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ABSTRACT 

Next generation sequencing of cellular RNA is making it possible to characterize genes and 

alternative splicing in unprecedented detail.  However, designing bioinformatics tools to capture 

splicing variation accurately has proven difficult. Current programs find major isoforms of a gene 

but miss finer splicing variations, or are sensitive but highly imprecise. We present CLASS, a 

novel open source tool for accurate genome-guided transcriptome assembly from RNA-seq 

reads. CLASS employs a splice graph to represent a gene and its splice variants, combined with a 

linear program to determine an accurate set of exons and efficient splice graph-based transcript 

selection algorithms. When compared against reference programs, CLASS had the best overall 

accuracy and could detect up to twice as many splicing events with precision similar to the best 

reference program. Notably, it was the only tool that produced consistently reliable transcript 

models for a wide range of applications and sequencing strategies, including very large data sets 

and ribosomal RNA-depleted samples. Lightweight and multi-threaded, CLASS required <3GB 

RAM and less than one day to analyze a 350 million read set, and is an excellent choice for 

transcriptomics studies, from clinical RNA sequencing, to alternative splicing analyses, and to 

the annotation of new genomes. 
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INTRODUCTION 

 

Alternative splicing is an inherent property of eukaryotic genes, with important roles in 

increasing functional diversity and in disease (1-3). More than 90% of the human genes are 

alternatively spliced (4,5), with similar levels reported in other eukaryotes. Each gene can 

produce from one to potentially thousands of splice variants under different cellular conditions, 

and gene splice isoforms can have similar, independent and even antagonistic functions. 

Identifying the genes and their splice variations is therefore a critical first step in answering a 

broad range of biological questions. Over the past five years, next generation sequencing of 

cellular RNA (RNA-seq) has enabled the discovery of thousands of novel non-coding RNAs and 

has significantly expanded our catalog of splice variants. However, despite significant progress, 

extracting gene expression estimates and identifying splice variants in the vast amounts of short 

read data remains challenging, demanding bioinformatics tools that are fast, accurate and 

efficient.  

 

The primary goal of a typical RNA-seq analysis is to comprehensively determine the precise 

exon-intron boundaries on the genome for all transcripts and to estimate their expression levels 

in the samples. Before this can be accomplished, reads must be mapped to the genome with a 

fast spliced alignment program that accounts for introns and sequencing errors (reviewed in (6)). 

Alignments are then pieced together to form gene and transcript models. Virtually all genome-

guided transcript assemblers build a graph that represents a gene and its splice variants, and 

then traverse it to select a subset of transcripts that are likely represented in the sample. Among 

current programs, Cufflinks (7) connects overlapping reads into overlap graphs, Scripture (8) and 

IsoLasso (9) build connectivity graphs, and iReckon (10), Scripture and SLIDE (11) generate splice 
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or subexon graphs (reviewed in (12)). Although there are some differences among the sets of 

parts (exons and introns) predicted by each program, these representations more or less encode 

equivalent sets of candidate transcripts. Therefore, more important for the program’s accuracy 

as well as for the number of variants produced is the strategy for selecting transcripts from 

among the many encoded in the graph. Parsimony-based methods such as Cufflinks’ minimum 

partition algorithm select a mathematically minimum number of transcripts. They can usually 

identify the genes and most major isoforms relatively accurately, but are less apt at identifying 

rarer splicing events. ‘Best fit’ methods, which include IsoLasso, SLIDE and iReckon, choose a 

subset of transcripts such as to optimize an objective function, using either an integer 

programming or an expectation maximization formulation. The main problem with these 

approaches is over-fitting, where programs tend to report a large number of transcripts with 

very low abundance, most of them spurious. In yet another category, programs such as 

SpliceGrapher (13) simply omit enumerating transcripts altogether, or otherwise exhaustively 

enumerate all splice variants encoded in the graph (Scripture). While they can generally capture 

a larger portion of the true splicing variation, these methods are too imprecise to allow 

meaningful downstream analyses. Lastly, programs differ in their use of known annotations to 

inform their predictions. Annotation-guided methods, such as iReckon and SLIDE, rely on an 

existing set of gene annotations to build their gene models. For species for which there is 

already an extensive set of gene annotations these methods generally produce more variants, 

but are also more prone to reporting spurious isoforms and cannot be used to identify novel 

genes. In contrast, de novo programs including Cufflinks, Scripture and IsoCEM, build gene and 

transcript models from RNA-seq reads alone, without any prior knowledge of gene structure, 

and therefore are more suited to annotate newly sequenced or less studied organisms. Overall, 
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while many tools already exist to determine the expressed genes and loci in an RNA-seq sample, 

there is an unmet need for methods that target alternative splicing specifically. 

 

We developed a tool, called CLASS (Constraint-based Local Assembly and Selection of Splice 

variants), to bridge this gap and detect low abundance splice variation with high accuracy. At its 

core is the concept of the splice graph, a data structure that we have previously employed in 

splice variant annotation using both conventional Sanger (EST) (14) and next generation 

sequencing (15). A splice graph compactly represents a gene with its exons as nodes and introns 

as edges; splice variants can be read as maximal paths in the graph. CLASS uses a linear 

programming method to predict exons, and then connects them into splice graphs via introns 

detected from spliced alignments. Since the splice graph may encode many biologically 

unfeasible combinations, CLASS uses an efficient dynamic programming optimization algorithm 

to select candidate transcripts. When compared to reference programs, CLASS captured 

significantly more splicing variation, both fully reconstructed transcripts and partial splicing 

events, with high precision. Most importantly, it was the only program tested that produced 

consistently well formed and easy to interpret annotations for all applications and sequencing 

strategies. More specifically, our comparative analyses have shown that: 

1. CLASS offers the best tradeoff between sensitivity and precision in reconstructing 

transcripts. In its default setting, it detects 10-70% more transcripts than Cufflinks, 

which is the most popular and most precise of these programs, at higher or comparable 

precision; in its sensitive settings, it detects up to twice as many transcripts as Cufflinks 

for a relatively small drop in precision. 

2. It is the best suited to capture local alternative splicing variation. In particular, it can 

detect up to twice as many alternative splicing events as Cufflinks, with high precision. 
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CLASS finds slightly fewer events than Scripture, which is the most sensitive of the 

programs, but its precision is considerably (70-80%) higher. 

3. It employs a combined gene-level and genome-level model of intronic ‘noise’ that allows 

more accurate detection of intron retention events. 

4. The amount of novel alternative splicing variation detected by CLASS increases with 

increasingly large data sets. 

5. CLASS is multi-threaded and scales well with the amount of data, requiring < 3GB RAM 

for all of our tests, and can complete a very large run in less than one day. 

6. Lastly, since CLASS can produce annotations from RNA-seq data alone, without requiring 

an existing set of gene annotations, it is very well suited for the annotation of newly 

sequenced organisms.  

We present the overall strategy below, followed by more details about the individual algorithms 

in the corresponding Methods sections and the Online Supplement. We then comparatively 

evaluate CLASS and several popular programs, including both de novo and annotation-

dependent transcript assemblers, on both control and real RNA-seq sets, in the Results section. 

