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Abstract

High-throughput data are becoming ubiquitous in biological research, and rapidly
changing technologies and application mean that novel methods for detecting
differential behaviour that account for a ‘small n, large P ’ setting are required
at an increasing rate. The development of such methods is, in general, being
done on an ad hoc basis, requiring further development cycles and a lack of
standardization between analyses.

We present here a generalized method for identifying differential behaviour
within high-throughput biological data through empirical Bayesian methods.
This approach is based on our baySeq algorithm for identification of differential
expression in RNA-seq data based on a negative binomial distribution, and in
paired data based on a beta-binomial distribution. Here we show that the same
empirical Bayesian approach can be applied to any parametric distribution,
removing the need for lengthy development of novel methods for differently dis-
tributed data. We compare the application of these generic methods to methods
developed specifically for particular distributions, and show equivalent or better
performance. We additionally present a number of enhancements to the baySeq
algorithm and a set of strategies to reduce the computational time required for
complex data sets.

The methods are implemented in the R baySeq (v2) package, available at
http://www.bioconductor.org/packages/release/bioc/html/baySeq.html.

∗to whom correspondence should be addressed <tjh48@cam.ac.uk>
†Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2

3EA, United Kingdom

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2014. ; https://doi.org/10.1101/011890doi: bioRxiv preprint 

http://www.bioconductor.org/packages/release/bioc/html/baySeq.html
https://doi.org/10.1101/011890
http://creativecommons.org/licenses/by-nc-nd/4.0/


Generalised empirical Bayesian methods T.J.Hardcastle

1 Introduction

High-throughput data are becoming ubiquitous in biological research, and nu-
merous statistical techniques have been developed to analyse these data, gen-
erally to identify patterns of difference between sets of biological replicates.
Microarray technology led to a proliferation of methods [20, 32, 7, 24] designed
to analyse data within a ‘small n, large P ’ setting under assumptions of (log-
) normality. The subsequent emergence of high-throughput sequencing (HTS)
motivated the development of analysis methods which generally assumed some
form of over-dispersed Poisson distribution [30, 2, 13].

The majority of these analytic methods seek not merely to adjust for the
high-dimensionality of the data [3], but to exploit it through various forms of
the ‘borrowing’ of information across the P dimension. However, many of the
methods developed achieve this borrowing of information by exploiting specific
features of the data. Consequently, while the methods developed for analysis
of the negative-binomially distributed HTS data are conceptually similar to
those previously developed for analysis of (log-) normally distributed data, the
implementation of these methods is strongly divergent.

Novel technologies for high-throughput generation of biological data may re-
quire different distributional assumptions to current methods. More complex
experimental designs, involving multi-dimensional data are describing diverse
types of biological information within a single organism [36, 35, 37]. Complete
analysis of single-cell sequencing also seems likely to require novel distribu-
tional assumptions [6, 17, 21], as do analyses of high-throughput quantitative
proteomic data [8, 26]. While some of these challenges are beginning to be ad-
dressed, this is being done on an ad hoc basis, requiring further development
cycles and a lack of standardisation between analyses.

We present here a generalised method for identifying differential behaviour
within high-throughput data of all types. This approach is based on our baySeq
algorithm for identification of differential expression in RNA-seq data based
on a negative binomial distribution [13], and in paired data based on a beta-
binomial distribution [14]. Here we show that the same empirical Bayesian
approach can be applied to any parametric distribution, removing the need for
lengthy development of novel methods for differently distributed data. We com-
pare the application of these generic methods to methods developed specifically
for particular distributions, and show equivalent or better performance. We ad-
ditionally present a number of enhancements to the baySeq algorithm and a set
of strategies to reduce the computational time required for complex data sets.

2 Methods

The generalisation of methods allows differential behaviour to be identified in
any class (or combination of classes) of genomic event which can be detected
through some application of high-throughput technologies. We consider the first
dimension of the data to define a specific genomic event, and define the data
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attached to a particular genomic event c as Dc. Thus, for the simple case of
mRNA-seq, the Dc describes the number of sequenced reads for a gene c in each
biological sample. The second dimension of the data gives an indexing of the
samples; thus, Dcj refers to data from the jth sample for the cth genomic event.
Further dimensions of the data may be used to refer to individual components
of a genomic event; e.g., timepoints, marker classification, et cetera.

In addition to the sequenced (or other stochastic) high-throughput data,
we may also consider sets of observables. These are known, fixed observations
that influence the generation of the data. Typical examples of these observables
include library scaling factors (a measure of the depth of sequencing for each
sample) and coding sequence length (in mRNA-seq experiments).

