128046289   ERCC3   non_syn_coding
chrX    132838304   132838328   GPC3    splice_region

speedseq sv

speedseq somatic

speedseq align

tumor.vcf.gz

Input
FASTQ

TBL1XR1 (NM_024665)
exon 1 (5' UTR)

PIK3CA (NM_006218)
exon 2

Figure 6 A case study in a tumor-normal pair. A SpeedSeq workflow demonstrating the seven succinct commands required to
process a tumor-normal pair (TCGA-E2-A14P) from raw FASTQ reads to clinically actionable somatic mutations with predicted
damaging consequences. In this tumor, SpeedSeq detected a somatic gene fusion product between exon 1 of TBL1XR1 and exon 2
of PIK3CA, a fusion that had been previously reported by Stransky et al.[32]

concise commands and less than an hour of compu-
tation, we loaded the VCF file into GEMINI, filtered
variant calls for high-confidence, clinically relevant so-
matic mutations, and predicted gene fusion events
(Fig. 6). This procedure produced several clinically
actionable mutations in the tumor (including a pre-
viously confirmed missense mutation in TP53), as well
as the known gene fusion event (Fig. 6). These analyses
demonstrate the ease with which clinically relevant so-
matic mutations – including both point mutations and
genomic rearrangements – can be identified using the
SpeedSeq framework.

Methods
Alignment and BAM processing
SpeedSeq aligns paired-end FASTQ files to the human
GRCh37 reference genome with BWA-MEM, using the
-M flag to mark shorter alignments as secondary. In ad-
dition, several data manipulation components of typ-
ical pipelines are combined or reorganized to elimi-
nate hours of processing. For example, duplicate mark-
ing, previously an 8 hour operation which prevents
PCR amplification effects from biasing variant calling
algorithms, is far more efficient when duplicates are
marked on a query name-sorted BAM file streamed

directly from the aligner. By streaming input directly
from BWA, SAMBLASTER can seize idle CPU cycles
that are periodically liberated each time BWA reads
a FASTQ data chunk into the buffer. Furthermore, by
marking duplicates at this earlier stage, this step can
be combined with the extraction of discordant read-
pairs and split read alignments, a process that also
requires a query name-sorted BAM file. The SAM-
BLASTER tool achieves the fastest duplicate marking
to date, while simultaneously producing auxiliary files
for downstream analyses[15].

SNV and indel calling

SpeedSeq runs FreeBayes version 0.9.16 with –min-
repeat-entropy 1 and –experimental-gls parameters for
germline variant calling. For somatic variant detec-
tion, SpeedSeq uses parameters tuned to increase sen-
sitivity over low frequency variants (–pooled-discrete
–genotype-qualities -F 0.05 -C 2 –min-repeat-entropy
1). SpeedSeq reports a somatic score (SSC) to estimate
the confidence of each variant. The somatic score is
the sum of the log odds ratios of the tumor (LODT )
and normal (LODN ) based on the genotype likelihood
probabilities from FreeBayes.
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LODT = log10

PT (alternate)

PT (reference)
(1)

LODN = log10

PN (reference)

PN (alternate)
(2)

SSC = LODT + LODN (3)

To increase speed, SpeedSeq runs a parallelized im-
plementation of FreeBayes over 34,123 windowed re-
gions of the genome averaging ∼84 kb in length. We
generated these regions by partitioning the genome
into bins of approximately equal numbers of reads,
based upon the aggregate coverage depth of all 17
members of the CEPH 1463 family pedigree (Supple-
mentary Fig. 1) (see Excluded regions). This binning
scheme balances the computational load over the Free-
Bayes instances by allocating processors based on the
quantity of expected input data. Additionally, it allows
us to prioritize the processing hierarchy so that higher
depth regions are analyzed first, further reducing the
chance of unbalanced parallelization.

Structural variation detection
SpeedSeq uses LUMPY to detect structural vari-
ant breakpoints from paired-end and split-read sig-
nals, and CNVnator[19] to detect copy number vari-
ants (CNVs) by read-depth analysis. Analyses pre-
sented here were performed using the SpeedSeq de-
faults (-mw 4 -tt 0, min clip 20, min non overlap 101,
min mapping threshold 20, discordant z 5, back distance
10, and weights of 1 for both paired-end and split-read
evidence). SpeedSeq converts raw LUMPY output into
a VCF file, merging evidence from multiple libraries
by extracting the SM (sample) readgroup tag from
each BAM file. This VCF file can be optionally anno-
tated for copy number state at each structural variant
with CNVnator version 3.0. Our custom parallelized
implementation of CNVnator performs copy number
segmentation on bins of 100 bp, and reduces process-
ing time by allocating each chromosome to a separate
parallel process.