CLASS is available free of charge for all and under a GNU GPL license from 

http://sourceforge.net/projects/Splicebox . 

  

METHODS  

Overview 

CLASS determines a set of transcripts in three stages (Figure 1). First, it infers a set of exons from 

read coverage levels and splice sites using a linear programming technique. Then, it connects 

the exons into a splice graph via introns extracted from spliced reads. Once the graph is 
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constructed, CLASS selects a subset of transcripts from among those encoded in the graph using 

an efficient splice graph-based dynamic programming algorithm.  

 

Building the exons 

Exons are key to the transcript assembly process, because incorrectly reconstructing exons can 

miss important gene variations or can create false ones. Since current RNA-seq reads are too 

short to cover many exons end-to-end, CLASS uses read coverage levels along the genome and 

splice junctions from spliced read alignments to find exons (Figure 1A and Methods). CLASS 

employs a two-step procedure to determine a set of exons: first, it enumerates all combinations 

of exons that can explain the splice site patterns and paired-end reads. Second, for each such 

combination it formulates and solves a linear program expressing several types of constraints. 

Intuitively, the read coverage levels for all alternative exons over a common interval should 

cumulatively add up to the observed read coverage levels. Additionally, we assume read 

coverage levels are locally uniform, and therefore the coverage of adjacent portions of the same 

exon should be similar. Each exon combination is scored by the linear program, and the 

combination with the minimum objective function value is chosen in the end. 

 

Modeling intronic ‘noise’ 

Intronic RNA, produced by unspliced transcript that is either residual or part of the experiment, 

is a common artifact with real RNA-seq samples. Such intronic ‘noise’ can confound the 

detection of true mRNA resulted from intron retention and alternative transcription start and 

termination events (16). Distinguishing between ‘signal’ and ‘noise’ is therefore critical for 

creating a full and accurate set of exons. CLASS models intronic read levels across genomic 

intervals, both within a gene locus and along the genome, as a statistical Poisson distribution 
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and retains high-scoring intervals (top 2%; p-value = 10e-5) as likely intron retention or 

alternative gene ends, which are then incorporated into the exon finding procedure.  

 

Transcript enumeration and selection 

Once a set of exons is determined, CLASS generates a splice graph by connecting the exons 

(nodes) via introns (edges) extracted from spliced read alignments. Candidate transcripts are 

encoded in the graph as maximal paths from a node with no incoming edges (source) to a node 

with no outgoing edges (sink) (Figure 1B). Since the splice graph generally encodes a much 

larger number of transcripts than is biologically possible, CLASS uses a selection procedure to 

identify a subset of candidates that can explain all contiguity constraints from spliced reads and 

paired-reads. In practical terms, a constraint is a cluster of reads or read pairs that share the 

same set of exons or exon fragments and therefore can be assembled into the same transcript 

(Figure 1C). 

 

Conceptually, we model the problem as a graph with two types of nodes (bipartite), transcripts 

and constraints, where each transcript node is connected by edges to the constraints it satisfies, 

and we must select a subset of transcripts that collectively satisfy all constraints (Figure 1D). In 

early work, we implemented a simple greedy SET_COVER approximation algorithm (15) that 

aimed to minimize the number of transcripts that could explain all the read patterns, or 

constraints, without regard to the number of supporting reads. Here we report an improved 

algorithm that additionally takes into account the read coverage (abundance) information for 

each transcript and constraint, modeled as a Q(UANTITATIVE)_SET_COVER problem (see 

Supplementary Material S1). It selects a subset of candidate transcripts while simultaneously 

assigning a set of compatible reads, and it does so efficiently by exploiting the compactness of 
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the splice graph data structure. The algorithm iteratively grows a set of transcripts by selecting, 

at each step, the transcript that maximizes a scoring function which takes into account both the 

number of constraints not covered by the current set and their abundance. As a new transcript 

is selected, reads are simultaneously assigned to it as determined by its set of constraints, and 

the algorithm is reiterated with the updated sets of constraints and transcripts.  

 

Since the algorithm favors abundant isoforms, transcripts are being selected largely in the order 

of their abundance, from the most highly to the least expressed. This allows the selection 

procedure to be terminated whenever the abundance reaches a user-specified cutoff 

(parameter ‘-F’), with the most trusted isoforms being reported first. In practical terms, it also 

allows one to run the program in several modes at once. For instance, to more fully capture 

splicing variation, a user may run the program using a sensitive parameter setting to produce a 

larger set of potential isoforms, e.g. transcripts whose abundance is at least 1% of that of the 

most expressed isoform of the gene (‘-F 0.01’). Then, she may filter them with increasing cutoffs 

to produce more stringent subsets that are usually more precise. Lastly, to further improve the 

algorithm’s efficiency for genes with complex structures, rather than enumerating all transcripts 

at each step in the algorithm, CLASS implements an efficient splice-graph based dynamic 

programming transcript selection procedure, described below. This method considerably 

reduces both memory and run time, and allows the program to be run on very large data sets 

without sacrificing sensitivity. 

 

Exon reconstruction algorithm 

To determine the exons, CLASS analyzes regions of the genome covered by reads, which 

represent exons or combinations of exons, using splice sites to split each region into intervals, 
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denoted by letters (a-e) in Figure 1A. Each interval can belong to more than one exon, denoted 

by numbers, for instance 1-4 in our example. The portion of an exon corresponding to an 

interval is called subexon, for instance 1,a and 4,c. To determine the most likely combination of 

exons within a region, CLASS enumerates all feasible exon sets, i.e. that are necessary and 

sufficient to explain all splice sites and all reads. For each such set it formulates and solves a 

linear program (LP), which is used to score the combination. The combination with the best LP 

score is chosen as the representative set of exons. The linear program is described below. 

 

The linear program (LP)-based scoring system for exon combinations. Given a candidate set of 

exons, CLASS assigns each subexon an (unknown) read coverage level, ci,j, defined as the average 

number of reads per base of subexon i,j. Let Cj be the (observed) coverage on interval j. We 

write a linear system with the following constraints: i) additivity, meaning that the coverage 

level in each interval should be roughly equal to the sum of coverage levels of all subexons 

within that interval, e.g.: | c1,a + c4,a – Ca | ≤ εa , ii) continuity, i.e. the coverage of subexons of the 

same exon should be roughly equal, e.g.: | c4,a – c4,b | ≤ ε4, iii) conservation, i.e. the total 

coverage of all exons should be equal to the total coverage of the region: Σi=1,4 Σj=a,e ci,j Lj = Σj=1,e 

CjLj, where Lj = length of interval j, and iv) non-negativity: all (sub)exons should be expressed, 

e.g.: c1,a ≥ 1. The objective is to minimize the total error, Σ ε. For single-end reads, this value is 

used explicitly to score the combination. For paired-end reads, deviations from the observed 

fragment length distribution are included as penalties to more finely differentiate among likely 

exon sets. In the end, the exon combination with the smallest score (‘error’) is chosen. 

