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Abstract. Budding yeast, S. cerevisiae, has been used extensively as a
model organism for studying cellular processes in evolutionarily distant
species, including humans. However, different human tissues, while inher-
iting a similar genetic code, exhibit distinct anatomical and physiological
properties. Specific biochemical processes and associated biomolecules
that differentiate various tissues are not completely understood, neither
is the extent to which a unicellular organism, such as yeast, can be used
to model these processes within each tissue.
We propose a novel computational and statistical framework to system-
atically quantify the suitability of yeast as a model organism for differ-
ent human tissues. We develop a computational method for dissecting
the human interactome into tissue-specific cellular networks. Using these
networks, we simultaneously partition the functional space of human
genes, and their corresponding pathways, based on their conservation
both across species and among different tissues. We study these sub-
spaces in detail, and relate them to the overall similarity of each tissue
with yeast.
Many complex disorders are driven by a coupling of housekeeping (uni-
versally expressed in all tissues) and tissue-selective (expressed only in
specific tissues) dysregulated pathways. We show that human-specific
subsets of tissue-selective genes are significantly associated with the on-
set and development of a number of pathologies. Consequently, they pro-
vide excellent candidates as drug targets for therapeutic interventions.
We also present a novel tool that can be used to assess the suitability of
the yeast model for studying tissue-specific physiology and pathophysi-
ology in humans.

Introduction

Budding yeast, S. cerevisiae, is widely used as an experimental system, due to
its ease of manipulation in both haploid and diploid forms, and rapid growth
compared to animal models. Coupled with the continuous development of new
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experimental methodologies for manipulating various aspects of its cellular ma-
chinery, it has served as the primary model organism for molecular and systems
biology(1). Motivated by the availability of its full genome in 1996 as the first
eukaryotic organism to be sequenced(2), an array of functional genomics tools
emerged, including a comprehensive collection of yeast deletion mutants(3; 4),
genome-wide over-expression libraries(5), and green fluorescent protein (GFP)-
tagged yeast strains(6; 7). The maturity of yeast’s genetic and molecular tool-
box has, in turn, positioned it as the primary platform for development of many
high-throughput technologies, including transcriptome (8; 9; 10), proteome (11),
and metabolome (12; 13) screens. These -omic datasets, all originally developed
in yeast, aim to capture dynamic snapshots of the state of biomolecules during
cellular activities. With the advent of “systems modeling”, a diverse set of meth-
ods have been devised to assay the interactions, both physical and functional,
among different active entities in the cell, including protein-protein(14; 15; 16),
protein-DNA(17; 18), and genetic(19; 20; 21) interactions. These interactions,
also referred to as the interactome, embody a complex network of functional
pathways that closely work together to modulate the cellular machinery. Com-
parative analysis of these pathways relies on network alignment methods, much
the same way as sequence matching and alignments are used for individual genes
and proteins. Network alignments use both the homology of genes, as well as
their underlying interactions, to project functional pathways across different
species(22; 23; 24; 25). These methods have been previously applied to detec-
tion of ortholog proteins, projection of functional pathways, and construction of
phylogenetic trees.

Yeast and humans share a significant fraction of their functional pathways
that control key aspects of eukaryotic cell biology, including the cell cycle (26),
metabolism(27), programmed cell death(28; 29), protein folding, quality control
and degradation(30), vesicular transport(31), and many key signaling pathways,
such as mitogen-activated protein kinase (MAPK)(32; 33), target of rapamycin
(TOR)(34), and insulin/IGF-I(35) signaling pathways. In the majority of cases,
yeast has been the model organism in which these pathways were originally iden-
tified and studied. These conserved biochemical pathways drive cellular growth,
division, trafficking, stress-response, and secretion, among others, all of which
are known to be associated with various human pathologies. This explains the
significant role for yeast as a model organism for human disorders(36; 37; 38).
Yeast has contributed to our understanding of cancers(39; 40; 41) and neurode-
generative disorders(42; 43; 44). Having both chronological aging (amount of
time cells survive in post-mitotic state) and replicative aging (number of times
a cell can divide before senescence occurs), yeast is also used extensively as a
model organism in aging research. It has contributed to the identification of,
arguably, more human aging genes than any other model organism(45).

Depending on the conservation of the underlying pathways, there are two
main approaches to studying them in yeast. It has been estimated that, out of
2,271 known disease-associated genes, 526 genes (∼ 23%) have a close ortholog
in the yeast genome, spanning 1 out of every 10 yeast genes(46). For these or-
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thologous pairs of disease-associated genes, we can directly increase the gene
dosage of the endogenous yeast protein by using overexpression plasmids, or de-
crease it, through either gene knockout or knockdown experiments, in order to
study gain- or loss-of-function phenotypes, respectively. A key challenge in phe-
notypic screens is that disrupting genes, even when they have close molecular
functions, can result in characteristically different organism-level phenotypes.
Phenologs, defined as phenotypes that are related by the orthology of their asso-
ciated genes, have been proposed to address this specific problem(47). A recent
example of such an approach is the successful identification of a highly con-
served regulatory complex implicated in human leukemia(48). This complex,
named COMPASS (Complex of Proteins Associated with Set1), was originally
identified by studying protein interactions of the yeast Set1 protein, which is the
ortholog of the human mixed-lineage leukemia (MLL) gene, and years later was
shown to be conserved from yeast to fruit flies to humans. On the other hand, if
the disease-associated gene(s) in humans does not have close orthologs in yeast,
heterologous expression of the human disease-gene in yeast, also referred to as
“humanized yeast”, can be used to uncover conserved protein interactions and
their context, to shed light on the molecular mechanisms of disease development
and progression. For the majority of disease-genes with known yeast orthologs,
heterologous expression of the mammalian gene is functional in yeast and can
compensate for the loss-of-function phenotype in yeast deletion strains(1). This
approach has already been used to construct humanized yeast model cells to
study cancers(39), apoptosis-related diseases(49), mitochondrial disorders(50),
and neurodegenerative diseases(43). Perhaps one of the more encouraging ex-
amples is the very recent discovery of a new compound, N-aryl benzimidazole
(NAB), which strongly protects cells from α-synuclein toxicity in the human-
ized yeast model of Parkinson’s disease(51). In a follow-up study, they tested
an analog of the NAB compound in the induced pluripotent stem (iPS) cells
generated from the neuron samples of Parkinson’s patients with α-synuclein
mutations. They observed that the same compound can reverse the toxic effects
of α-synuclein aggregation in neuron cells(52). Using this combined phenotypic
screening, instead of the traditional target-based approach, they were not only
able to discover a key compound targeting similar conserved pathways in yeast
and humans, but also uncover the molecular network that alleviates the toxic
effects of α-synuclein. These humanized yeast models have also been used to
study human genetic variations(53).