Structural variant genotyping
SVTyper is a maximum-likelihood Bayesian classifica-
tion algorithm to infer an underlying genotype at each
SV. Alignments at SV breakpoints either support the
alternate allele with split or discordant reads, or they
support the reference allele with concordant reads that
bridge the breakpoint. The ratio and quantity of these
observations allows probabilistic inference of genotype
likelihood.

Under the assumption of diploidy, the set of pos-
sible genotypes at any locus is G = {reference,
heterozygous, homozygous}. We defined the function
S, where S(g) is the prior probability of observing a
variant read in a single trial given a genotype g at
any locus. These priors were set to 0.1, 0.4, 0.8 for
reference, heterozygous, and homozygous deletions re-
spectively. Assuming a random sampling of reads, the
number of observed alternate (A) and reference (R)
reads (scaled by mapping quality, 10(−mapq/10)) will
follow a binomial distribution B(A + R,S(g′)), where
g′ ∈ G is the true underlying genotype. Using Bayes’s
theorem we can derive the conditional probability of
each underlying genotype state from the observed read
counts (Eq. 4). For these experiments, we have set the
a priori probability P (g) = 1

3 for each genotype, giv-
ing them equal expectations. Finally, we calculate ĝ as
the inferred genotype for the variant. Since the algo-
rithm only interrogates SVs in the VCF file that have
passed LUMPY filters as non-reference, it reports the
more likely genotype of heterozygous or homozygous
alternate states.

S(g) =

 0.1 if g = reference
0.4 if g = heterozygous
0.8 if g = homozygous alternate

(4)

P (A,R | g) =
(
A+R
A

)
· S(g)A · (1− S(g))R (5)

P (g | A,R) = P (A,R|g)·P (g)
P (A,R)

= P (A,R|g)·P (g)∑
g∈G

P (A,R|g)·P (g) (6)

ĝ = arg maxg∈G P (g | A,R) (7)

Excluded regions
Despite the high quality of the human reference
genome, artifacts remain in low-complexity regions
and unannotated paralogous sequences that delay
processing time and confound variant interpretation.
These regions exhibit a several-fold increase in se-
quencing coverage depth where reads from disparate
parts of the genome accumulate, violating the diploid
assumption of downstream variant calling algorithms.
To identify these high-depth regions we obtained PCR-
free, 50X, paired-end sequencing data for all 17 mem-
bers of the CEPH 1463 family pedigree in the Il-
lumina Platinum Genomes project (European Nu-
cleotide Archive: ERP001960). We aligned the reads
to GRCh37 with BWA-MEM and measured aggregate
coverage depth from all family members, excluding
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15.6 Mb (0.6% of the genome) where the depth was
greater than 2 × mode coverage + 3 standard devia-
tions (Supplementary Fig. 1a). These criteria serve to
exclude genomic regions that exhibit aberrantly high
sequence coverage, while allowing for a 2-fold increase
in copy number relative to the reference. These high-
depth excluded regions are excluded from SNV, indel,
and structural variant calling applications of Speed-
Seq. For structural variation detection with LUMPY,
we also exclude the mitochondrial genome, which is
prone to false positive calls due to extremely high
depth.

SNV and indel validation
We compared SpeedSeq’s germline SNV and indel vari-
ant calling against two independent truth sets for
NA12878, one derived from the Genome in a Bot-
tle NA12878 gold standard calls and the other based
on Omni microarray data from the 1000 Genomes
Project. The GIAB 2.17 truth set contained 2,803,144
SNVs and 364,031 indels within highly confident re-
gions (excluding segmental duplications, simple re-
peats, decoy sequence, and CNVs), spanning 2.2 Gb
(77.6% of the mappable genome) for which non-variant
sites could be confidently considered homozygous ref-
erence. The Omni microarray truth set contained
2,177,040 informative SNVs of which 689,788 were
non-reference in NA12878, excluding markers within
50 bp of known indels. PCR-free 50X fastq files for
NA12878 were obtained from the Illumina Platinum
Genomes project were aligned and variant-called with
SpeedSeq using to default parameters. To benchmark
SpeedSeq’s performance against other standard tools,
we also processed the aligned BAM files according to
the Genome Analysis Toolkit (version 3.2-2-gec30cee)
best practices workflow, including realignment around
indels, base recalibration, and variant calling with
Unified Genotyper (GATK-UG) and Haplotype Caller
(GATK-HC). Variant quality score recalibration was
performed on GATK variant callers, using a passing
tranche filter of <99%. We normalized and compared
variant calls according to the GIAB protocol, with
vcfallelicprimatives, GATK’s LeftAlignAndTrimVari-
ants, and VcfComparator[34]. We filtered variants for
sensitivity and FDR against the GIAB truth set us-
ing a minimum quality score of 100 for GATK tools,
and 1 for SpeedSeq (open circles, Fig. 2a,b). To eval-
uate performance in detecting somatic variants, we
generated a simulated tumor-normal matched pair
from the CEPH 1463 family Illumina Platinum data.
The “tumor” dataset was an equal mixture of all 11
members of the F2 generation, downsampled to 50X
coverage and aligned with SpeedSeq. The father of
the F2 generation (NA12878) represented the 50X