 

Once determined, exons are connected into a splice graph via introns extracted from spliced 

alignments, and candidate transcripts are enumerated as maximal paths in this graph. The 
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candidate transcript set is typically much larger than the true set of transcripts. CLASS 

implements several algorithms to select a subset of transcripts that are the most likely to be 

represented in the sample, starting from the SET_COVER problem and its variations, as 

discussed below.  

 

Transcript selection algorithms 

The goal is to select a subset of the transcripts encoded in the splice graph that can collectively 

explain all the reads, which we formulate as a variation of the SET_COVER problem. We 

implement an iterative procedure that simultaneously selects the next transcript and assigns 

reads to it, thus estimating its abundance in the process. To start, we mark the boundaries of 

the exons along the genomes and divide the gene into intervals, as described above. To reduce 

space, we group reads (or read pairs) that cover the same set of intervals into classes, called 

constraints. For each constraint ci, we define its abundance ai as the number of reads (or read 

pairs) for that constraint divided by the number of possible start positions of the reads within 

the intervals. Each constraint can be included (satisfied) into one or more candidate transcripts, 

ci ~ tj; conversely, a transcript can be viewed as the set of constraints it satisfies: tj = {c1, … ,cn1}. 

We then denote the abundance of a transcript, Aj, as the minimum abundance of its set of 

constraints: Aj = min { ai | ci~tj  }. Let G be a graph with n transcripts T = { t1, …, tn} and m 

constraints C = { c1, …, cm}. We give a basic enumeration and selection algorithm for relatively 

simple graphs, and an efficient splice-graph based implementation that can efficiently handle 

complex graphs below. 

 

Basic algorithm. For a small graph, it is feasible to enumerate and assess all candidate 

transcripts t1, …, tn encoded in the graph. At each step, the algorithm evaluates all remaining 
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transcripts and selects the new transcript, ti, that maximizes the score function Vi = ni /(2-Ai /max 

A), where ni is the current number of constraints that transcript ti is compatible with, Ai is the 

abundance of transcript ti, and max A is the maximum abundance over all transcripts of the 

gene. Once a transcript ti is selected, its abundance is subtracted from those of the constraints it 

satisfies: cj -= Ai. If for any constraint the abundance becomes 0, it is removed from the set. The 

algorithm is reiterated until there are no non-empty constraints. 

 

An efficient splice graph-based algorithm. For complex genes that can generate a large number 

of transcripts, it may not be efficient or even feasible to enumerate and assess all transcripts at 

each step. Instead, we take advantage of the compactness of the splice graph representation 

and the locality of the constraints to design a memory and time efficient dynamic programming 

algorithm. We start by giving an algorithm to iteratively find the next transcript ti that satisfies 

the maximum number of constraints ni, by traversing the graph while calculating an optimal 

path, and then modify it to take into account the abundance, or read numbers.  

 

Let L be a subpath (subtranscript) in the splice graph and L’ the minimum subpath immediately 

following L such that the constraints partially compatible with L cannot end after L’ (‘memory’). 

We enumerate all the L’ and recursively calculate the maximum number of constraints f(L) of 

subtranscripts starting with subpath L: 

               f(L) = max { f(L’) + c(L,L’),  if  L’ exists;     c(L),  if  L’ does not exist },  

where c(L,L′) is the number of constraints partially compatible with L (start within L) and 

compatible with the concatenated subpath L.L′, and c(L) is the number of constraints covered by 

subtranscript L. The algorithm starts with considering every 5’ exon as a subpath. Along with the 
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maximum number of constraints covered, the algorithm can also track the corresponding 

optimal transcript.  

 

To incorporate abundance information into the optimization process, we modify the algorithm 

as follows. When processing L and L’, we exclude subpaths that cover constraints with 

abundance less than or equal to some fixed value x. Hence, the algorithm reports the transcript 

covering the most constraints among those whose abundance is larger than x. We call such a 

transcript an x-abundance transcript. This variation helps determine, at each step, the transcript 

t* with maxi Vi = maxi ni /(2-(Ai /max A)) . We first calculate the 0-abundance transcript; suppose 

its abundance is x1. We then calculate the x1-abundance transcript, and so on, until we cannot 

find any xm-abundance transcript, where xm= max A, in the (m+1)-st iteration.  Then the 

following Theorem establishes that transcript t* is among the transcripts computed. 

Theorem: The optimal transcript t* is among the 0-abundance, x1-abundance, …, xm-1-abundance 

transcripts. 

Proof:  Suppose n*, V*, A* corresponds to the number of covered constraints, score and 

abundance for the optimal transcript t*. Let x0=0, then the following two properties hold from 

the definitions above: (1) 0=x0 < x1 < … < xm; and (2) n0 ≥ n1 ≥ … ≥ nm. 

Then A* is between x0 and xm, and suppose that xi < A* ≤ xi+1, where 0≤ i< m. Denote the xi-

abundance transcript by ti. Then Vi ≤ V*, by virtue of the fact that t* is the optimal transcript. We 

only need to prove that Vi=V*. 

Suppose Vi<V*, and we already know that ni ≥ n* because the dynamic programming always 

returns the transcript covering the most constraints (property (2) above). According to the 
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definitions of Vi and V*, then it is necessary that Ai<A* in order to make Vi<V*. But, Ai=xi+1 based 

on the definition. Therefore, A*>Ai=xi+1, which contradicts the fact that A* is in the interval 

(xi,xi+1]. Hence, the assumption that Vi<V* is false and we must have Vi=V* and hence t*=ti (i.e., 

the xi+1-abundance transcript), which concludes the proof.   

 

Materials and sequences 

For our analyses on simulated data, we generated RNA-seq reads with the software 

FluxSimulator (17), starting from the GENCODE v.17 gene annotations and choosing the options 

‘RNA fragmentation’ and 200 million clusters. In total, 15,062 genes and 22,544 GENCODE 

transcripts were represented by the 200 million 75 bp paired-end reads in the sample. For 

analyses on real data, strand specific RNA-seq libraries were constructed for the lymphocyte 

samples using the TruSeq RNA SamplePrep Guide version 15008136_A with modifications. 

Briefly, for the poly A preparation mRNA was purified from 2 µg of total RNA using Illumina RNA 

purification beads, the resulting mRNA was fragmented using the Illumina Elute, Prime, 

Fragment Mix and 1
st
 strand cDNA was synthesized following the TruSeq RNA protocol. Second 

strand cDNA was synthesized using 8 µl of 10X NEBNext® Second Strand Synthesis (dNTP-Free) 

Reaction Buffer, 2µl of 10X SuperScript II RT Buffer (NEB), 250uM of each dATP, dUTP, dCTP and 

dGTP, all of the material from the 1
st
 strand cDNA reaction and 4µl of second strand enzyme 

(NEB) in a total of 100µl. The reaction was incubated at 16
0 

C for 2.5 hours. The resulting double 

stranded cDNA was purified, end repaired and adenylated following the TruSeq RNA Sample 

Prep protocol. One microliter of Illumina adapters were used for the ligation following the 

TruSeq RNA Sample Prep protocol. The adapter ligated cDNA library was then purified using 

Ampure beads and subjected to USER enzyme digestion in 5 µl of 10X HotStar PCR buffer 

(Qiagen), 1 unit of USER enzyme (NEB) in a total of 50µl. This reaction was incubated at 37
0 

C for 
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15 minutes and the enzyme was inactivated by heating to 95
0 

C for 5 minutes. The digested 

cDNA was purified using Ampure beads and PCR amplified following the protocol in the TruSeq 

RNA Sample Prep protocol. For the rRNA-depleted library we started with 5µg of total RNA and 

removed the rRNA using the Ribo-zero magnetic gold kit (Epicenter) instead of purifying mRNA. 