Various successful instances of target identification, drug discovery, and dis-
ease network reconstruction using humanized yeast models have established its
role as a model system for studying human disorders. When coupled with more
physiologically relevant model organisms to cross-validate predictions, yeast can
provide a simple yet powerful first-line tool for large-scale genetic and chemi-
cal screening(43; 41). However, as a unicellular model organism, yeast fails to
capture organism-level phenotypes that emerge from inter-cellular interactions.
Perhaps, more importantly, it is unclear how effectively it can capture tissue-
specific elements that make a tissue uniquely susceptible to disease. All human
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tissues inherit the same genetic code, but they exhibit unique functional and
anatomical characteristics. Similar sets of molecular perturbations can cause
different tissue-specific pathologies given the network context in which the per-
turbation takes place. For example, disruption of energy metabolism can con-
tribute to the development of neurodegenerative disorders, such as Alzheimer’s,
in the nervous system, while causing cardiomyopathies in muscle tissues(54).
These context-dependent phenotypes are driven by genes that are specifically or
preferentially expressed in one or a set of biologically relevant tissue types, also
known as tissue-specific and tissue-selective genes, respectively. Disease genes,
and their corresponding protein complexes, have significant tendencies to se-
lectively express in tissues where defects cause pathology(55; 56). How tissue-
selective pathways drive tissue-specific physiology and pathophysiology is not
completely understood; neither is the extent to which we can use yeast as an
effective model organism to study these pathways.

We propose a quantitative framework to systematically measure the suitabil-
ity of yeast as a model organism for different human tissues. Our framework
is grounded in a novel statistical model for effectively assessing the similarity
of each tissue with yeast, considering both expressed genes and their underly-
ing physical interactions as a part of functional pathways. To understand the
organization of human tissues, we present a computational approach for parti-
tioning the functional space of human proteins and their interactions based on
their conservation both across species and among different tissues. Using this
methodology, we identify a set of core genes, defined as the subset of the most
conserved housekeeping genes between humans and yeast. These core genes are
not only responsible for many of the fundamental cellular processes, including
translation, protein targeting, ribosome biogenesis, and mRNA degradation, but
also show significant enrichment in terms of viral infectious pathways. On the
other hand, human-specific housekeeping genes are primarily involved in cell-
to-cell communication and anatomical structure development, with the excep-
tion of mitochondrial complex I, which is also human-specific. Next, we identify
comprehensive sets of tissue-selective functions that contribute the most to the
computed overall similarity of each tissue with yeast. These conserved, tissue-
selective pathways provide a comprehensive catalog for which yeast can be used
as an effective model organism. Conversely, human-specific, tissue-selective genes
show the highest correlation with tissue-specific pathologies and their functional
enrichment resembles highly specific pathways that drive normal physiology of
tissues.

Comparative analysis of yeast and human tissues to construct conserved and
non-conserved functional tissue-specific networks can be used to elucidate molec-
ular/ functional mechanisms underlying dysfunction. Moreover, it sheds light on
the suitability of the yeast model for the specific tissue/ pathology. In cases
where suitability of yeast can be established, through conservation of tissue-
specific pathways in yeast, it can serve as an experimental model for further
investigations of new biomarkers, as well as pharmacological and genetic inter-
ventions.
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Results and discussion

In this section, we present our comparative framework to investigate the scope
and limitations of yeast as a model organism for studying tissue-specific biol-
ogy in humans. Figure 1 illustrates the high-level summary of our study design.
We start by aligning human tissue-specific networks with the yeast interactome.
We couple the alignment module with a novel statistical model to assess the
significance of network alignments and use it to infer the respective similar-
ity/dissimilarity of human tissue-specific networks with their mapped counter-
parts in yeast. Using a network of tissue-tissue similarities, we show that our
alignment p-values fall within coherent groups of tissues that exhibit consistent
characteristics. We use this network to identify four such groups of tissues/ cell-
types. Furthermore, we partition both housekeeping and tissue-selective subsets
of human genes separately into the conserved and human-specific subsections.
We provide extensive validation for the selective genes with respect to blood cells
and brain tissues. Figure 2 illustrates the overall partitioning of these genes and
their relative subsets. We provide an in-depth analysis of each of these subsets,
and show that while conserved subsets can provide the safe zone that yeast can
be used as an ideal model organism, the human-specific subset can shed light
on the shadowed subspace of human genome in yeast and can provide future
directions for constructing humanized yeast models.

Aligning yeast interactome with human tissue-specific networks

The global human interactome represents a static snapshot of potential physi-
cal interactions that can occur between pairs of proteins. However, it does not
provide any information regarding the spatiotemporal characteristics of the ac-
tual protein interactions. These interactions have to be complemented with a
dynamic context, such as expression measurements, to help interpret cellular
rewiring under different conditions.

(57) overlaid the mRNA expression level of each transcript (transcriptome) in
different human tissues(58) on top of the global human interactome, integrated
from 21 PPI databases, and constructed a set of 79 reference tissue-specific
networks. We adopt these networks and align each one of them separately to the
yeast interactome that we constructed from the BioGRID database.

In order to compare these human tissue-specific networks with the yeast in-
teractome, considering both the sequence similarity of proteins and the topology
of their interactions, we employ a recently proposed sparse network alignment
method, based on the Belief Propagation (BP) approach. This method is de-
scribed in the Materials and methods section(59).

Genes, and their corresponding proteins, do not function in isolation; they
form a complex network of interactions among coupled biochemical pathways
in order to perform their role(s) in modulating cellular machinery. Moreover,
each protein may be involved in multiple pathways to perform a diverse set of
functions. Using a network alignment approach to project these pathways across
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species allows us to not only consider their first-order dynamics, through co-
expression of homologous protein pairs, but also the context in which they are
expressed.

To construct the state space of potential homologous pairs, we align all pro-
tein sequences in human and yeast and pre-filter hits with sequence similarity
E -values greater than 10. For genes with multiple protein isoforms we only store
the most significant hit. Using these sequence-level homologies, we construct a
matrix L that encodes pairwise sequence similarities between yeast and human
proteins. Entries in matrix L can be viewed as edge weights for a bipartite graph
connecting human genes on one side, and the yeast genes, on the other side. We
use this matrix to restrict the search space of the BP network alignment method
(please see Supplementary Methods for details on E -value normalization and
Materials and Methods section for BP alignment method).

Parameters α and β(= 1−α) control the relative weight of sequence similarity
(scaled by α) as compared to topological conservation (scaled by β) in the BP
network alignment. Using a set of preliminary simulations aligning the global
human interactome with its tissue-specific sub-networks, for which we have the
true alignment, with various choices of α in the range of 0.1 to 0.9, we identify
the choices of α = 1

6 and β = 5
6 to perform the best in our experiments. We use

the same set of parameters to align each tissue-specific network with the yeast
interactome, as it provides a balanced contribution from sequence similarities
and the number of conserved edges. The final set of all alignments is available
for download as Additional file 1.

Investigating roles of housekeeping genes and their conservation
across species

Housekeeping genes comprise a subset of human genes that are universally ex-
pressed across all tissues and are responsible for maintaining core cellular func-
tions needed by all tissues, including translation, RNA processing, intracellular
transport, and energy metabolism(60; 61; 62). These genes are under stronger
selective pressure, compared to tissue-specific genes, and evolve more slowly(63).
As such, we expect to see a higher level of conservation among human housekeep-
ing genes compared with yeast genes. We refer to the most conserved subset of
housekeeping genes between humans and yeast, computed using network align-
ment of tissues-specific networks with the yeast network, as the core genes.