2.1 Generalised empirical Bayesian methods

As previously [13, 14], we suppose that there exists some model M whose poste-
rior likelihood, given the observed data, is to be estimated. The model is defined
by the equivalence classes {E1, ..., Em} such that samples i and j are equiva-
lent on genomic event c if and only if Dci and Dcj are drawn from identically
parametrised distributions. For notational simplicity, we define the set DcEq as
the data associated with equivalence class Eq. We similarly define the replicate
sets {F1, ..., Fk} such that samples i and j are in the same replicate set Fr if
and only if they are biological replicates, and define the set DcFr as the data
associated with replicate set Fr.

The posterior likelihood of a model M for a genomic event c is then acquired
by computation of

P(M | Dc) =
P(Dc|M)P(M)

P(Dc)
(1)

The major challenge in estimating the posterior likelihood of M is in estimat-
ing P(Dc|M), the likelihood of the data for a particular genomic event c given
the model. If θq = {φq1, ...φqn} is a random variable defining the parameters of
the distribution of the data in DcEq and we assume that the θq are independent,
then

P(Dc |M) =
∏
q

∫
P(DcEq | θq)P(θq |M)dθq (2)

If Θq is a set of values sampled from the distribution of θq, then P(Dc |M)
can be approximated [11] by

P(Dc |M) =
∏
q

1

|Θq|
∑
ηq∈Θq

P(DcEq | ηq) (3)

Similarly, posterior distributions on θq given a model M and the observed
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data DcEq , can be estimated by weighting each ηhq in Θq by ωhq , where

ωhq =
P(DcEq | ηhq )∑

ηq∈Θq
P(DcEq | ηq)

(4)

We have previously shown for a negative-binomial distribution [13] and a
beta-binomial distribution [14] how the data can be sampled to acquire the
sets Θq, and thus approximate P(Dc|M) through such a numerical integration.
These methods generalise to any parametric distribution for which there is some
method for estimating the parameters given the observed data Dc. The imple-
mentation of this generalisation in baySeq v2 allows these empirical Bayesian
methods to be applied to any distribution for which a maximum likelihood so-
lution exists, including for multi-dimensional data, simply by defining a density
function f such that P(Dcj |η) = f(Dcj ; η).

2.2 Sampling Θq

Given a density function f(D; η), a modelM , and a replicate structure {F1, F2, · · · , Fk},
the sets {Θ1, ...,Θm} are acquired by sampling from the data. It is often con-
venient to assume that certain parameters of the distribution of the data are
(marginally) identically distributed under all circumstances. In negative bino-
mial modelling of high-throughput sequencing data, for example, the dispersion
is commonly assumed to be fixed for any given transcript [30, 13]. This strategy
reduces the number of parameters required to be estimated from the data and,
especially for low numbers of replicates, will tend to increase the stability of the
estimated values. We thus categorise the ηqk as either marginally identically
distributed over all q and models M , or not.

Suppose that we sample the data for some genetic event h. We first consider
the likelihood of the data as the product of the likelihood of the data within
each replicate group

P(Dh) =
∏
r

f(DhFr ; η
h
r1, ..., η

h
rn) (5)

and choose ηhrk to maximise this likelihood subject to the constraint that ηhrk = ηhsk
for all r, s if ηhqk is assumed to be marginally identically distributed over all q
and models M . For each equivalence class Eq, we then calculate

P(DhEq ) = f(DhEq ; η
h
q1, ..., η

h
qn) (6)

and maximise this likelihood subject to the constraint that ηhqk = ηhrk for all

k if ηhqk is assumed to be marginally identically distributed over all q and M .

This gives a single sampling of values for each ηhq ∈ Θq. We continue sampling
(without replacement) to acquire sufficiently large Θq.

In both maximisations, we use the Nelder-Mead [25] algorithm as imple-
mented in R’s optim function. This requires initial values to be provided. For
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Figure 1: Distribution of the log of the parameter associated with the mean
expression (scaled for library scaling factor and gene length) in a set of RNA-
seq data derived from rat thymus in juvenile female individuals [37]. The tail of
data to the left of the modal peak may be considered to represent non-expressed
genes. The red line indicates the threshold level which minimises the intra-class
variance.

optimal performance, these initial values should be as close as possible to the
solution to the optimisation, and so baySeq v2 allows these to be specified as a
function of the sampled data Dh.

Maximum likelihood solutions will not always be optimal. In certain cir-
cumstances we find increased performance by constraining the domain in which
the function to be optimised operates. We give an example of this below when
considering a zero-inflated negative binomial model.

2.2.1 Variations on hyperparameter distribution

In sequencing expression of various genomic events, it is not uncommon to find
a subset of genomic events that are qualitatively different from the remainder
of the data. In mRNA-Seq data, we expect a set of unexpressed genes to which
only a small number of reads are assigned, either through sequencing error, mis-
alignment, very low background levels of expression, et cetera. Figure 1 shows
the distribution of the log of the parameter associated with the mean expression
in a set of RNA-seq data assumed to be distributed negative binomially and
equivalently across all samples. The tail of data to the left of the modal peak
may be considered to represent non-expressed genes.