Otherwise, the library preparation protocol was identical to the procedure described above. 

Lastly, for our analyses on very deep sequencing data sets, RNA-seq reads from long RNAs in 

whole-cell, cytosol and nucleus (2 biological replicates each) of IMR90 lung fibroblast cells were 

downloaded from the ENCODE project’s web site at UCSC (http://genome.ucsc.edu/ENCODE ). 

All reads were mapped to the human genome hg19 using the software Tophat2 (18) using a 

combined non-redundant set of GENCODE and RefSeq transcripts as reference annotations and 

all other default parameters. 

 

Analysis of alternative splicing events 

To evaluate the programs for their ability to capture individual types of alternative splicing 

events, we generated a reference set of events (exon skipping, intron retention and alternative 

exon ends) from the simulated data. We used ASprofile (19) to extract events from the 

transcripts sampled by FluxSimulator, and then filtered them to retain only those actually 

supported by the reads in the sample. We processed each program’s GTF output in a similar 

manner and compared against the reference sets. To characterize the sources of errors, we 

searched the set of false positive predictions from each program against the set of events 

extracted from the full GENCODE data set, which determine artifacts due to paralogs and splice 

variants present in the annotation. The remaining false positive events were searched for 

spurious introns and for class-specific patterns. For intron retention, these include mis-

classification of 5’ and 3’ terminal exons and of reads from alternative exons overlapping the 
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intron, whereas for alternative exon ends they include spurious chimeric combinations of exon 

start and ends. 

Evaluation measures 

We used conventional measures to assess program performance at the transcript, exon, intron 

and alternative splicing event levels, including: Recall (sensitivity) = TP/(TP+FN), Precision = 

TP/(TP+FP), and F-value = 2*Recall*Precision/(Recall+Precision). 

 

RESULTS 

 

Comparative evaluation on control data 

We evaluated CLASS and several state-of-the-art programs for their ability to reconstruct full 

transcripts and to capture partial splice variation. We included in our tests four de novo 

assemblers, namely CLASS (v. 2.0), Cufflinks (v. 2.1.1; (7)), IsoCEM (v. 0.9.1; (9)) and Scripture (v. 

beta2; (8)), and two annotation-based methods, SLIDE (May 7, 2012 download; (11)) and 

iReckon (v. 1.0.7; (10)). We ran CLASS in two different modes, stringent (default; ‘-F 0.05’) and 

sensitive ('-F 0.01'); the latter allows the program to report more minor isoforms. For the 

annotation-based programs we provided GENCODE v.17 (20) gene annotations as guides. To 

generate test data, we simulated 200 million 75 bp paired end reads using FluxSimulator (17) 

and starting from GENCODE v17 gene annotations as models. Reads were then mapped to the 

human genome hg19 using the program Tophat2 (18) and assembled with each program. 

 

Performance of programs in detecting full-length transcripts 

To evaluate the performance and also to identify potential limitations and biases of each 
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program we performed two types of analyses. In the first analysis we compared the transcripts 

produced by each program against the set of transcripts sampled by FluxSimulator, to obtain an 

unbiased assessment. We then also compared the predictions against a comprehensive set of 

non-redundant GENCODE and RefSeq transcript models, to identify biases and artifacts due to 

annotated paralogs and splice variants representing alternative combinations of the same 

exons. These classes of artifacts are impossible to tease apart on real data, where the ground 

truth is not known, and will be erroneously counted as true matches, thus over-estimating the 

program’s performance. 

 

When evaluated against the set of true annotations (Figure 2), most programs detect a majority 

(63-78%) of the exons and introns ('set of parts') of the sampled transcripts, with the notable 

exception of iReckon, which only finds roughly 52% of the features in each category. SLIDE is the 

most sensitive among the programs but has very low precision, and Cufflinks and CLASS are the 

most precise. CLASS and CLASS_F0.01 have the best overall performance, detecting a large 

fraction of both exons and introns with remarkably high precision, >90% for exons and >97% for 

introns.  Programs rank similarly for reconstructing full-length transcripts. CLASS and 

CLASS_F0.01 again have the best overall performance as measured by the F-value, a combined 

measure of sensitivity and precision (see Methods), and are able to reconstruct 9% and 16% 

more full-length transcripts compared to Cufflinks, the next and close runner up. 

  

In our second analysis, evaluating the programs against the full set of GENCODE and RefSeq 

gene annotations revealed several types of biases and errors (Figure 3 and Supplementary 

Figure S2). All programs now seemingly detect the ‘parts’ equally well (~20% sensitivity and 88-

100% precision), indicating that many of the false predictions in the earlier comparison come 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2014. ; https://doi.org/10.1101/011718doi: bioRxiv preprint 

https://doi.org/10.1101/011718
http://creativecommons.org/licenses/by-nd/4.0/


 18

from paralogs of the genes in the sample. Unsurprisingly, programs also seemingly detect more 

of the reference transcripts, artificially increasing programs’ performance. In particular, the two 

annotation-based methods show the largest inflation, with SLIDE more than doubling (120% 

increase) the number of annotation matches and iReckon adding 64% more matches, by virtue 

of their use of known annotations to scaffold gene models. When we traced these additional 

matches, most were variants of the sampled genes (53%-92%), and the rest were paralogs 

(Supplementary Table S3), except for iReckon where the variants and paralogs each accounted 

for roughly half of the false matches. A large portion of the artifacts, between 15% and 67% of 

the total (with the exception of SLIDE, which had very few), were single exon transcripts.  

However, even when restricting our analysis to multi-exon transcripts only, SLIDE had very high 

inflation (128%), followed by iReckon (25%) and Scripture (22%). CLASS (both variations) and 

Cufflinks had the lowest inflation by far, between 5-7%. Thus, these two programs are the most 

trusted to produce measurable results on real data.  

 

Performance of programs in detecting alternative splicing events 

Even with the best data, predicting full-length splice variant transcripts from short RNA-seq 

reads aligned to the genome is prone to assembly errors. Alternative splicing events, which can 

be determined from the local structure of transcripts or reads, can be detected with more 

accuracy and are frequently used in studies (21-23). We therefore analyze the ability of the 

programs to capture primitive classes of alternative splicing events, including exon skipping, 

intron retention and alternative exon ends. Since most programs do not specifically predict 

alternative transcription start and termination, we did not include them in the analysis. We 

compared events detected from transcripts generated by each of the programs to the set of 

events represented in the simulation data.  
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As Figure 4 indicates, CLASS_F0.01 and Scripture are the best overall performers as indicated by 

their F-values, albeit the two programs have strikingly different behavior. Scripture captures the 

largest number of events in each category, but it does so at the expense of reporting a very 

large number of false positives, which can severely impact the significance of downstream 

analyses. CLASS and CLASS_F0.01 find a large portion of the events in each category, balancing 

sensitivity with high accuracy and achieving the best tradeoff. More specifically, CLASS finds 25-

36% more events in each category compared to Cufflinks, which is the leading reference 

annotation tool and is also the most precise of the programs, at higher or comparable precision. 