We identify a gene as housekeeping if it is expressed in all 79 tissues. We
identify a total of 1,540 genes that constitute the shared section of human tissue-
specific networks. These genes, while having similar set of interactions among
each other, are connected differently to the set of tissue-selective genes.

Using the alignment partners of all housekeeping genes in the yeast inter-
actome, we construct an alignment consistency table of size 1, 540 × 79, which
summarizes the network alignments over the shared subsection of tissue-specific
networks. Then, we use the majority voting method to classify housekeeping
genes as core, which are conserved in yeast, human-specific, which are consis-
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tently unaligned across human tissues, and unclassified, for which we do not
have enough evidence to classify it as either one of the former cases.

Network alignments are noisy and contain both false-positive (defined as
aligned pairs that are not functionally related), as well as false-negatives (pairs
of functional orthologs that are missed in the alignment). These errors can come
from different sources, including gene expression data (node errors), interac-
tome (edge errors), or the alignment procedure (mapping errors). We propose
a method based on majority voting across different alignments to (partially)
account for these errors. Given a set of network alignments, we consider a pair
of entities consistently aligned (either matched or unmatched) if they are con-
sistent in at least 100 ∗ τ% of alignments in the set. The parameter τ , called
the consensus rate, determines the level of accepted disagreement among dif-
ferent alignments. A higher value of consensus rate increases the precision of
the method at the cost of decreased sensitivity. In order to select the optimal
consensus rate parameter, we tried values in range [0.5 − 1.0] with increments
of 1

2 . We identified the parameter choice of τ = 0.9, equivalent to 90% agree-
ment among aligned tissues, to perform the best in classifying human-specific
and conserved genes, while keeping the sets well-separated. Using this approach,
we were able to tri-partition 1,540 housekeeping genes into 595 conserved, 441
human-specific, and 504 unclassified genes, respectively. The complete list of
these genes is available for download as Additional file 1.

In order to investigate the conserved sub-network of core genes, we construct
their alignment graph as the Kronecker product of the subgraph induced by core
genes in the human interactome and its corresponding aligned subgraph in yeast.
Conserved edges in this network correspond to interologs, i.e., orthologous pairs
of interacting proteins between yeast and human(64). The final alignment graph
of the core housekeeping genes is available for download as Additional file 1.

Figure 3 shows the largest connected component of this constructed align-
ment graph. We applied the MCODE(65) network clustering algorithm on this
graph to identify highly interconnected regions corresponding to putative pro-
tein complexes. We identified five main clusters, which are color-coded on the
alignment graph, and are shown separately on the adjacent panels. Ribosome is
the largest, central cluster identified in the alignment graph of core genes, and
together with proteasome and spliceosome, constitutes the three most conserved
complexes in the alignment graph. This complex is heavily interconnected to
the eIFs, to modulate eukaryotic translation initiation, as well as proteasome,
which controls protein degradation. Collectively, these complexes regulate pro-
tein turnover and maintain a balance between synthesis, maturation, and degra-
dation of cellular proteins.

In order to further analyze the functional roles of these housekeeping genes,
we use the g:Profiler(66) R package to identify highly over-represented terms.
Among functional classes, we focus on the gene ontology (GO) biological pro-
cesses, excluding electronic annotations, KEGG pathways, and CORUM protein
complexes to provide a diverse set of functional roles. We use the Benjamini-
Hochberg procedure to control for false-discovery rate (FDR), with p-value
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threshold of α = 0.05, and eliminate all enriched terms with more than 500
genes to prune overly generic terms. Using this procedure, we identify enriched
functional terms for both core and human-specific subsets of housekeeping genes.
The complete list of enriched functions for different classes of housekeeping genes
is available for download as Additional file 1.

We manually group the most significant terms (p-value ≤ 10−10) in core
genes, which results in five main functional classes, namely ribosome biogene-
sis, translation, protein targeting, RNA splicing, and mRNA surveillance. First,
we observe a one-to-one mapping between enriched terms and identified puta-
tive complexes corresponding to translation initiation (p-value = 7.1∗10−17) and
ribosome (p-value = 5.97∗10−11). In addition, translation termination and elon-
gation are also enriched with decreasing levels of significance. Moreover, these
processes are tightly linked to SRP-dependent co-translational protein targeting
(p-value = 2.7 ∗ 10−15). This, in turn, suggests protein synthesis as one of the
most conserved aspects of eukaryotic cells. Next, we note that both mRNA splic-
ing (p-value = 7.04∗10−10) and nonsense-mediated decay (p-value = 4.66∗10−16)
are also enriched among the most significant functional terms, which supports
our earlier hypothesis related to the role of splicesome in the alignment graph
of core genes. Finally, we find that the most significant functional term, as well
as a few other related terms, are involved in viral infection, which suggests that
(a subset of the) core genes provides a viral gateway to mammalian cells. This
can be explained in light of two facts: i) viral organisms rely on the host ma-
chinery for their key cellular functions, and ii) housekeeping genes are more
ancient, compared to tissue-selective genes, and core genes provide the most
conserved subset of these housekeeping genes. As such, these genes may contain
more conserved protein interaction domains and be structurally more “familiar”
as interacting partners for the viral proteins and provide ideal candidates for
predicting host-pathogen protein interactions.

Next, we perform a similar procedure for the human-specific housekeeping
genes. This subset, unlike core genes, is mostly enriched with terms related
to anatomical structure development and proximal cell-to-cell communication
(paracrine signaling), with the exception of complex I of the electron transport
chain, which is the strongest identified term. This NADH-quinone oxidoreduc-
tase is the largest of the five enzyme complexes in the respiratory chain of mam-
malian cells. However, this complex is not present in yeast cells and has been
replaced with a single subunit NADH dehydrogenase encoded by gene NDI1.
Impairment of complex I has been associated with various human disorders, in-
cluding Parkinson’s and Huntington’s disease. Transfecting complex I-defective
cells with yeast NDI1 as a therapeutic agent has been proposed as a success-
ful approach to rescue complex I defects(67; 68). This technique, also known
as NDI1 therapy, opens up whole new ways in which yeast can contribute to
the research and development on human diseases: not only yeast can be used as
a model organism, but also can provide candidates that can be used for gene
therapy in mammalian cells.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2014. ; https://doi.org/10.1101/011858doi: bioRxiv preprint 

https://doi.org/10.1101/011858
http://creativecommons.org/licenses/by-nd/4.0/


A key observation here is that the human-specific subset of housekeeping
genes is not only associated with fewer functional terms, but is also less signifi-
cantly associated with these terms. This effect can be attributed to two factors.
First, we note that some of the genes predicted to be human-specific might be an
artifact of the method. For example, the belief propagation (BP) method enforces
sequence similarity as a necessary, but not sufficient, condition for a pair of genes
to be aligned, which means that any human gene with no sequence similarity to
yeast genes will not be aligned, resulting in genes being artificially classified as
human-specific. Second, and more importantly, a majority of functional annota-
tions for human genes are initially attributed in other species, specially yeast, and
transferred across ortholog groups. Based on our construction, human-specific
genes are defined as the subset of housekeeping genes with no orthology with
yeast. As such, it can be expected that these genes span the shadowed subspace
of the functional space of human genes that is under-annotated.

