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A mechanistic model of the S-shaped population growth

Lev V. Kalmykov
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The main idea of this note is to show the most basic and purely mechanistic model of
population growth, which has been used by us to create models of interspecific competition
for verification of the competitive exclusion principle (7, 2). Our logical deterministic
individual-based cellular automata model demonstrates a spatio-temporal mechanism of
the S-shaped population growth.

A classical model of the S-shaped population growth is the Verhulst model. Unfortunately, this
is completely non-mechanistic (black-box) model as the internal structure of the complex system
and mechanisms remain hidden (3). Here I show a completely mechanistic ‘white-box” model of
the S-shaped population growth (Fig. 1 and Movie S1).
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Figure 1. S-shaped population growth. A logical deterministic individual-based cellular
automata model of single species population dynamics (Movie S1). a, S-shaped
population growth curve. b, Cellular automata lattice at the 30™ iteration.
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A biological prototype of the model is aggressive vegetative propagation of rhizomatous lawn
grasses — e.g. Festuca rubra trichophylla (Slender creeping red fescue). One individual
corresponds to one tiller (Fig. 2). A tiller is a minimal semi-autonomous grass shoot that sprouts
from the base. Rhizomes are horizontal creeping underground shoots using which plants
vegetatively (asexually) propagate. Unlike a root, rhizomes have buds and scaly leaves. One
tiller may have maximum six rhizoms in the model. A tiller with roots and leaves develops from
a bud on the end of the rhizome. A populated microhabitat goes into the regeneration state after
an individual’s death. The regeneration state of the site corresponds to the regeneration of
microhabitat's resources including recycling of a dead individual (Fig. 2b). All individuals are
identical. Propagation of offsprings of one individual leads to colonization of the uniform,
homogeneous and limited habitat. Finite size of the habitat and intraspecific competition are the
limiting factors of the population growth. The maximum possible number of offsprings of one
individual is six (Fig. 2a). An individual may propagate in all nearest microhabitats according to
the logical rules (Figs 2 and 3).
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Figure 2. Biological interpretations of the model. a, Identical offsprings of the one
parental individual occupy all nearest microhabitats what corresponds to aggressive
vegetative propagation of plants. The maximum number of offsprings per one individual
equals six. The neighbourhood defines fecundity and spatial positioning of offsprings.
b, A biological interpretation of the graph of transitions between the states of a lattice
site. The graph represents a birth-death-regeneration process.

A mathematical description of the model. A cellular automata model is defined by the 5-tuple:

a lattice of sites;
a set of possible states of a lattice site;

1

2

3. aneighborhood;

4. rules of transitions between the states of a lattice site;
5

an initial pattern.
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Rules of the cellular automata model are presented in Fig. 3 and in the following text.
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Figure 3. Rules of the cellular automata model. a, Hexagonal neighborhood.
Coordinates i and j are integer numbers. b, Directed graph of transitions between the
states of a lattice site.

The lattice consists of 25x25 sites and it is closed on the torus to avoid boundary effects (Fig.
1b). Each site may be in one of the three states 0, 1 or 2, where:

0 — a free microhabitat which can be occupied by an individual of the species;

1 — a microhabitat is occupied by a living individual of the species;

2 — aregeneration state of a microhabitat after death of an individual of the species.
A free microhabitat is the intrinsic part of environmental resources per one individual and it
contains all necessary resources and conditions for an individual's life. A microhabitat is
modeled by a lattice site. The cause-effects relations are logical rules of transitions between the
states of a lattice site (Fig. 3):

0—0, a microhabitat remains free if there is no one living individual in its neighborhood;
0—1, a microhabitat will be occupied by an individual of the species if there is at least
one individual in its neighborhood;

1—2, after death of an individual of the species its microhabitat goes into the
regeneration state;

2—0, after the regeneration state a microhabitat becomes free if there is no one living
individual in its neighborhood;

2—1, after the regeneration state a microhabitat is occupied by an individual of the
species if there is at least one individual in its neighborhood.

Physically speaking this is the simplest model of active (excitable) media with autowaves
(travelling waves, self-sustaining waves) (/, 4, 5). An active medium is a medium that contains
distributed resources for maintenance of autowave. An autowave is a self-organizing dissipative
structure. An active medium may be capable to regenerate its properties after local dissipation of
resources. In our model, reproduction of individuals occurs in the form of population waves (Fig.
1). We use the axiomatic formalism of Wiener and Rosenblueth for simulation of excitation
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propagation in active media (6). In accordance with this formalism rest, excitation and
refractoriness are the three successive states of a site. In our model the rest state corresponds to
the free state of a microhabitat, the excitation state corresponds to the life activity of an
individual in a microhabitat and the refractory state corresponds to the regeneration state of a
microhabitat. All states have identical duration. If the refractory period will be much longer than
the active period, then such a model may be interpreted, for example, as propagation of the
single wave of fire on the dry grass. Time duration of the basic states can be easily varied using
additional states of the lattice sites.

According to Alexander Watt, a plant community may be considered ‘as a working mechanism’
which ‘maintains and regenerates itself’ (7). This logical model of the single-species population
dynamics shows such mechanism in the direct and most simplified form. We consider the white-
box modeling by logical deterministic cellular automata as a perspective way for investigation
not only of population dynamics but also of all complex systems (/, 3). The main feature of this
approach is the use of cellular automata as a way of linking semantics (ontology) and logic of the
subject area. Apparently, the effectiveness of this approach is provided by the fact that cellular
automata are an ideal model of time and space.
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