germline matched normal sample. Thus any variants
present in the mother (NA12878) but absent from
the father (NA12877) would appear as somatic mu-
tations in the tumor-normal pair. In addition to re-
taining library preparation and chemistry biases of
genuine sequence data, the heterozygous variants in
the NA12878 follow a binomial pattern of inheritance
in her children, allowing us to evaluate sensitivity
and specificity for subclonal somatic mutations at a
range of variant allele frequencies (Fig. 3a). To de-
termine the expected allele frequency of somatic vari-
ants in the simulated tumor dataset, we selected vari-
ants that were present in the NA12878 GIAB 2.17
truth set but absent from NA12877 based on Real
Time Genomics (RTG) joint variant callset of the en-
tire CEPH 1463 pedigree (ftp://ftp-trace.ncbi.
nih.gov/giab/ftp/data/NA12878/variant_calls/

RTG/cohort-illumina-wgs.vcf.gz). We assessed the
presence/absence of these variants in the F2 genera-
tion using RTG calls to derive their expected vari-
ant allele frequency in the simulated tumor dataset.
For inclusion in the somatic SNV truth set, we re-
quired a variant to be diallelic, autosomal, and called
by RTG as non-reference in NA12878 and reference in
NA12877. Additionally, variants were disqualified from
the truth set if they were called by RTG as homozy-
gous for the alternate allele in any of the F2 children
(a Mendelian violation). These criteria resulted in a
set of 875,206 high confidence SNVs covering 77.6%
of the mappable genome. We processed the data with
SpeedSeq, MuTect 1.1.4, SomaticSniper, and VarScan
2 using parameters designed to target variants as low
as 5% variant allele fraction. Receiver operating char-
acteristic (ROC) curves were generated by varying so-
matic score (SSC) for SpeedSeq, SomaticSniper, and
VarScan 2. For MuTect, which does not produce a sin-
gle quality score for somatic variants, we varied the
t lod fstar value to construct the ROC curve.

Structural variant evaluation
We used inheritance information from the CEPH 1463
pedigree to evaluate deletion calls from SpeedSeq.
Genuine deletions in the F2 generation are expected to
segregate along SNV-based haplotype phasing of the
chromosomes through all three generations of the pedi-
gree, while variants that segregate discordantly can
be assessed as false positives. To construct haplotype
maps of the F2 genomes, we called SNVs with Speed-
Seq on the entire 17-member pedigree, and phased
SNVs by transmission at polymorphic sites in the par-
ents. We smoothed the chromosomes for contiguous
blocks of inheritance by selecting informative bases
where 95% of each run of 101 SNVs reported a con-
sistent parent-of-origin. We then merged regions that
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shared inheritance and were within 100 kb of each
other. This allowed us to trace an average of 1.8 Gb
(63.4%) of each F2 chromosome back to a particu-
lar grandparent, encapsulating meiotic crossovers that
occurred in the F1 germline (Fig. 3). We then used
SpeedSeq to jointly call structural variants on the en-
tire pedigree, filtering for deletions that had at least
seven pieces of support in at least one member of the
pedigree, had legal Mendelian transmission, and whose
origin could be unambiguously attributed to a single
grandparent. Variants for which the founding grand-
parent by SV transmission agreed with the founding
grandparent by SNV phasing were considered to be
concordant, with strong supporting evidence for their
authenticity.

Tumor-normal pairs
Whole-genome sequencing data from five matched
tumor-normal pairs and their orthogonally validated
somatic mutations were obtained from The Cancer
Genome Atlas (TCGA). These included three col-
orectal (TCGA-A6-6141, TCGA-CA-6718, TCGA-D5-
6540), one ovarian (TCGA-13-0751), and one breast
cancer (TCGA-B6-A0I6). Raw FASTQ reads were
downsampled to 50X coverage in the tumor and 30X
coverage in the normal sample. Samples were pro-
cessed with SpeedSeq for alignment, somatic muta-
tions, and structural variants using default parame-
ters and then loaded into GEMINI for variant inter-
pretation. We also analyzed whole genome sequenc-
ing data from a tumor-normal pair (∼63X tumor,
∼49X normal coverage) of a patient with an invasive
breast carcinoma (TCGA-E2-A14P) containing a pre-
viously reported gene fusion between TBL1XR1 and
PIK3CA[32].

Hardware
All timings reported herein were performed on a single
machine with 128 GB RAM and two Intel Xeon E5-
2670 processors, each with 16 threads.
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