Quantifying similarity of human tissues with yeast

Housekeeping genes are shared across all human tissues and cell types. They pro-
vide a conserved set of functions that are fundamental to cellular homeostasis.
However, these genes do not provide direct insight into how different tissues uti-
lize these key functions to exhibit their dynamic, tissue-specific characteristics.
To assess the similarity of each tissue with yeast, we propose a novel statistical
model, called tissue-specific random model (TRAM), which takes into account
the ubiquitous nature of housekeeping genes and mimics the topological struc-
ture of tissue-specific networks (please see Materials and Methods section for the
details of the random model).

We use the alignment score of each tissue-yeast pair as the objective function.
To asses the significance of each alignment score, we use a Monte Carlo simulation
method to sample from the underlying probability distribution of alignment
scores.

For each tissue-specific network, we sample kR = 10, 000 pseudo-random
tissues of the same size from TRAM, separately align them with the yeast inter-
actome, and compute the number of conserved edges and sequence similarity of
aligned protein pairs as alignment statistics, in order to compute the empirical
p-values. For each network alignment, we compute a topological, a homologi-
cal (sequence-based), and a mixed (alignment score) p-value. Additionally, we
use cases in which alignment quality is significantly better in the original tissue
alignment, both in terms of sequence and topology, to quantify an upper bound
on the alignment p-values. Conversely, cases in which both of these measures
are improved in the random samples can be used to define a lower bound on the
alignment p-value. The final table of alignment p-values is available for download
as Additional file 1.

First, we note that all tissues with significant mixed p-values also have both
significant topological and homological (sequence-based) p-values. For a majority
of tissues with insignificant mixed p-values, we still observe significant homolog-
ical, but insignificant topological p-values. We summarize the most and the least
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similar tissues to yeast by applying a threshold of αl = αu = 10−2 to the p-value
upper and lower bounds, respectively. There are a total of 23/79 tissues that
have ∆R ≤ 10−2 (p-value upper bound), listed in Table 1, which show the most
significant similarity to the yeast interactome. Among these, blood cells show
coherent high significance, with not even a single instance from 10, 000 samples
having either the alignment weight or the overlap of the random sample exceed-
ing the original alignment. Similarly, blood/immune cell lines consistently show
significant alignment p-values. Male reproductive tissues also show a strong sim-
ilarity to yeast cells. Conversely, there are 19/79 tissues with 10−2 < δR (p-value
lower bound), which show the least significant similarity to yeast. Among these
tissues, listed in Table 2, ganglion tissues consistently show the least similarity
to yeast. An interesting observation is that tissues and cell types at either end of
the table (either the most or the least similar) usually have very high confidence
values, i.e., both their topology and homology p-values are consistent.

Identifying groups of coherent tissues

Next, we investigate the correlation between the similarity of human tissues
among each other and how it relates to their corresponding alignment p-values
with yeast in order to better understand the transitivity of this relationship. We
expect that similar tissues should exhibit consistent alignment p-values, resulting
in groups of homogenous tissues with coherent alignments scores.

To this end, we first construct a network of tissue-tissue similarities (TTSN)
using the global transcriptome of human tissues from the GNF Gene Atlas,
including 44,775 human transcripts covering both known, as well as predicted
and poorly characterized genes. For each pair of tissues/ cell types, we compute a
similarity score using the Pearson correlation of their transcriptional signatures
and use the 90 percentile of similarity scores to select the most similar pairs.
We annotate each node in the TTSN with its corresponding alignment p-value
as a measure of similarity with the yeast interactome. This meta-analysis allows
us to investigate how linear measurements of gene/protein activity project to
the quadratic space of protein interactions in order to re-wire the underlying
interactome in each human tissue.

Figure 4 presents the final network. In this network, each node represents a
human tissue/cell type and each weighted edge illustrates the extent of overall
transcriptional similarity between pairs of tissues. This network is filtered to
include only tissue pairs with the highest overlap with each other. In order to
assign color to each node, we use z -score normalization on the log-transformed
alignment mixed p-values. Green and red nodes correspond to the highly positive
and highly negative range of z -scores, which represent similar and dissimilar
tissues to yeast, respectively.

Preliminary analysis of this network indicates that the alignment p-value of
tissues highly correlates with their overall transcriptional overlap. Furthermore,
these high-level interactions coincide with each other and fall within distinct
groups with consistent patterns. We manually identified four such groups and
separately annotated them in the network. These groups correspond to brain
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tissue, blood cells, ganglion tissues, and testis tissues. Among these groups, blood
cells and testis tissues exhibit consistent similarity with yeast, whereas brain and
ganglion tissues bear consistent dissimilarity.

The existence of homogenous group of tissues with consistent similarity with
yeast suggests an underlying conserved machinery in these clusters. This raises
the question of what is consistently aligned within each tissue group and how
it relates to the computed alignment p-values? We address this question, and
relate it to the onset of tissue-specific pathologies in the remaining subsections.

Dissecting tissue-selective genes with respect to their conservation

In this subsection, we investigate the subset of non-housekeeping genes in each
homogenous group of human tissues and partition them into sets of genes, and
their corresponding pathways that are either conserved in yeast or are human-
specific. Next, we analyze how these pathways contribute to the overall similar-
ity/ dissimilarity of human tissues with yeast.

Figure 5 presents the probability density function for the membership dis-
tribution of non-housekeeping genes in different human tissues. The observed
bi-modal distribution suggests that most non-housekeeping genes are either ex-
pressed in a very few selected tissues or in the majority of human tissues. We use
this to partition the set of expressed non-housekeeping genes, with the goal of
identifying genes that are selectively expressed in each group of human tissues.

We start with all expressed non-housekeeping genes in each tissue group, i.e.,
genes that are expressed in at least one of the tissue members. Next, in order
to identify the subset of expressed genes that are selectively expressed in each
group, we use the tissue-selectivity p-value of each gene. In this formulation, a
gene is identified as selectively expressed if it is expressed in a significantly higher
number of tissues in the given group than randomly selected tissue subsets of the
same size (see Materials and Methods section for details). Figure 6 illustrates
the distribution of tissue-selectivity p-values of expressed genes with respect to
four major groups in Figure 4. Each of these plots exhibit a bi-modal charac-
teristic similar to the membership distribution function in Figure 5. This can
be explained by the fact that membership distribution is a mixture distribution,
with the underlying components being the same distribution for the subset of
genes that are expressed in different tissue groups. We use critical points of the
p-value distributions to threshold for tissue-selective genes. The motivation be-
hind our choice is that these points provide shifts in the underlying distribution,
from tissue-selective to ubiquitous genes. Given the bi-modal characteristics of
these distributions, they all have three critical points, the first of which we use
as our cutoff point. This provides highest precision for declared tissue-selective
genes, but lower recall than the other two choices.

Having identified the subset of tissue-selective genes with respect to each
tissue group, we use the majority voting scheme to tri-partition these sets based
on their alignment consistency with yeast. Similar to the procedure we used
to tri-partition housekeeping genes, we tried different choices of consensus rate
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parameter from 50% to 100% with increments of 5%. The percent of unclas-
sified genes decreases linearly with the consensus rate, while relative portions
of human-specific/ conserved genes remain the same. We chose 90% for our fi-
nal results, as it leaves the least number of genes as unclassified, while keeping
human-specific and conserved genes well-separated. The set of all tissue-specific
genes is available for download as Additional file 1.