To distinguish between such qualitatively different events, we can construct
additional models in baySeq v2. In the example above, we construct one model
(MNDE) for expressed but non-differentially expressed genes, and one model
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(MNE) for non-expressed genes. These two models are identical in terms of
their equivalence classes, but will differ in the assumed distribution of hyper-
parameters.

Two principal options exist for varying the assumed distributions of hyper-
parameters between models that share the same equivalence classes. Since the
purpose of the two models is to separate two qualitatively different sets of
genomic events, we may find some function on the sampled values of hyper-
parameters that splits the data. The data shown in Figure 1 can be split by
minimising the intra-class variance [27], as shown. Sampled values mapping to
the left of the threshold represent the distribution of data for MNE while those
to the right represent the distribution of data for MNDE . Supplementary S1
describes an analysis based on such a modelling.

In some cases, the distinction between two quantitatively different models for
gene expression introduces a natural choice of hyperparameter. For example, in
paired data, a substantial proportion of the data may be equivalently expressed
within all pairs, and this may be regarded as a qualitatively different scenario to
equivalent expression across replicates but divergent expression within each pair.
We have previously shown [14] that these cases can be analysed by constructing
a model for equivalent expression across replicates. Assuming a beta-binomial
distribution with parameters p, the proportion of counts observed in the first
member of each pair, and φ, the dispersion, a set Θq can be constructed by
maximum likelihood methods, as Section 2.2. We can then construct a second
model describing equivalent expression within pairs in which the calculated val-
ues for φ are used for the dispersions but in which the values for p are set to
0.5, the value which corresponds to a hypothesis of balanced expression between
pairs.

2.2.2 Bootstrapping weights on hyper-parameters

We can further refine the distributions on the different models by bootstrapping
weights attached to the sampled hyperparameter estimate. We begin by adapt-
ing Equation 3 to allow for weightings on the sets θq associated with a given
model, such that for model M the estimated hyper-parameters ηhq are weighted

by whM .

P(Dc |M) =
∏
q

1∑
h w

h
M

∑
h

whMP(DcEq | ηhq ) (7)

Initially, these weights may be determined by a partition of the estimated
hyper-parameters as described above, or may be identical over all hyper-parameters.
These weights can then be used to give initial estimates of posterior likelihoods
for each model, which can then be used to refine the weightings. Thus, if the
hyper-parameters ηhq are derived from a gene with an estimated posterior like-

lihood for some model M of phM , the weighting for those hyper-parameters can
be updated to whM = phM .
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Figure 2: Average ROC curves showing performance of baySeq v2 on balanced
and unbalanced differentially expressed data. Allowing unequal model priors
for different sets of the data increases performance for unbalanced data.

2.3 Model priors

Model priors may be provided based on prior knowledge, or estimated empiri-
cally from the calculated P(Dc |M) values. If estimated empirically, the default
behaviour is to calculate the P(Dc |M) for all models M and all c and use the
Bayesian Information Criterion (BIC) to choose between each model for each
c. The proportion of data for which a model M is selected using the BIC is
taken as the prior value P(M). If no data are selected for a given model, the
prior value is set to 1/n, where n is the total number of genomic events, and
the other priors adjusted accordingly. The use of the BIC gives better estimates
(Figure S3) of the expected numbers of differentially expressed genomic events
than the iterative method described in our previous work [13].

Rather than assume a single value for P(M), baySeq v2 now allows differ-
ent subsets of the data to take different values for the model prior. This can
substantially improve performance if there are strong reasons to suppose that
different subsets of the data will display different proportions of differential ex-
pression. We can apply this in a variety of circumstances, but perhaps the most
useful is in analyses of unbalanced differential expression, in which differential
expression is primarily in one direction.

Figure 2 shows a reanalysis of the simulated data used in Soneson et al [33].
The data from which this figure derive consist of simulated data equivalent to
12450 genes from 10 samples, of which approximately 1250 are differentially
expressed between the first five and second five samples. In one set of simu-
lations, the differentially expressed genes are equally likely to be up-regulated
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as down-regulated between the two groups in the data, while in the other, all
differential expression is an up-regulation of the second group relative to the
first. Allowing baySeq v2 to choose different model priors depending on which
group has higher average expression gives a substantial increase in performance
in the unbalanced case, while not affecting performance in the balanced data.

2.4 Computational Strategies

Calculating priors through numerical methods, and posterior likelihoods via
Eqn. 3 or Eqn. 7 are computationally expensive steps that scale linearly with
both the number of models to be evaluated and the number of genomic events
being considered. Several strategies are proposed to mitigate the computational
costs involved.