Moreover, CLASS_F0.01 finds roughly twice as many events as Cufflinks in each category with 

only a relatively small drop in precision (4-17%). Like CLASS, Cufflinks allows users to vary the 

stringency of the program. We therefore separately compared the performance when varying 

the parameter range of both CLASS and Cufflinks to control the number of isoforms reported (‘-F 

f’, with f=0.01, 0.02, 0.03, 0.05, 0.1, 0.1, 0.15). Cufflinks’ performance dropped sharply from its 

default settings, whereas CLASS showed a consistent performance (Supplementary Figure S4). 

CLASS extended the sensitivity range and, for the same sensitivity level, it delivered significantly 

higher precision. Therefore, using CLASS in its various settings has the highest potential for 

applications that involve studies of alternative splicing variation.  

 

We next analyzed the errors made by these programs to evaluate their capacity to capture 

alternative splicing information. Programs detected exon skipping events with varying degrees 

of sensitivity (19-79%) and precision (10-94%). Notably, a majority of the false positives for all 

programs (67-86%; except for SLIDE, 23%) were matches to gene paralogs (Table 1), and only a 

small fraction were due to other alignment artifacts. This is most clearly illustrated by iReckon 
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and IsoCEM, which predicted large numbers of splicing events, the majority of which were false 

positives. In contrast, most of the errors for SLIDE were due to spurious introns. The 

performance of all programs was significantly lower for intron retention events, with 10-52% 

sensitivity and only 2-29% precision. In most cases, false intron retention predictions resulted 

from mis-classification of 5’ and 3’ alternative gene starts and ends, as well as from cases in 

which a splice variant contained an exon that overlapped an intron in the corresponding gene 

(53-82% of false positives, except for Scripture, 23%). Lastly, programs in general were slightly 

less accurate in capturing alternative exon ends compared to exon skipping, finding 15-76% of 

the true variations with 9-80% precision. The errors here were more evenly split between 

paralogs and variants present in the annotation but not sampled by the data (53-69%; except for 

iReckon 33%) and from spurious combinations of exon ends. CLASS had both a very low number 

and a very small percentage of false positives, matched only by Cufflinks, while detecting 30% 

more features (>90% more when CLASS_F0.01 is used). These analyses also suggest that a 

simple way in which performance of most programs can be improved is by better distinguishing 

between true matches and paralogs, and that further improvements can come from better 

distinguishing between intron retention and other types of variation. Note that the simulated 

data does not model intronic reads resulted from unprocessed transcripts; the following 

sections provide a more realistic, albeit empirical, assessment on real data sets.    

 

Comparative evaluation on real data for different sequencing strategies 

To assess the performance of programs on real data, we applied them to two large RNA-seq 

data sets. A lymphocyte sample from an individual free of neuropsychiatric disease was 

sequenced using two different library preparation strategies, as part of a twin study.  In the first 

method, polyA-selected RNA was sequenced on an Illumina HiSeq2000 instrument to produce 
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roughly 183 million 100 bp paired-end reads. This data set provides a good illustration of a 

typical RNA-seq analysis experiment, for which most programs are currently optimized. The 

second library was generated from the same lymphocyte sample by rRNA-depleting the total 

RNA, and sequenced to generate 317 million paired-end reads. Mapping all reads to the genome 

with Tophat2 produced roughly 170 million and 240 million read alignments, respectively, but 

comparatively a larger fraction (46% versus 7%) in the latter sample was in intronic reads. 

 

Comparison on the polyA-selected data set  

Because the current human genome annotation is inherently incomplete, while also including 

genes and isoforms not expressed in the sample, it is not possible to determine the true 

sensitivity and precision of any analysis tool on real data. Nevertheless, we deem consistency 

with the reference annotation, in particular for sensitivity, as a good indicator of a program’s 

performance. Using a non-redundant set of GENCODE and RefSeq transcript models as 

reference, we compare the output of the six programs against the reference annotations. 

Filtering out single exon assemblies, most of which are biological or computational artifacts, 

significantly increased the precision of Cufflinks and IsoCEM, whereas there was very little effect 

on the other programs (Supplementary Table S5). 

 

Programs detected between 25-38% of the reference exons and 25-42% of the reference 

introns, but could only fully reconstruct a small fraction (4-9%; 7,000-16,000) of the annotated 

transcripts (Supplementary Figure S6). This is not unexpected, since only a subset of the 

reference annotations will be present in any given sample, but the small numbers make it 

difficult to differentiate among programs and determine the significance. To better assess the 

relative performance, we designate one method as reference and determine for each of the 
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others the relative change in the number of transcripts found (Figure 5A, top). We chose 

Cufflinks as reference, because in our earlier testing on simulated data it was the most accurate 

among the reference programs.  

 

With the exception of isoCEM, programs find 21-48% more transcripts than Cufflinks, with 

iReckon and CLASS_F0.01 reconstructing the largest numbers of reference transcripts. Cufflinks 

has the best precision again, followed very closely by iReckon and CLASS. (Note that true 

‘precision’ is impossible to assess, as ‘false positives’ could in fact represent true splice isoforms, 

not found in the reference annotation.) Overall, CLASS and CLASS_F0.01 perform the best 

among de novo assemblers and offer the best tradeoff between sensitivity and precision, as 

measured by the F-value. When all programs are considered, iReckon appears to perform the 

best; however, its performance is likely biased by the fact that it used as input the very set of 

gene annotations we now use for evaluation. When adjusting for paralog and spurious splice 

variant inflation (Supplementary Figure S6, last panel), CLASS and CLASS_F0.01 are the only two 

programs to exhibit positive cumulative gains in combined sensitivity and ’precision’ (26% and 

41%, respectively, more reference transcripts found compared to Cufflinks, at comparable or 

slightly lower precision). In conclusion, while Cufflinks appears to be the most precise of the 

programs for this type of data, CLASS is just as precise while more sensitive, and both CLASS and 

CLASS_F0.01 offer more accuracy in combined sensitivity and precision. 