Table 3 presents the number of expressed genes, selectively expressed genes,
and the percent of tissue-selective genes that are conserved, human-specific, or
unclassified within each group of tissues. There is a similar relationship between
the ratio of conserved/human-specific genes within each group of tissues and
their alignment p-values, suggesting that alignment p-values are highly corre-
lated with the conservation of tissue-selective genes and their corresponding
pathways. Figure 7 illustrates the relative sizes of each subset of genes identified
in this study.

Conserved genes and their corresponding pathways comprise the functional
subspace in which we can use yeast as a suitable model organism to study tissue-
specific physiology and pathophysiology. On the other hand, human-specific
genes provide a complementary set that can be used to construct tissue-engineered
humanized yeast models. They also provide promising candidates for tissue-
specific gene therapies in a similar fashion to NDI1 therapy, in cases where an
alternative functional mechanism can be found in yeast. To further investigate
these subsets, we focus on blood cells and brain tissues, which illustrate the
clearest separation between their tissue-selective and conserved genes in their
TSS distribution, and subject them to more in depth functional analysis in next
subsections.

Elucidating functional roles of the brain and blood selective genes

We use g:ProfileR on both human-specific and conserved genes to identify their
enriched functions. The complete list of enriched functions is available for down-
load as Additional file 1. These two subsets share many common terms, due to
the underlying prior of both being subsets of tissue-selective genes. To compar-
atively analyze these functions and rank them based on their human-specificity,
we use the log of p-value ratios between human-specific and conserved genes to
filter terms that are at least within 2-fold enrichment. We focus on GO biologi-
cal processes, KEGG pathways, and CORUM protein complexes and remove all
genesets with more than 500 genes to filter for overly generic terms. Finally, to
group these terms together and provide a visual representation of the functional
space of genes, we use EnrichmentMap (EM)(69), a recent Cytoscape(70) plug-
in, to construct a network (map) of the enriched terms. We use the log ratio
of p-values to color each node in the graph. Figures 8 and 9 illustrate the fi-
nal enrichment map of unique human-specific and conserved blood-selective and
brain-selective functions, respectively.

Conserved blood-selective functions, shown in sub-figure ??, are primarily
enriched with terms related to DNA replication, cellular growth, and preparing
cell for cell-cycle. Among these terms, DNA replication-is tightly linked to both
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DNA repair and telomere maintenance related terms. Telomere maintenance,
specially via telomerase enzyme, is one of the cellular functions that is known
to be conserved in yeast, but only active in a selected subset of differentiated
human tissues and cell types, including hematopoietic stem cells and male repro-
ductive tissues (71). Functional terms involved in DNA conformation changes,
including condensin complex, as well as cell cycle phase transition, specifically
from G1 to S phases, are two other groups of conserved functional terms that
are highly conserved from yeast to human. On the other hand, human-specific
blood-selective functions, shown in Figure ??, are mainly involved in lymphocyte
proliferation and activation. Terms in these two groups are also tightly related
to each other and form a larger cluster together. In addition, cytokine produc-
tion and T-cell mediated cytotoxicity also exhibit human-specific, blood-selective
characteristics. This is partially expected as these functions are highly special-
ized immune-cell functions that are evolved particularly in humans to ensure his
survival in less-favorable conditions.

Figure ?? shows the functional space of conserved brain-selective functions.
Many of these terms correspond to various aspects of brain development, includ-
ing olfactory bulb, telencephalon, pallium, and cerebral cortex development, as
well as the regulatory circuit that controls nervous system development. Consid-
ering the unicellular nature of yeast, the exact mechanisms in which orthologs of
these pathways modulate yeast cellular machinery is less studied. An in-depth
analysis to identify matching phenologs can help us use yeast to study various
disorders related to brain development. Another functional aspect that exhibits
high conservation is the mTOR complex 2. The target of rapamycin (TOR)
signaling is a highly conserved pathway, which forms two structurally distinct
protein complexes, mTORC1 and mTORC2. The former complex has a central
role in nutrient-sensing and cell growth, and as such, has been used extensively to
study calorie restriction (CR) mediated lifespan extension. On the other hand,
mTORC2 has been recently proposed to modulate consolidation of long-term
memory(72). Cholesterol biosynthesis and transport is another conserved func-
tional aspect that differs significantly from other human tissues. As the most
cholesterol-rich organ in the body, expression of genes corresponding to lipopro-
tein receptors and apolipoproteins is tightly regulated among different brain
cells and plays an important role in normal brain development. Dysregulation of
these metabolic pathways is implicated in various neurological disorders, such as
Alzheimer’s disease(73).Finally, microtubular structure and tubulin polymeriza-
tion also shows significant conservation and is known to play a key role in brain
development(74). These cytoskeletal proteins have recently been associated with
brain-specific pathologies, including epilepsy(75).

Finally, we study human-specific brain functions, which are shown in Fig-
ure ??. One of the key functional aspects in this group is the semaphorin-plexin
signaling pathway. This pathway was initially characterized based on its role in
the anatomical structure maturation of the brain, specifically via the repulsive
axon guidance, but later was found to be essential for morphogenesis of a wide
range of organ systems, including sensory organs and bone development(76).
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Another human-specific signaling pathway identified in brain is the glutamate
receptor signaling pathway, which also cross-talks with circadian entrainment,
as well as neuron-neuron transmission. This pathway plays a critical role in neu-
ral plasticity, neural development and neurodegeneration(77). It has also been
associated with both chronic brain diseases, such as schizophrenia, as well as
neurodegenerative disorders, such as Alzheimer’s disease(78).

Both conserved and human-specific genes play important roles in tissue-
specific pathologies. In addition, these genes, which are enriched with regulatory
and signaling functions, cross-talk with housekeeping genes to control cellular
response to various factors. As such, a complete picture of disease onset, de-
velopment, and progression can only be achieved from a systems point of view.
From this perspective, we study not only the genes (or their states) that are
frequently altered in disease, but also the underlying tissue-specific and house-
keeping pathways in which they interact to exhibit the observed phenotype(s).
In the next subsection, we further investigate this hypothesis. We study the po-
tential of different subsets of the identified tissue-selective genes for predicting
tissue-specific pathologies.

Assessing the significance of tissue-specific pathologies among
conserved and human-specific tissue-selective genes

To further study the predictive power of tissue-selective genes for human patholo-
gies, we use the genetic association database (GAD) disease annotations as our
gold standard(79). This database collects gene-disease associations from genetic
association studies. Additionally, each disease has been assigned to one of the 19
different disease classes in GAD database. We use DAVID functional annotation
tool for disease enrichment analysis of tissue-selective genes(80).

First, we seek to identify which disease classes are significantly enriched
among each set of tissue-selective genes. Table 4 shows the disease classes en-
riched in each group of brain and blood selective genes. Conserved blood-selective
genes are predominantly enriched with cancers, whereas human-specific blood-
selective genes are mainly associated with immune disorders. This can be linked
to our previous results indicating that conserved subset is mainly involved in reg-
ulating growth, DNA replication, and cell cycle, whereas human-specific genes
are primarily involved in lymphocyte proliferation and activation. Conversely,
brain-selective genes show higher similarities in terms of disease classes that
they can predict. Both conserved and human-specific brain-selective genes can
predict psychiatric disorders, but human-specific subset seems to be a more ac-
curate predictor. On the other hand, neurological disorders are only enriched
in human-specific subset of brain-selective genes, whereas disorders classified as
pharmacogenomic and chemdependency show higher enrichment in conserved
genes.