2.4.1 Stratified sampling

A minimum size of the sets Θq is required for accurate estimations of the pos-
terior likelihood. The highest accuracy of estimations of posterior likelihood
will generally be obtained by making Θq as large as possible, but this carries
computational costs, making sampling from the data necessary. However, for
the numerical approximation described in Eqn. 3 to provide a reasonable ap-
proximation to the true value of P(Dc|M), the sets Θq must contain values in
the high probability mass regions of P(DcEq |Θq). If the sets Θq are acquired
by sampling uniformly from the data, this can present difficulties for estimating
posterior probabilities for DcEq that lie in the tails of the hyperparameter space
of θq. Increasing the sample size will resolve this issue, but at a computational
cost. Instead, we propose a stratified sampling technique in which the data
are stratified by some summary statistic and equal volumes of data are sampled
from within each stratum. Each sampling is weighted proportionally to the total
number of elements in the stratum such that Eqn. 7

P(Dc |M) =
∏
q

1∑
h w

h
Ms

h

∑
h

whMs
hP(DcEq | ηhq ) (8)

such that sh is the reciprocal of the stratum size from which the value ηhq is
sampled.

2.4.2 Consensus Priors

For large numbers of models, computational costs can be reduced substantially
if we assume that the parameters are identically distributed for all models; that
is, that Θq = Θ for all q. In this case, Eqn. 3 becomes

P(Dc |M) =
∏
q

1

|Θ|
∑
η∈Θ

∏
i∈Eq

P(Dci | η) (9)
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and Eqn. 8 becomes

P(Dc |M) =
∏
q

1∑
h w

h
Ms

h

∑
h

whMs
h
∏
i∈Eq

P(Dci | ηh) (10)

The advantage of this formulation is that the values P(Dci | Θ) are identical
for all models; consequently, these need only be calculated only once and the
likelihood of the data under any model can then be evaluated by taking the ap-
propriate product-sum-product, considerably reducing the computational cost.

In estimating a set Θ, those parameters assumed to be marginally identically
distributed over all q and models M are estimated as previously described in
Eqn 5. We then randomly select amongst the replicate sets a single set Fr and
maximise the likelihood

P(DhFr ) = f(DhFr ; η
h
1 , ..., η

h
n) (11)

as in Eqn. 6, subject to the constraint that ηhk = ηhrk for all k, if ηhk is assumed
to be marginally identically distributed over all q and M . This gives a single
sampling of values for each η ∈ Θ.

2.4.3 The ‘catchall’ model

The number of potential models scales exponentially with the number of repli-
cate groups. The number of biologically plausible models will in general be much
smaller, and the number of biologically interesting models may be smaller still.
In cases where it is not clear which models are biologically plausible, or where
the number of plausible models exceeds the number of interesting models, the
‘catchall’ model provides a useful solution. This model assumes the data within
each replicate group is distributed independently. Any data not well charac-
terised by any other specified model will thus be best described by the ‘catchall’
model. Data for which the catchall model has a high posterior likelihood can
then be examined for previously unspecified patterns of expression of interest.

3 Results

The baySeq v2 methods described above can be applied to any high-dimensional
data provided a suitable distribution can be defined. To assess the general utility
of this approach, we consider several differently distributed data sets for which
different analytic methods have been specifically designed. We compare the
performance of baySeq v2 to these specific methods in identifying differential
expression.

3.1 Affymetrix Microarray Latin Square Data

Microarray data has conventionally been analysed under an assumption of (log)
normality. We compare the performance of limma [32], an established method
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Figure 3: Average false discovery rates and ROC curves for baySeq v2 and limma
from sampling of non-overlapping pairs of hybridisations in the Affymetrix
HGU133A Latin Square data. Percentiles of false discovery rates across sam-
plings are shown as transparent areas around curves.

for discovery of differential expression, to a baySeq v2 analysis using a normal
distribution in which

P(DcEq |ηq) =
∏

Dcj∈DcEq

1

σ
√

2π
e

−(Dcj−µq)
2

2σ2 (12)

where ηq = (µq, σ) with the standard deviation σ being assumed constant across
different equivalence classes Eq.

Comparisons are made on the Affymetrix HGU133A Latin Square data [1].
These data consist of three technical replicates of 14 hybridisations in a hu-
man background, with 42 spiked transcripts at divergent concentrations in each
hybridisation. We process the data using the RMA [16] algorithm using the al-
ternate chip description file supplied with the data. Non-differentially expressed
control spikes showed highly variable expression across arrays (Figure S5) and
were removed from further analysis.