 

Comparison on the rRNA-depleted data set 

We repeated the analysis on the rRNA-depleted RNA sample. Surprisingly, both Cufflinks and 

IsoCEM performed very poorly, finding only a small subset of reference features; we suspect the 

reason is that both employ a local intronic ‘noise’ filter at the individual intron level, whereas 
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other programs characterize ‘noise’ at gene (iReckon, CLASS) and/or genome level (Scripture, 

CLASS). Rankings for other programs were similar to those for the polyA+ data (Figure 5A, 

bottom; Supplementary Figure S7). Although this data set does not fit the characteristics of the 

simulated data, which was modeled after the polyA-selected RNA sample preparation, we again 

conjecture that a large portion of iReckon’s performance is in fact due to over-counting of 

paralogs and alternative exon combinations toward the true matches. CLASS and CLASS_F0.01 

are robust with the intronic noise levels and produce reliable gene models, having the best 

accuracy among de novo assemblers. In particular, they can reconstruct 2.5 times as many 

transcripts as Cufflinks. An example illustrating the programs’ performance at the UBR4-CAPZB 

locus is shown in Supplementary Figure S8. 

 

Performance of programs on very deep sequencing data sets 

The fast and cost effective RNA-seq technology has led to a steady increase in the data size and 

depth of sequencing, enabling detailed alternative splicing studies. To tackle very large data 

sets, some programs focus on determining the major isoforms and therefore provide a limited 

view of the splicing repertoire in a sample, whereas others simply cannot handle the 

combinatorial explosion. To assess the potential for discovering splicing variation from deep 

sequencing data sets, we applied all programs to two very large data sets produced by the 

ENCODE project (24,25). The IMR90 lung fibroblast cell line was sequenced at great depth in 

three separate surveys, of the whole cell, the cytosolic and the nuclear fractions.  Two replicates 

were run for each fraction, which can be used in our evaluation to assess the accuracy of the 

predicted features by testing their reproducibility in multiple samples. To reduce the run time, 

below we restricted our accuracy analyses to chromosome 1. Even so, SLIDE was prohibitively 
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slow and was excluded from the analysis. Summary results of programs are listed separately 

(Supplementary Table S9). 

 

With >300 million reads, the ENCODE IMR90 data sets are among the most deeply sequenced to 

date and are expected to sample RNA biotypes not found in the reference annotations. 

Therefore, true accuracy (especially precision) is not possible to assess since novel splice 

variants will be counted as false positives. Nevertheless, we again judge concordance with 

annotated features (introns and full transcripts) as indicative of sensitivity and leverage the 

reproducibility of features across the six samples to better estimate the programs’ performance.  

 

When considering the goal of reconstructing full transcripts, iReckon has seemingly the best 

performance, as it identified the largest number of transcripts present in the existing 

annotations (Figure 5B and Supplementary Figure S10). Again, however, these results should be 

considered with caution given the large inflation from variants and paralogs observed with 

simulated data. Excluding iReckon, both CLASS and CLASS_F0.01 reconstruct the largest number 

of annotated transcripts in both the cytosol and the nucleus samples, 60-90% (77-103% nucleus) 

more than Cufflinks and 15-43% (30-49% nucleus) more than the best of the programs, while 

also having higher or comparable ‘precision’.  

 

We separately evaluated the programs’ accuracy in capturing deeper splicing variation, in 

particular novel variation, using splice junctions (introns) as surrogates (Table 2). CLASS and 

CLASS_F0.01 find by far the most known introns, 8% and 11% more than the best of the other 

programs on the cytosolic sample, and 22% and 37% more on the nucleus sample. When 

including in the reference those novel introns that are reproducible in at least two data sets, 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2014. ; https://doi.org/10.1101/011718doi: bioRxiv preprint 

https://doi.org/10.1101/011718
http://creativecommons.org/licenses/by-nd/4.0/


 25

CLASS_F0.01 remained the most sensitive, followed by CLASS and Scripture, at very high 

precision (>97% for cytosol and >95% for nucleus).  

 

Lastly, CLASS completed the task in roughly 30 min for the chromosome 1 of the cytosol sample 

and was comparable in speed with the fastest of the programs (Supplementary Table S11). As a 

practical matter, for increased efficiency CLASS_F0.01 can be run first to report a comprehensive 

set of transcripts, and the output can be filtered using various ‘-F’ parameters (minimum 

fraction of reported isoforms’ abundance from that of the most expressed isoform) to produce 

increasingly more precise subsets, at the cost of finding fewer transcripts. Therefore, results for 

CLASS with multiple settings can be obtained in roughly the same time as a single run.  

 

De novo annotation of a newly sequenced organism 

Next generation sequencing has significantly accelerated the pace at which new genomes are 

being produced. Annotation projects for these genomes are increasingly relying on fast and low 

cost RNA-seq resources. The choice of RNA-seq transcript assembler here is critical; for instance, 

since annotation-based programs are not designed to identify novel genes, de novo methods are 

the most productive. To illustrate CLASS’ ability to annotate new genomes, we apply it to 

enhance the annotation of the peach genome. With its 226.6 MB of sequence assembled in 365 

scaffolds, the Prunus persica (peach) genome is a good model for future plant species 

annotation projects. We use CLASS to analyze four RNA-seq data sets sampled from embryo and 

cotyledon, fruit, root and leaf of peach tree (PRJNA34817), totaling 82.6 MB 75 bp paired-end 

reads. Preliminary gene annotations are also available, and we use them to identify novel 

transcript variants that could be used to enhance the existing annotation. 
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Following read mapping and assembly, CLASS produced between 15,000-27,500 transcript 

fragments (transfrags) per sample (Supplementary Table S12). When compared across the four 

samples, these amounted to roughly 19,500 transfrags corresponding to existing annotations, 

but also more than 1000 new loci, each present in at least two of the samples, and 27,161 novel 

transcripts of known genes, representing new splice variants or extensions of the annotated 

transcripts (Supplementary Table S13). In one example at the ppa023343m gene locus (Figure 

6A), transfrags assembled from short reads extended the existing gene model by 10-11 exons 

and revealed several novel splice variations. The extended gene encodes a 1016 aa protein that 

has similarity over its entire length to importin-11 and importin-11-like proteins in other species 

(Prunus mume, Vitis vinifera, Citrus simensis, Fragaria vesca, Theobroma cacao and Glycine 

max). In another example at the ppa023750 gene locus, transfrags assembled from the four 

RNA-seq samples point to additional splice variants, including a novel skipping event of a 39 bp 

exon located at scaffold_1:4613746-4613784, and a potential retention of an 84 bp intron 

(scaffold_1:4621242-4621327; Figure 6B), manifested only in the embryo and cotyledon sample. 

The landscape for this gene is also significantly reconfigured, by merging two previously 

adjacent genes and by a further extension of its 5’ end. The gene has extensive and close 

similarity to predicted proteins in apple, Japanese apricot, orange, and cacao. Lastly, a new gene 

locus, located between genes ppa026188m and ppa005862m, and several putative splice 

variants discovered with CLASS can be seen in Figure 6C. Blast searches of the two novel 

putative gene sequences found distant homologs elsewhere in the genome, as well as matches 

to cytochrome C oxidase subunit 6b protein and to predicted FLX-like proteins in several 

Rosaceae species. Both sequences contain long open reading frames (762 bp out of 1347 bp, 

and 234 bp out of the 366 bp sequences, respectively) and are strong candidates for novel, not 

yet annotated genes. 
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DISCUSSION 

 

A wealth of RNA-seq data, from small individual projects to very large-scale systematic 

experiments, is making it possible for the first time to catalog alternative splicing variation in 

detail in different organisms, tissues, at various developmental stages and stress or disease 

states, and in individual cell types. Many computational methods have already been developed 

to translate the data into knowledge at the level of genes and transcripts. However, they are still 

far from being able to assemble full transcript models with high accuracy (26) and have limited 

ability to capture even local splicing variation, including canonical alternative splicing events. 