To summarize the specific disorders that are enriched in each subset of brain-
selective genes, we integrate all identified diseases and rank them based on their
enrichment p-value, if it is only enriched in one set, or their most significant
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p-value, if it is enriched in both sets. Table 5 shows the top 10 disease terms en-
riched in either human-specific or conserved brain-selective genes. In majority of
cases, human-specific genes are more significantly associated with brain-specific
pathologies than conserved genes. In addition, there are unique disorders, such
as schizophrenia, bi-polar disorder, and seizures, that are only enriched among
human-specific genes.

In conclusion, both conserved and human-specific subsets of tissue-selective
genes are significantly associated with different human disorders. However, the
human-specific subset shows higher association with tissue-specific pathologies.
To this end, they can provide hypotheses for the most appropriate molecular
constructs (gene insertions) in yeast to explore molecular/functional mechanisms
that cause tissue-specific dysfunction. Such mechanisms can be tested in humans
and if validated then yeast can serve as an experimental model for further in-
vestigations of biomarkers and pharmacological and genetic interventions.

Conclusions

In this study, we demonstrated a novel methodology for aligning tissue-specific
interaction networks with the yeast interactome and assess their statistical sig-
nificance. We demonstrated that these alignments can be used to dissect tissue-
specific networks into their core component and tissue-specific components. Tis-
sue specific components were used for multiple purposes: (i) by showing that a
number of pathologies manifest themselves in dysregulated genes in the tissue-
specific group, we motivate exploration of these genes as particularly suitable
candidates as drug targets; (ii) by quantifying the alignment of tissue-specific
components with yeast, we quantify the suitability of yeast as a model organ-
ism for studying corresponding disease/ phenotype; (iii) in cases where there is
(statistically) insignificant alignment, it is still possible to use yeast as a model
organism, if the dysregulated pathways are aligned; and (iv) in cases where none
of these conditions hold, our alignments provide mechanisms for assessing the
feasibility of different molecular constructs (gene insertions) for creating more
appropriate, tissue-specific, humanized yeast models.

Materials and methods

Datasets

Protein-protein interaction (PPI) networks We adopted human tissue-
specific networks from Bossi et al.(57). They integrated protein-protein interac-
tions from 21 different databases to create the whole human interactome consist-
ing of 80,922 interactions among 10,229 proteins. Then, they extracted the set of
expressed genes in each tissue from GNF Gene Atlas and used it to construct the
tissue-specific networks, defined as the vertex-induced subgraphs of the entire
interactome with respect to the nodes corresponding to the expressed genes in
each tissue.
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Additionally, we obtained the yeast interactome from the BioGRID(81) database,
update 2011(82), version 3.1.94, by extracting all physical interactions, excluding
interspecies and self interactions. This resulted in a total of 130,483 (76,282 non-
redundant) physical interactions among 5,799 functional elements in yeast (both
RNA and protein). Next, we downloaded the list of annotated CDS entries from
the Saccharomyces Genome Database (SGD)(83) and restricted interactions to
the set of pairs where both endpoints represent a protein-coding sequence, i.e.,
protein-protein interactions. The final network consists of 71,905 interactions be-
tween 5,326 proteins in yeast and is available for download as Additional file 1.

Protein sequence similarities between yeast and humans We downloaded
the protein sequences for yeast and humans in FASTA format from Ensembl
database, release 69, on Oct 2012. These datasets are based on the GRCh37
and EF4 reference genomes, each of which contain 101,075 and 6,692 protein
sequences for H. Sapiens and S. Cerevisiae, respectively. Each human gene in
this dataset has, on average, 4.49 gene products (proteins). We identified and
masked low-complexity regions in protein sequences using pseg program(84).
The ssearch36 tool, from FASTA(85) version 36, was then used to compute
the local sequence alignment of the protein pairs using the Smith-Waterman
algorithm(86). We used this tool with the BLOSUM50 scoring matrix to compute
sequence similarity of protein pairs in humans and yeast. All sequences with E-
values less than or equal to 10 are recorded as possible matches, which results in a
total of 664,769 hits between yeast and human proteins. For genes with multiple
protein isoforms, coming from alternatively spliced variants of the same gene, we
only record the most significant hit. The final dataset contains 162,981 pairs of
similar protein-coding genes, and is available for download as Additional file 1.

Sparse network alignment using belief propagation

Analogous to the sequence alignment problem, which aims to discover conserved
genomic regions across different species, network alignment is motivated by the
need for extracting shared functional pathways that govern cellular machinery
in different organisms. The network alignment problem in its abstract form can
be formulated as an optimization problem with the goal of identifying an opti-
mal mapping between the nodes of the input networks, which maximizes both
sequence similarity of aligned proteins and conservation of their underlying in-
teractions. At the core of every alignment method are two key components: i)
a scoring function and ii) an efficient search strategy to find the optimal align-
ment. The scoring function is usually designed to favor the alignment of similar
nodes, while simultaneously accounting for the number of conserved interac-
tions between the pair of aligned nodes. Biologically speaking, this translates to
identifying functional orthologs and interologs, respectively.

Given a pair of biological networks, G = (VG, EG) and H = (VH , EH), with
nG = |VG| and nH = |VH | vertices, respectively, we can represent the similarity
of vertex pairs between these two networks using a weighted bipartite graph
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L = (VG ∗ VH , EL,w), where w : EL → R is a weight function defined over
edges of L. We will denote mapping between vertices vi ∈ VG and vi′ ∈ VH with
(i, i′) and ii′, interchangeably. Let us encode the edge conservations using matrix
S, where S(ii′, jj′) = 1, iff alignment of vi → vi′ together with vj → vj′ will
conserve an edge between graphs G and H, and S(ii′, jj′) = 0, otherwise. Then,
the network alignment problem can be formally represented using the following
integer quadratic program:

max
x

(αwTx +
β

2
xTSx) (1)

Subject to:

{
Cx ≤ 1nG∗nH

Matching constraints;
xii′ ∈ {0, 1}, Integer constraint.

Here, C is the incidence matrix of graph L and x is the matching indicator
vector. In this formulation, the weight of each alignment, W = wTx, accounts
for the similarity of aligned nodes, while the alignment overlap, O = 1

2x
TSx,

counts the number of conserved edges under the given alignment. When L is a
complete bipartite graph, each pair of vertices between G and H represents a
viable candidate, in which case we have S = G⊗H. However, Bayati et al.(59)
recently proposed an efficient method, based on the message passing algorithm,
for cases where L is sparse, i.e., |EL| << nG ∗ nH , by restricting the search
space to the subset of promising candidates that are provided by EL. We use
this algorithm for solving the network alignment problem.