To assess performance of the methods, we select seven non-overlapping pairs
of hybridisations in which to identify differential expression, and compute the
average numbers of true and false positives for each comparison. We repeat the
selection of pairs of hybridisations one hundred times, and show the distribution
of false positives against oligonucleotides selected and of ROC curves (Fig. 3).

ROC curves are very similar between the two approaches, while false dis-
covery rates are slightly lower in the baySeq v2 analysis, suggesting that a
generalised empirical Bayesian approach can match or exceed the performance
of a well-established method for microarray analysis.
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3.2 Zero-inflated RNA-Seq data

Zero inflation occurs when two processes operate upon the data, the first, a
binary distributed process that defines whether signal is present or absent, the
second, a distribution on the size of the signal (which may itself be zero) if a
signal is present. Zero-inflated negative binomial data may arise in a number of
scenarios using the current generation of high-throughput sequencing technol-
ogy. In cross-species analyses [5] in which the expression of gene homologues is
being compared, some genes may have moved out of a given regulatory pathway
and be unexpressed in some organisms. In meta-transcriptomic studies [12] the
observed expression of a gene may be driven by a single organism which may or
may not be present in the meta-sample. Similarly, in single-cell sequencing, the
expression of genes may be much more of a stochastic on/off process than ob-
served in a multi-cell profile [23]. Zero-inflation may also occur in genome-wide
enrichment data as a result of low coverage and sequencing bias [28].

We compare the ShrinkBayes package [34], which has been developed to
apply a generalised linear model based on a zero-inflated negative binomial
model to a baySeq v2 analysis using a zero-inflated negative binomial model in
which

P(DcEq |ηq) =
∏

Dcj∈DcEq

(1− ζ)g(Dcj , µqlj , φ) + ζIDcj=0 (13)

where g(Dcj , µqlj , φ) is the probability mass function of a negative binomial dis-
tribution with mean µqlj and dispersion φ, where lj is the library scaling factor
[13] of library j. IDcj=0 is an indicator function which is 1 if Dcj = 0 and 0
otherwise. ηq = (µq, φ, ζ), with the dispersion φ and proportion of zero inflation
ζ being assumed constant across different equivalence classes Eq. In the event
that no zeros appear in the reported expression for a gene, a maximum likeli-
hood estimation of the ζ parameter (Eqn. 5) will be zero (up to computational
precision). Similarly, since a highly dispersed negative binomial variable will
be rich in zeros, a maximum likelihood estimation on a zero-inflated gene may
report high φ and low ζ values. We find improved performance by limiting the
domain of the function defined by Eqn. 13 such that ζ ≥ maxr{1− 2−1|DcFr |},
that is, ζ must be greater or equal to that proportion of zero-inflation which
gives a 50% chance of seeing no zeros within the smallest replicate group.

In the absence of a zero-inflated data set for which true positives are known,
we assess performance on a simulated data set. We base this on previous simu-
lations developed to describe high-throughput sequencing data [13, 30] in which
data from ten thousand genes in ten samples are simulated from a negative bi-
nomial distribution, with means sampled from a SAGE dataset. To explore the
effects of increased sequencing depths in zero-inflated background, we scale the
mean expression by 1, 3, and 5. Dispersions for each gene are sampled from a
gamma distribution with shape = 0.85 and scale = 0.5. Library sizes for each
sample are sampled from a uniform distribution between 30000 and 90000. One
thousand of the genes are simulated to have an eight-fold differential expres-
sion in either direction between the first and second sets of five samples each.
For each gene, we then sample a proportion pc of zero-inflation from a uniform
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distribution between 0 and 0.5, and for each sample in that gene, replace the
observed value with a zero with probability pc.

Figure 4: Average ROC curves for baySeq v2 (zero-inflated negative binomial),
shrinkBayes and baySeq v2 (negative binomial) analyses of differential expres-
sion in zero-inflated negative binomially distributed data. Library scaling factors
are increased by factors of 1, 3, and 5. Percentiles of true positive rates across
samplings are shown as transparent areas around curves.

Figure 4 shows average ROC curves for the simulations, with mean expres-
sion scaled by 1, 3, and 5. In all cases, baySeq v2 with a zero-inflated negative
binomial model strongly outperforms ShrinkBayes, which generally outperforms
baySeq v2 using a negative binomial model. There is a general improvement in
performance with increased sequencing depth for the two methods accounting
for zero inflation which is reversed for the method which does not. This sug-
gests that zero inflation becomes increasingly significant with higher sequencing
depth, as might be expected.

3.3 Matched sample sequencing

The Rat BodyMap [37] project sequenced RNA-seq data from multiple organs
from juvenile, adolescent, adult and aged Fischer 344 male and female rats.
For each individual in this study, mRNA is sequenced from every available
organ. We use this data to demonstrate a novel analysis based on a multinomial-
Dirichlet distribution which allows us to identify changes in relative expression
within the tissue types while accounting for individual-specific effects.