Some classes of events are especially difficult to detect due to artifacts that occur during data 

generation and mapping (Figure 4 and Supplementary Table S3), and have not been 

systematically pursued by current programs. 

 

We developed a novel splice graph-based algorithm and software tool, CLASS, with the goal to 

assemble likely models of full-length transcripts while capturing local splicing variations with 

high accuracy, to allow genome and system-wide alternative splicing analyses. CLASS employs 

intronic reads and splice junction “noise” models to accurately determine the set of parts, 

namely exons and introns, and a novel time and memory efficient dynamic programming 

algorithm to select a subset of probable transcripts that retain most of the splicing variation in 

the sample. 

 

CLASS differs technically from existing approaches while promoting alternative splicing discovery 

in several ways: i) it uses an LP-based system to locally predict exon variations, such as 
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alternative 5’ and 3’ exon ends; ii) it incorporates a combined gene- and genome-level model of 

intronic “noise”, to distinguish retained introns; iii) it models alternative first and last exons, 

including the cases when they occur at internal exons; and iv) it uses an iterative algorithm and a 

complex scoring system to select a minimal subset of transcripts that collectively retain as much 

splicing variation as possible while explaining all the reads. 

CLASS also implements several memory and time saving strategies that are critical to its 

performance and allow it to run on very deep sequencing data sets without sacrificing accuracy. 

These include a smaller LP system formulated on gene regions rather than along the entire gene, 

which is both faster and more accurate to solve; clustering reads into classes (‘constraints’); 

employing a compact and scalable splice graph representation of genes; and, last but not least, 

implementing a new dynamic programming transcript selection algorithm that avoids 

enumerating transcripts in complicated graphs, and is memory and space efficient. As a result, a 

typical run on an Illumina-generated 200 million paired-end read set requires less than 3 GB 

RAM and, when run with multiple threads, takes less than one day, and therefore can be run on 

most desktop computers.  

 

In our comparative evaluation of CLASS and several state-of-the-art programs, we found CLASS 

to be significantly more sensitive in capturing alternative splicing variations, both at the level of 

full transcripts and local alternative splicing events, at precision higher or comparable with that 

of the best program. In particular, it detected almost twice as much variation as Cufflinks, the 

most precise of the programs, with only a small decrease in precision. The evaluation also 

afforded us a unique view of the strengths and limitations of the different approaches. For 

instance, annotation based approaches as employed by SLIDE and iReckon can detect a larger 

number of the reference annotations, but are also prone to reporting paralogs and splice 
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variants not actually present in the sample. This is particularly problematic when interpreting 

the programs’ output on real data, where they would be incorrectly labeled as true matches. 

The quantity and quality of data can create significant challenges, while library sample 

preparation can further introduce biases and significantly alter the characteristics of the data 

(27,28). In general, we found Cufflinks to be the most precise of the programs but missing 

important splice variations, and Scripture to be the most sensitive but imprecise. However, 

while different programs may score best by various criteria and for different types of 

applications, CLASS delivered a consistently good performance for a wide variety of applications 

and sequencing strategies. These included surveys of polyA-selected (spliced) RNA, which are 

the most frequent among RNA-seq applications, as well as of ribosomal depleted total RNA, and 

very deep sequencing experiments to characterize splicing variation, low expression forms, and 

novel and cellular fraction-specific RNA biospecies, in great depth. 

 

While the boundary between true and noisy splice variation (29) continues to remain undefined, 

making it ever more difficult to determine the extent of splicing variation and number of 

isoforms for any given gene, some strategies could help improve the outcome. Better methods 

are needed to characterize the various types of artifacts that confound classes of variations, 

such as alternative polyadenylation or alternative promoter usage and retained introns. These 

can entail implementing sequence models of binding sites of regulatory proteins (30,31), or 

incorporating other types of evidence including CAGE tags, DNase-seq or FAIRE-seq signals, 

paired-end diTags (PET-seq) (32) and polyA-seq (33) sequences, where available. Also needed 

are complete reference data sets on genes or systems that can help evaluate the performance in 

an unbiased way, or at the very least better simulation models. The latter should include 

realistic models for sequencing artifacts, including intronic reads from unprocessed pre-mRNA, 
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as well as for the amount and complexity of splicing variation with increasing sequencing depths, 

and for different types of RNA-seq experiments. Even further, accuracy measures are needed to 

be able to evaluate programs for their ability to reconstruct splice variations at both global and 

local levels, including canonical alternative splicing events and local assemblies. Current 

evaluation schemes focus on the reconstruction of full-transcripts, discounting correct partial 

reconstructions. Lastly, new sequencing technologies or continuous improvements in the 

existing ones that extend both read and insert lengths will provide increasing contiguity, while 

large and judiciously designed experiments will provide multiple replicates or concordant data 

sets that can be analyzed simultaneously (34,35) to improve both throughput and accuracy. 
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FIGURE LEGENDS 

Figure 1. The CLASS transcript assembly algorithm: Step 1 (A) Exon and introns. Infer exons 

from the read coverage levels, using linear programming, and introns from spliced alignments. 

Step 2 (B) Splice graph. Build a splice graph to represent the gene, connecting exons by introns. 

Shown is a section from a splice graph, with a skipped exon event and a 2-intron retention 

event, encoding two possible paths (transcripts). Step 3 (C) Constraints. Cluster reads into 

classes (constraints) by their splicing and interval patterns. Step 4 (D) Transcript selection. Build 

and solve the bipartite constraint graph and associated SET_COVER problem. Shown are the 

constraint graph and SET_COVER problem for four read pairs c1, c2, c3 and c4, and three 

transcripts t1, t2 and t3. 

 

Figure 2. Performance of programs in reconstructing full-length transcripts, on simulated data. 

Accuracy was measured at exon (X), intron (I) and full transcript (T) levels, by comparison to the 

subset of reference transcripts sampled by FluxSimulator. Recall = TP/(TP+FN), Precision = 

TP/(TP+FP) and F = 2*Recall*Precision/(Recall+Precision). 

 

Figure 3. Performance inflation of programs. Observed performance values when measured 

against the full set of GENCODE reference annotations, for the simulated data (top). 

Performance ‘inflation’, or the difference between performance measured on the full GENCODE 

set and the subset of GENCODE transcripts actually represented in the sample (bottom). The 

additional matches are from spurious paralogs and variants not present in the sample. PCI = 

(Match_GENCODE/Match_sim) -1, where Match_sim refers to the subset of transcripts actually 

present in the simulated sample.  
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Figure 4. Performance of programs in capturing alternative splicing events: exon skipping 

(SKIP), intron retention (IR), and alternative exon ends (AE). 