Tissue-specific random model (TRAM) for generating
pseudo-random tissues

Let us denote the global human interactome by G = (VG, EG) and each tissue-
specific network by GT = (VT , ET ), respectively. using this notation, we have
nT = |VT |, VT ⊂ VG, and ET ⊂ EG is the subset of all edges from G that connect
vertices in VT , i.e., GT is the vertex-induced subgraph of G under VT . We note
that the existence of universally expressed genes, corresponding to housekeeping
proteins, enforces a unique topology for human tissue-specific networks with a
shared, dense core connected to peripheral tissue-specific proteins. We propose
a new random model for explicitly taking advantage of this prior knowledge and
create pseudo-random networks that respect the underlying topology of tissue-
specific networks. Let VU denote the set of universally expressed genes across
all human tissues, having size nU = |VU |. Moreover, let GU = (VU , EU ) be
the shared, vertex-induced subgraph imposed by housekeeping genes. We create
an ensemble of pseudo-random tissues for each given GT , denoted by RT =
G(VR, ER), in two steps. First, we sample pseudo-random vertex sets of size nT ,
denoted by VR, by fixing all the housekeeping genes, VU , and sampling nT −nU
vertices without replacement from VG − VU . Then, we construct the pseudo-
random ensemble RT as the set of vertex induced subgraphs of G imposed by
VR.
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Significance of network alignments

For each optimal alignment of a human tissue-specific network with yeast, given
by its indicator variable x, we quantify the overall sequence similarity of aligned
proteins with the matching score of the alignment, W = wTx, and the to-
tal number of conserved edges by the alignment overlap, O = 1

2x
TSx. These

measures can be used to rank different network alignments. However, without
a proper reference to compare with, it is almost impossible to interpret these
values in a statistical sense. To address this, we use the pseudo-random tissue
model as our random model and empirically compute a topological, a homolog-
ical (sequence-based), and a mixed alignment p-value for each alignment using
a Monte-Carlo simulation. To this end, we sample kR pseudo-random tissues of
the same size and align each of them separately with yeast.

Let WR and OR be the random vectors representing the weight and overlap
of aligning random tissues with yeast, respectively. First, we define individual
p-values for the conservation of network topology and sequence homology. Let

us denote by k
(W)
P and k

(O)
P the number of random samples that have weight

and overlap greater than or equal to the original alignment, respectively. Then,
we can define the following p-values:

p− valhomolgy =
k

(W)
P

kR
(2)

p− valtopology =
k

(O)
P

kR
(3)

Before we define the mixed p-value, we define an upper bound and a lower
bound on the p-value that is independent of the mixing function. For cases where
both O ≤ OR(i) and W ≤ WR(i), for 1 ≤ i ≤ kR, we can report that the
random alignment is at least as good as the original alignment. Conversely, if
both OR(i) < O and WR(i) < W , we can assert that the original alignment
outperforms the random alignment. Let us denote the number of such cases by
kP and kN , respectively. Using this formulation, we can compute the following
bounds on the mixed p-value of the alignment:

δR =
kP
kR
≤ alignment p-value ≤ 1− kN

kR
= ∆R (4)

We can use these bounds to estimate the similarity of each tissue-specific
network to the yeast interactome. Tissues where the upper-bound of the align-
ment p-value is smaller than a given threshold αu are considered similar to yeast,
while tissues with the lower-bound larger than αl are considered dissimilar. We
note that the cases with contradictory results for weight and overlap, either
if OR(i) < O and W < WR(i), or O < OR(i) and WR(i) < W , are not
straightforward to interpret. To quantify this ambiguity, we define the confidence
of a p-value interval as kN+kP

kR
. Finally, we define a mixed p-value based on the
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mixing function of the network alignment. Let us define a new random variable
OWR = α ∗OR + β ∗WR. Finally, we define the mixed p-value as:

p− value = Prob(α ∗O + β ∗W ≤ OWR) (5)

Differential expression of genes with respect to a group of tissues

Given a homogenous group of human tissues/cell types, we first identify all ex-
pressed genes in the group, i.e., all non-housekeeping genes that are expressed
in at least one of the tissue members. Next, in order to identify the subset of
expressed genes that are selectively expressed, we use a hypergeometric random
model. A gene is identified as selectively expressed if it is expressed in signifi-
cantly higher number of tissues in the given group than randomly selected tissue
subsets of the same size. Let N and n denote the total number of tissues in this
study and the subset of tissues in the given group, respectively. Moreover, let
us represent by cN the number of all tissues in which a given gene is expressed,
whereas cn similarly represents the number of tissues in the given group that the
gene is expressed. Finally, let the random variable X be the number of tissues
in which the gene is expressed, if we randomly select subsets of tissues of similar
size. Using this formulation, we can define the tissue-selectivity p-value of each
expressed gene in the given group as follows:

p-value(X = cn) = Prob(cn ≤ X)

= HGT (cn|N,n, cN )

=

min(cN ,n)∑
x=cn

C(cN , x)C(N − cN , n− x)

C(N,n)
(6)

In order to partition genes into selective and ubiquitous genesets, we derive
the tissue-selectivity p-value distribution of all expressed non-housekeeping genes
in the given group. We use the Gaussian kernel to smooth this distribution and
then find the critical points of the smoothed density function to threshold for
tissue-selective genes. The motivation behind our choice is that these points
provide shifts in the underlying distribution, from tissue-selective to ubiquitous
genes. Given the bi-modal characteristic of the distribution, it has three expected
critical points. We use the first of these points as our cutoff point. This provides
highest precision for declared tissue-selective genes, but lower recall than the
other two choices.

Conservation of genesets based on the majority voting rule

Given a set of genes that are selectively expressed in a homogenous group of
tissues/cell types, we are interested in tri-partitioning them into either conserved,
human-specific, or unclassified genes. Conserved genes are the subset of tissue-
selective genes that are consistently aligned in majority of aligned tissues in the
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given group. Conversely, human-specific genes are the subset of tissue-selective
genes that are consistently unaligned in majority of tissues in the given group.
Finally, unclassified genes are the subset of tissue-selective genes for which we do
not have enough evidence to classify them as either conserved or human-specific.

The key data-structure we use to tri-partition genesets is the alignment con-
sistency table. Let C be a group of homogenous tissues with n = |C|. Further-
more, let gTS