For simplicity, we consider the data from ten tissue types (adrenal gland,
brain, heart, kidney, liver, lung, muscle, spleen, thymus, and uterus) in female
rats, comparing four juvenile (2-week old) to four aged (104-week old) individ-
uals. The data are thus multi-dimensional; for each gene and each individual,
we have ten values giving the expression in each organ.

We construct a baySeq v2 analysis using a Dirichlet-multinomial analysis in
which ηq = (pq1, pq2, φ). φ, the dispersion parameter, is assumed to be constant
across equivalence classes. The values pq1 and pq2 represent the proportion of
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expression in the tissues with highest and second highest mean expression in the
gene being modelled, with the proportion of expression in the eight remaining
tissues being modelled as pqr =

1−pq1−pq2
8 . We adopt this strategy to reduce

the dimensionality of the distribution being empirically estimated, and thus
prevent the empirical distribution from being too sparse an estimate of the true
distribution. We thus calculate the likelihood of the observed data as

P(Dc|ηq) =
∏

Dcj∈DcEq

Γ(
∑
k αqjk)

Γ(
∑
k αqjk +Dcjk)

10∏
k=1

Γ(αqjk +Dcjk)

Γ(αqjk)

where

αqjk1 = 1
φ−1

pq1Ljk1∑
j pq1Ljk1

if

〈
Dcjk1

Ljk1

〉
k1

≥
〈
Dcjk

Ljk

〉
k

∀k

αqjk2 = 1
φ−1

pq2Ljk2∑
j pq2Ljk2

if

〈
Dcjk2

Ljk2

〉
k2

≥
〈
Dcjk

Ljk

〉
k

∀k 6= k1

αqjkr = 1
φ−1

pqrLjkr∑
j pqrLjkr

otherwise

with Ljk the library scaling factor for the kth tissue of the jth individual.
We fit three models to these data. The first model describes genes with

consistent levels of expression across all tissue types and ages. The second
model describes genes with expression consistent between ages, but variable
within tissue types. The third model describes genes for which the ratio of
expression between tissues varies between juvenile and aged individuals. In the
first two of these models, all individuals lie in the same equivalence class.

To distinguish between those genes which have consistent levels of expres-
sion across all tissue types and ages and those which have consistent levels of
expression between ages but vary within tissue types, we compute priors for a
single model of consistent expression between ages. For the model of consistent
levels of expression across all tissue types and ages, we take the computed dis-
persion parameters and set pqk = 1

9 for all k, while for the model of consistent
expression between ages with variable expression between tissues, we use the
maximum likelihood estimated values of of pqk. We initially weight the models
by partitioning the values pq1 estimated for a model of consistent expression be-
tween ages (Figure S4) to minimise the intra-class variance [27] and use Eqn 7
to calculate posterior likelihoods based on these weighted values. For the model
of consistent expression across all tissue types and ages, whM is 1 if f(ηhq ) is less

than the partitioning threshold, 0 otherwise; for the remaining two models, whM
is 1 if fηhq is greater than the partitioning threshold, 0 otherwise. We bootstrap
these weightings as in Section 2.2.2 over five iterations.

Figure 5 shows the top ranked genes from each of the three models. The ex-
pected number of genes conforming to each model may be inferred by summing
the posterior likelihoods estimated for each gene for that model. An estimated
133 genes are expected to be consistently expressed across all tissues and time-
points. 4603 genes are estimated as showing variability between tissues, but no
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Figure 5: Expression levels of the top three identified genes from female rats
for each of three models of expression; consistent expression across tissue types
and ages (left), consistent expression across ages but variable between tissues
(centre) and variable expression between ages (right).

differential behaviour over time, while 15430 genes are expected to show variable
behaviour in one or more tissues over time. This unusually high proportion of
differential behaviour may be accounted for by noting that we are considering
ten distinct tissues, and differential behaviour in any one of those tissues will
be sufficient to identify differential expression.

Analysis of the posterior distributions of the hyper-parameters (Eqn 4, Fig S6)
allows a breakdown of the differential behaviour . Of the top 231 genes (selected
as controlling family-wise error rate at 10%) that show variability between tis-
sues and no differential behaviour over time, the gene is most abundantly ex-
pressed most frequently in brain tissue (36%), and most rarely in uterus tissue
(1.2%). Of these 231 genes, 95 show a likelihood greater than 95% of the param-
eter pq2 exceeding the nominal average proportion of 1

10 . These genes thus show
an increase in expression in two tissue types relative to the remaining tissues; of
these, the most frequent pairing are between heart and muscle tissues (27) and
kidney and liver (15).