 

Figure 5. Relative performance of programs on real data. All values are relative to Cufflinks. (A) 

Performance on two real RNA-seq data sets from lymphocytes from the same individual: a 

polyA-selected data set (top), and an rRNA-depleted data set (bottom). (B) Performance with 

very deep sequencing data sets: the ENCODE IMR90 cell line, cytosol sample (top); same cell 

line, nucleus sample. For a program P, the relative performance improvement for recall is 

Delta_recall(P) = [ TP(P) – TP(Cufflinks) ]/TP(Cufflinks) ], and similarly for precision. The value for 

Cufflinks (reference) is 0. 

 

Figure 6. Refining the peach gene models. CLASS transcript predictions for four peach RNA-seq 

data sets (BioProject ID: PRJNA34817) are shown in blue, and reference annotations in gold. (A) 

RNA-seq reads assembled with CLASS extend the ppa023342m gene model by 10-11 exons and 

suggest additional splice variants. The extended gene model is supported by data in all of the 

four samples. (B) An extended gene model and several novel splice variants at the ppa023750m 

gene locus. The intron bridging the two existing gene annotations has (18,7,9,8) supporting 

reads, respectively, in the four samples, and the last intron is supported by (8,15,6,9) reads. 

Further, the 39 bp novel exon at Scaffold_1:4613746-4613784 in the SRR531862 sample is 

alternatively skipped in the reference annotation, and there is ample intronic read support for a 

putative 84 bp frame-preserving intron retention event at scaffold_1: 4621242-4621327. (C) 

CLASS finds novel genes and splice variants in the intergenic region between annotations 

ppa026188m and ppa005862m. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 

(A)             (B) 
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Figure 6. 
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TABLES 

Table 1. Programs’ performance in capturing alternative splicing events. Programs were 

evaluated for their ability to detect 1,327 exon skipping (SKIP), 185 intron retention (IR) and 

1,016 alternative exon end (AE) events present in the simulated data. Incorrect predictions were 

analyzed to determine classes of artifacts. Artifacts due to paralogs and splice variants of the 

genes and transcripts in the sample were determined by comparison against events extracted 

from the full set of GENCODE annotations. The remaining events were searched for spurious 

introns and for class-specific error patterns, due to mis-classification of alternative first and 

terminal exons, or of reads from overlapping exons within the same or a different gene (IR), and 

to spurious combinations of exon start and exon end (AE). 

 

Program Predicted Correct Recall Precision 
F-

value 
Artifacts 

Exon skipping (SKIP) 
Variants+ 

Paralogs 

Spurious intron(s) 

 

CLASS 586 537 0.405 0.916 0.561 33 6 

CLASS_F0.01 897 783 0.590 0.873 0.704 92 9 

Cufflinks 432 406 0.306 0.940 0.462 20 2 

Cufflinks_F0.01 1142 782 0.589 0.685 0.634 311 32 

IsoCEM 940 496 0.374 0.528 0.438 380 33 

Scripture 1724 1045 0.787 0.606 0.685 558 74 

iReckon 1186 251 0.189 0.212 0.200 781 49 

SLIDE 3022 311 0.234 0.103 0.143 618 2083 

Intron retention (IR) 
Variants+ 

Paralogs 

Spurious 

intron(s) 

Mis-

classified 

CLASS 176 51 0.276 0.290 0.283 17 12 52+41 

CLASS_F0.01 331 80 0.432 0.242 0.310 44 57 83+63 

Cufflinks 150 38 0.205 0.253 0.227 19 13 43+50 

Cufflinks_F0.01 319 68 0.368 0.213 0.270 50 41 89+61 

IsoCEM 205 18 0.097 0.088 0.092 25 61 48+51 
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Scripture 388 97 0.524 0.250 0.339 104 119 49+18 

iReckon 818 18 0.097 0.022 0.036 116 56 392+204 

SLIDE 0 0 0 0 0 0 0 0 

Alternative exon ends (AE) 
Variants+ 

Paralogs 

Spurious 

intron(s) 

Spurious 

combin. 

CLASS 496 369 0.363 0.744 0.488 62 4 61 

CLASS_F0.01 831 551 0.542 0.663 0.597 169 11 100 

Cufflinks 367 293 0.288 0.798 0.424 39 5 30 

Cufflinks_F0.01 977 488 0.480 0.499 0.490 326 35 123 

IsoCEM 761 223 0.219 0.293 0.251 372 40 126 

Scripture 3196 767 0.755 0.240 0.364 1656 197 576 

iReckon 1721 150 0.148 0.087 0.110 512 50 1009 

SLIDE 0 0 0 0 0 0 0 0 
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Table 2. Performance of programs on the ENCODE IMR90 data: features (full-transcripts and 

introns) matching known and/or high-confidence novel annotations. GENCODE v17 

chromosome 1 annotation contains 15,493 transcripts and 33,202 introns. R = (recall) = 

Match/Annotations, P = (precision) = Match/Predicted. 

  

Program 

Transcripts Introns 

Predicted Match R P Predicted Match R P 

Cytosol 

CLASS 3029 1053 0.068 0.348 12662 12557 

(11996) 

0.378 

(0.361) 

0.968 

(0.947) 

CLASS_F0.01 3836 1183 0.076 0.308 13413 13253 

(12327) 

0.399 

(0.371) 

0.988 

(0.919) 

Cufflinks 2508 621 0.040 0.248 10420 10372 

(10109) 

0.312 

(0.304) 

0.995 

(0.970) 

Cufflinks_F0.01 3458 719 0.046 0.208 11725 11564 

(10779) 

0.348 

(0.325) 

0.986 

(0.919) 

IsoCEM 2479 722 0.047 0.291 11483 11297 

(10617) 

0.340 

(0.320) 

0.984 

(0.925) 

Scripture 14621 971 0.063 0.066 13820 12751 

(11149) 

0.384 

(0.336) 

0.923 

(0.807) 

iReckon 4512 1730 0.112 0.383 11724 11477 

(10552) 

0.346 

(0.318) 

0.979 

(0.900) 

Nucleus 

CLASS 6084 992 0.064 0.163 16391 15765 

(12862) 

0.475 

(0.418) 

0.962 

(0.846) 

CLASS_F0.01 10216 1141 0.074 0.112 18610 17699 

(14539) 

0.532 

(0.438) 

0.950 

(0.781) 

Cufflinks 2714 561 0.036 0.207 11255 11079 

(10576) 

0.334 

(0.319) 

0.984 

(0.940) 

Cufflinks_F0.01 6085 789 0.051 0.130 16884 16064 

(13568) 

0.484 

(0.409) 

0.951 

(0.804) 
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IsoCEM 2236 277 0.018 0.124 9604 8737 

(7576) 

0.263 

(0.228) 

0.910 

(0.789) 

Scripture 45247 764 0.049 0.017 18048 13910 

(10188) 

0.419 

(0.307) 

0.771 

(0.564) 

iReckon 5769 1539 0.099 0.267 10162 9474 

(8232) 

0.285 

(0.248) 

0.932 

(0.810) 
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