C represent the set of tissue-selective genes with respect to C, such
that kTS

C = |gTS
C |. The alignment consistency table is a table of size kTS

C × n,
represented by T TS

C , in which T TS
C (i, j) is the aligned yeast partner of ith tissue

selective gene under the network alignment of jth tissue in C, or ′−′ (gap), if it is
unaligned. We find the most common partner for each tissue-selective gene and
use a consensus rate, represented by τ , to summarize each rows of the alignment
consistency table. If a gene is consistently aligned to the same yeast partner in
at least τ ∗n tissues in C, we declare it as conserved. Similarly, if it is unaligned
in at least τ ∗ n tissues in C, we classify it as human-specific. If neither one of
these conditions hold, we report it as unclassified.
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Fig. 1. Workflow summary. Main components of the analysis framework proposed
in this paper. Each intermediate processing step is further discussed in details in sep-
arate subsections.
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Fig. 3. Alignment graph of core human genes. Conserved edges in the alignment
graph of core housekeeping genes, which correspond to the ”interologs,” i.e. orthologous
pairs of interacting proteins between yeast and human. Five main protein clusters,
identified as dense regions of interaction in the alignment graph, are marked accordingly
and annotated with their dominant functional annotation as follows: A Ribosome, B
Processing of capped intron-containing pre-mRNA, C Proteasome, D vATPase, E
Cap-dependent translation initiation.
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Fig. 4. Projection of alignment p-values on the network of tissue-tissue
similarities. Each node represents a human tissue and edges represent the overall
transcriptional similarity among them. Color intensity of nodes represents the similar-
ity/dissimilarity of each tissue to yeast interactome, with colors green and red corre-
sponding to similar and dissimilar tissues, respectively. Group of similar tissues with
coherent p-values are marked and annotated in the network, accordingly.
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Fig. 5. Membership distribution of non-housekeeping genes in human tis-
sues. Number of tissues in which non-housekeeping genes are expressed in is smoothed
using normal kernel density to estimated the pdf function. The observed bi-modal dis-
tribution suggests that most non-housekeeping genes are either expressed in a very few
selected tissues or in the majority of human tissues.
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Fig. 6. Distribution of tissue-selectivity p-values in different tissue groups.
(A) Brain tissues, (B) Blood cells, (C) Ganglion tissues, (D) Testis tissues. Each plot
resembles the same bi-modal distribution as the gene-tissue membership density, with
blood cells and brain tissues presenting the most clear separation of tissue-selective
genes. The critical points of each distribution function, where the derivative of pdf
function is approximately zero, is marked on each plot. These points provide optimal
cutoff points for the tissue-selectivity p-values as they mark the points of shift in the
underlying distribution function.
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Fig. 7. Summary of gene classifications in this study. Housekeeping and tissue-
selective genes, in four main groups of human tissues, are classified into three main
classes based on their conservation in yeast.
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Fig. 8. Enrichment map of unique blood-selective functions.
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Fig. 9. Enrichment map of unique brain-selective functions.
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Tables

Name pval lower bound overall pval pval upper bound confidence

Myeloid Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Monocytes < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Dentritic Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
NK Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
T-Helper Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Cytotoxic T-Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
B-Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Endothelial < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Hematopoietic Stem Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
MOLT-4 < 1.00e-04 < 1.00e-04 < 1.00e-04 1
B Lymphoblasts < 1.00e-04 < 1.00e-04 < 1.00e-04 1
HL-60 < 1.00e-04 < 1.00e-04 < 1.00e-04 1
K-562 < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Early Erythroid < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Bronchial Epithelial Cells < 1.00e-04 < 1.00e-04 0.0002 0.9998
Colorectal Adenocarcinoma < 1.00e-04 < 1.00e-04 0.0004 0.9996
Daudi < 1.00e-04 < 1.00e-04 0.0009 0.9991
Testis Seminiferous Tubule < 1.00e-04 < 1.00e-04 0.0012 0.9988
Smooth Muscle < 1.00e-04 < 1.00e-04 0.0016 0.9984
Blood (Whole) < 1.00e-04 < 1.00e-04 0.0053 0.9947
Thymus < 1.00e-04 0.0001 0.0062 0.9938
Testis Interstitial < 1.00e-04 0.0004 0.0086 0.9914
Table 1. Tissues with the most significant similarity to the yeast interactome
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Name pval lower bound overall pval pval upper bound confidence

Trigeminal Ganglion 0.9947 0.9994 1 0.9947
Superior Cervical Ganglion 0.9847 0.9991 1 0.9847
Ciliary Ganglion 0.9407 0.9813 0.9964 0.9443
Atrioventricular Node 0.8746 0.9792 0.9921 0.8825
Skin 0.8355 0.9297 0.9809 0.8546
Heart 0.7934 0.9585 0.9815 0.8119
Appendix 0.7596 0.9371 0.973 0.7866
Dorsal Root Ganglion 0.7065 0.933 0.9717 0.7348
Skeletal Muscle 0.3994 0.5902 0.7866 0.6128
Uterus Corpus 0.233 0.7736 0.8769 0.3561
Lung 0.0771 0.3853 0.5544 0.5227
Pons 0.0674 0.5201 0.6983 0.3691
Salivary Gland 0.0639 0.3449 0.5173 0.5466
Liver 0.0600 0.6857 0.8519 0.2081
Ovary 0.0388 0.2735 0.4481 0.5907
Trachea 0.0259 0.2376 0.4146 0.6113
Globus Pallidus 0.0206 0.2471 0.4336 0.587
Cerebellum 0.0127 0.1950 0.3783 0.6344
Table 2. Tissues with the least significant similarity to the yeast interactome

Cluster name # expressed genes # TS genes # CG (%) # HS (%) # unclassified (%)

Brain Tissues 5936 891 273 (30.64 %) 401 (45.01 %) 217 (24.35 %)
Blood Cells 6092 1093 460 (42.09 %) 385 (35.22 %) 248 (22.69 %)
Testis Tissues 5358 328 119 (36.28 %) 126 (38.41 %) 83 (25.30 %)
Ganglion Tissues 5278 274 76 (27.74 %) 136 (49.64 %) 62 (22.63 %)
Table 3. Summary of tissue-selective gene partitioning CG: Conserved gene,
HS: Human-specific gene

Table 4. Enriched disease classes of tissue-selective genes

Conserved genes Human-specific genes
Disease class p-value Disease class p-value

Blood cells Cancer 9.29 ∗ 10−4 Immune 1.19 ∗ 10−5

Brain tissues Psych 3.59 ∗ 10−4 Psych 5.70 ∗ 10−8

Chemdependency 2.60 ∗ 10−3 Neurological 2.97 ∗ 10−2

Pharmacogenomic 9.74 ∗ 10−2
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Table 5. Comparative analysis of brain-specific pathologies Top 10 Enriched
disorders were identified based on the GAD annotations for conserved and human-
specific genes in the brain.

Disorder Conserved genes Human-specific genes

schizophrenia 0.008573 8.4905E-06
autism 0.048288 0.00077448
dementia 0.0014356 -
schizophrenia; schizoaffective disorder; bipolar dis-
order

- 0.0021433

myocardial infarct; cholesterol, HDL; triglycerides;
atherosclerosis, coronary; macular degeneration; col-
orectal cancer

0.0051617 -

epilepsy 0.071562 0.0064716
seizures - 0.020381
bipolar disorder 0.048288 0.022016
attention deficit disorder conduct disorder opposi-
tional defiant disorder

0.032444 0.023865
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Additional Files

Additional file 1 — network alignments

Compressed (*.zip) file containing individual tissue-specific alignments.

Additional file 2 — HK genes

List of housekeeping genes and their classifications into conserved, human-specific,
and unclassified subsets

Additional file 3 — Core gene alignment

Alignment graph of core housekeeping genes

Additional file 4 — HK Enrichment

Functional enrichment analysis of different subsets of HK genes

Additional file 5 — Alignment statistics

Alignment statistics for each tissue alignment

Additional file 6 — TS genes

Tissue-selective genesets and their respective classifications for brain tissues,
blood cells, testis tissues, and ganglion tissues

Additional file 7 — TS Enrichment

Functional analysis of different subsets of tissue-selective genes

Additional file 8 — PPI Nets

Protein-protein interaction networks used as input in this study.

Additional file 9 — Sequence similarities

Sequence similarity between yeast and human proteins.
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