For those genes that show a change in proportion of gene expression across
tissues over time, we are similarly able to breakdown the discovered differential
expression. Controlling family-wise error rate at 10%, we discover 10071 genes
that show changes over time. The largest category of change (27%) is a reduc-
tion of relative expression in thymus tissue over time, presumably as a result of
thymic involution [31]. However, in 1073 genes, this reduction in relative expres-
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sion in thymus tissue correlates with an increase in relative expression in spleen
tissue, suggesting a partial compensation mechanism may be in place. The genes
showing a reduction in thymus show a strong enrichment for RNA-binding func-
tion [9] (Figure S8, Table S1), potentially linked to age-related processes [22].
Other large categories of change involve large changes in relative expression over
time that nevertheless leave the gene maximally expressed in the same tissue
(Figure S7).

3.4 Complex modelling and computational time

We next use a subset of the Rat BodyMap [37] data to demonstrate the use
of various computational strategies to accelerate a complex modelling analysis.
We begin by considering the RNA-seq data for each of the four time points
(2, 6, 21 and 104 weeks) in the thymus of female rats. With four different
experimental conditions, there are a total of fifteen possible models. This is
sufficiently few models that we are able to evaluate, at some computational
cost, posterior likelihoods for each model using Eqn 7, with the priors being
sampled separately for each model as in Section 2.2. However, we can achieve a
significant reduction in computational cost through the use of consensus priors
(Eqn 10).

An alternative way to reduce the computational cost of this analysis is to
restrict the groups to those which are biologically plausible or interesting, and
to use a ‘catchall’ model to identify all genes which do not fit this model. We
will suppose that we are primarily interested in genes which undergo a single
change in expression between two consecutive timepoints where this change is
maintained for all subsequent timepoints. Together with the ‘catchall’ model,
and a model for non-differentially expressed genes, this requires the evaluation
of five models in total. We refer to these models as NDE (no differential expres-
sion), LDE (late differential expression), in which change occurs between the
third and fourth timepoints, MDE (median differential expression), in which
change occurs between the second and third timepoints, EDE (early differen-
tial expression), in which change occurs between the first and second timepoints,
and ‘catchall’. We can achieve further reductions in computational cost by using
consensus priors in this analysis.

To compare the performance of these approaches, we assume that the es-
timated posterior likelihoods for the complete fit without consensus priors are
accurate. We can then estimate the number of true positives (and hence, the
number of false positives) in each of the models in the restricted analysis for the
various approaches as the sum of the posterior likelihoods of the complete fit for
the first n selected genes. Figure 6 shows the results of these analyses. There is
a marginal increase in false discoveries between the complete fit and the com-
plete fit with consensus priors apparent for the NDE set and the MDE set, but
in general, the use of consensus priors appears to cause only minor changes in
performance for both the complete and reduced model fit. The false discovery
rate does show a clear increase between the complete and reduced model fit,
though this is not generally of large magnitude.
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Figure 6: False discovery rates for four different strategies for fitting the five
models showing conserved change in expression over time.

The time required for analysis was evaluated on an octo-core (2.50GHz)
machine, running in parallel on all cores. Analysis of the complete model fit
took 7.0h, while use of consensus priors reduced this to 1.7h. Analysis of the
reduced model took 3.3h, while use of consensus priors in the reduced model
took 1.4h. Given the similarity of performance between the complete model fit
with and without consensus priors, it seems that the use of consensus priors will
generally be preferable for the majority of analyses. It is also apparent from
these data that the use of consensus priors scales well, with an increase from 5
models in the reduced model set to 15 in the complete set causing only an 18%
increase in computational run time.

Using the complete model set allows the identification of further patterns of
differential expression over time. Figure 7 shows the expected number of genes
for each model, together with normalised and summarised expression values for
the top ranked gene in the eight models with highest number of expected genes.
These data suggest that, while the majority of genes are not differentially ex-
pressed across timepoints, almost as many genes show a change between the
fourth time points and the three earlier points. The models with highest num-
bers of expected genes do generally preserve the ordering of timepoints, however,
there are exceptional genes for which the second timepoint is distinct from all

16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2014. ; https://doi.org/10.1101/011890doi: bioRxiv preprint 

https://doi.org/10.1101/011890
http://creativecommons.org/licenses/by-nc-nd/4.0/


Generalised empirical Bayesian methods T.J.Hardcastle

other times ({1,3,4},{2}), and also for which the first and fourth time points
differ from the second and third points ({1,4},{2,3}).

Figure 7: The expected number of genes belonging to each model (a). Nor-
malised expression values of the top ranked genes for the eight models with
highest expected number of genes, summarised by timepoint (b).
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4 Discussion

We present here a highly flexible solution (baySeq v2) to the general problem
of identifying differential behaviour in the ‘large p, small n’ sets of data that
are becoming ubiquitous in biological experimentation (and elsewhere). Given
any parametric distributional assumptions for which a hyper-distribution on
the parameters can be inferred from the data, posterior likelihoods on diverse
patterns of differential expression can be inferred through an empirical Bayesian
analysis. We describe here methods to infer the hyper-distribution through
maximum likelihood methods, but this is not essential; any methods to infer
parameters from the data might be applicable.

We also introduce a number of further refinements to the basic concept. The
use of a consensus empirical distribution on the hyper-parameters removes much
of the computational cost of these analyses. We demonstrate this on an analysis
of complex gene behaviour in a subset of the rat BodyMap data in which the
time required for a 15 model analysis of 24750 genes in 16 samples is reduced
by 75% through the use of consensus priors with little change in performance.
Using these methods, we were able to identify replicated changes in patterns
of differential expression over time and show that diverse sets of differential
behaviour are present in these data.

Qualitatively distinct data may be distinguished through a weighting or mod-
ification of the empirical values representing a hyper-distribution on parameters.
We show that this technique allows the identification of unexpressed genes in
RNA-Seq data and consistent expression over multiple tissues and time points in
matched samples (Figure 5). Bootstrapping can improve the weightings assigned
to the sampled values and further improve performance. A natural extension
of this approach would be to use distinct distributions for the different models,
and this approach is currently under development.

Allowing model priors to vary over different subsets of the data can also
improve performance (Figure 2). This may be valuable in a variety of cases
where sufficient information is available to distinguish between large categories
of genes; for example, if a transcription factor is known to bind to a specific set
of gene promoters, this subset of genes is much more likely than its inverse to be
differentially expressed if this transcription factor is misregulated). Some care
may be needed with this approach in avoiding confirmation bias in downstream
analyses of the sets of differentially expressed data.

We demonstrate the effectiveness of this approach by comparison with meth-
ods designed specifically for particular distributional assumptions. The limma
[32] method is a well-established and widely used method for analysis of mi-
croarray data under an assumption of a log-normal distribution. We show on the
Affymetrix HGU133A Latin Square data a minor improvement in performance
of baySeq v2 over limma, under the same distributional assumptions (Fig 3).
We next examined sets of simulated zero-inflated negative binomial data, and
show substantial gains in accuracy using baySeq v2 with a zero-inflated nega-
tive binomial model over the ShrinkSeq method [34], an approach specifically
designed for zero-inflated negative binomial data.
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These comparisons do not necessarily imply that the accuracy of baySeq v2
will always match or exceed that of a method specifically designed for a particu-
lar set of distributional assumptions, but they do suggest that performance will
generally be acceptable. Two major advantages derive from this. Firstly, this
approach will substantially reduce development time for the analysis of data
with novel distributional assumptions. This reduction in development time ap-
pears essential if methods for powerful statistical analyses of these data are to
keep pace with the rapid development of new technologies and new applica-
tions of those technologies for generating large volumes of biological data. For
example, single-cell sequencing appears to include a mixture of Bernoulli and
Poisson noise [6], and is likely to require specific distributional assumptions to
account for heterogeneity of expression within an individual [17]. The diverse
classes of histone modification signatures [10, 15, 4] suggests that differential
behaviour in histone modification between samples might be identified by a si-
multaneous analysis of quantitative values for all histone modifications, perhaps
through an assumption of a multinomial-Dirichlet distribution. We describe the
development of such a model here as a method for analysing multiple matched
samples in RNA-seq data from diverse tissues of rat [37] over time. The results
acquired through this analysis correspond on a broad scale to known interac-
tions between tissues and their changes over time, and allow detailed comparison
of gene behaviour between tissues. The relative ease with which distributional
assumptions can be changed and modified using these methods also allows the
rapid incorporation of significant observables into the models; for example GC-
content [29], secondary structures [19], mapping uncertainties [18], et cetera.

The second major advantage of this approach is that it allows a standardis-
ation of output over the diverse data-types. Furthermore, posterior likelihoods
are easily manipulated and compared between analyses. For example, if a set
of RNA-seq data is analysed under an assumption of negative binomially dis-
tributed data and a set of ChIP-Seq data under an assumption of a multinomial-
Dirichlet distribution, it is straightforward to calculate (under an assumption
of independence) joint likelihoods of specific patterns of differential expression
of RNA-Seq and ChIP-Seq, and thus, for example, to order the set of overlap-
ping gene/histone modifications by the likelihood that both are differentially
expressed. Coupled with the capability of baySeq v2 to easily evaluate novel
datatypes, this suggests that novel data sets can be readily incorporated with
existing analyses.
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