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Abstract1

The first decade of Genome Wide Association Studies (GWAS) has uncovered a wealth of disease-2

associated variants. Two important derivations will be the translation of this information into a multiscale3

understanding of pathogenic variants, and leveraging existing data to increase the power of existing and4

future studies through prioritization. We explore edge prediction on heterogeneous networks—graphs5

with multiple node and edge types—for accomplishing both tasks. First we constructed a network6

with 18 node types—genes, diseases, tissues, pathophysiologies, and 14 MSigDB (molecular signatures7

database) collections—and 19 edge types from high-throughput publicly-available resources. From this8

network composed of 40,343 nodes and 1,608,168 edges, we extracted features that describe the topology9

between specific genes and diseases. Next, we trained a model from GWAS associations and predicted the10

probability of association between each protein-coding gene and each of 29 well-studied complex diseases.11

The model, which achieved 132-fold enrichment in precision at 10% recall, outperformed any individ-12

ual domain, highlighting the benefit of integrative approaches. We identified pleiotropy, transcriptional13

signatures of perturbations, pathways, and protein interactions as fundamental mechanisms explaining14

pathogenesis. Our method successfully predicted the results (with AUROC = 0.79) from a withheld mul-15

tiple sclerosis (MS) GWAS despite starting with only 13 previously associated genes. Finally, we combined16

our network predictions with statistical evidence of association to propose four novel MS genes, three17

of which (JAK2, REL, RUNX3 ) validated on the masked GWAS. Furthermore, our predictions provide18

biological support highlighting REL as the causal gene within its gene-rich locus. Users can browse all19

predictions online (http://het.io). Heterogeneous network edge prediction effectively prioritized genetic20

associations and provides a powerful new approach for data integration across multiple domains.21
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Author Summary22

For complex human diseases, identifying the genes harboring susceptibility variants has taken on medical23

importance. Disease-associated genes provide clues for elucidating disease etiology, predicting disease24

risk, and highlighting therapeutic targets. Here, we develop a method to predict whether a given gene25

and disease are associated. To capture the multitude of biological entities underlying pathogenesis, we26

constructed a heterogeneous network, containing multiple node and edge types. We built on a technique27

developed for social network analysis, which embraces disparate sources of data to make predictions from28

heterogeneous networks. Using the compendium of associations from genome-wide studies, we learned29

the influential mechanisms underlying pathogenesis. Our findings provide a novel perspective about30

the existence of pervasive pleiotropy across complex diseases. Furthermore, we suggest transcriptional31

signatures of perturbations are an underutilized resource amongst prioritization approaches. For multiple32

sclerosis, we demonstrated our ability to prioritize future studies and discover novel susceptibility genes.33

Researchers can use these predictions to increase the statistical power of their studies, to suggest the34

causal genes from a set of candidates, or to generate evidence-based experimental hypothesis.35
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Introduction36

In the last decade, genome-wide association studies (GWAS) have been established as the main strategy37

to map genetic susceptibility in dozens of complex diseases and phenotypes. Despite the undeniable38

success of this approach, researchers are now confronted with the challenge of maximizing the scientific39

contribution of existing GWAS datasets, whose undertakings represented a substantial investment of40

human and monetary resources from the community at large.41

A central assumption in GWAS is that every region in the genome (and hence every gene) is a-42

priori equally likely to be associated with the phenotype in question. As a result, small effect sizes and43

multiple comparisons limit the pace of discovery. However, rational prioritization approaches may afford44

an increase in study power while avoiding the constraints and expense related to expanded sampling. One45

such a way forward is the current trend on analyzing the combined contribution of susceptibility variants46

in the context of biological pathways, rather than single SNPs [1, 2]. A less explored but potentially47

revealing strategy is the integration of diverse sources of data to build more accurate and comprehensive48

models of disease susceptibility.49

Several strategies have been attempted to identify the mechanisms underlying pathogenesis and use50

these insights to prioritize genes for genetic association analyses. Gene-set enrichment analyses iden-51

tify prevalent biological functions amongst genes contained in disease-associated loci [3]. Gene network52

approaches search for neighborhoods of genes where disease-associated loci aggregate [4]. Literature min-53

ing techniques aim to chronicle the relatedness of genes to identify a subset of highly-related associated54

genes [5]. These strategies generally rely on user-provided loci as the sole input and do not incorporate55

broader disease-specific knowledge. Typically, the proportion of genome-wide significant discoveries in a56

given GWAS is low, thus leaving little high-confidence signal for seed-based approaches to build from.57

To overcome this limitation, here we aimed at characterizing the ability of various information domains58

to identify pathogenic variants across the entire compendium of complex disease associations. Using this59

multiscale approach, we developed a framework to prioritize both existing and future GWAS analyses60

and highlight candidate genes for further analysis.61

To approach this problem, we resorted to a method that integrated diverse information domains62

naturally. Heterogeneous networks are a class of networks which contain multiple types of entities (nodes)63

and relationships (edges), and provide a data structure capable of expressing diversity in an intuitive and64

scalable fashion. However, current techniques available for network analysis have been developed for65

homogeneous networks and are not directly extensible to heterogenous networks. Furthermore, research66

into heterogeneous network analysis is in its early stages [6]. One of the few existing methods for67

predicting edges on heterogeneous networks was developed by researchers studying social sciences to68

predict future coauthorship [7]. In this work, we extended this methodology to predict the probability69

that an association between a gene and disease exists.70
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Results71

Constructing a heterogeneous network to integrate diverse information do-72

mains73

Using publicly-available databases and standardized vocabularies, we constructed a heterogeneous net-74

work with 40,343 nodes and 1,608,168 edges (Figure 1). Databases were selected based on quality,75

reusability, and throughput. The network was designed to encode entities and relationships relevant76

to pathogenesis. The network contained 18 node types (metanodes) and 19 edge types (metaedges),77

displayed in Figure S2A. Entities represented by metanodes consisted of diseases, genes, tissues, patho-78

physiologies, and gene sets for 14 MSigDB collections including pathways, perturbation signatures, motifs,79

and Gene Ontology domains (Table 1). Relationships represented by metaedges consisted of gene-disease80

association, disease pathophysiology, disease localization, tissue-specific gene expression, protein interac-81

tion, and gene-set membership for each MSigDB collection (Table 2).82
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Figure 1. Heterogeneous network integrates diverse information domains. We constructed a
heterogeneous network with 18 metanodes (denoted with labels) and 19 metaedges (denoted by color).
For each metanode, nodes are laid out circularly. Incorporating type information adds structure to a
network which would otherwise appear as an undecipherable agglomeration of 40,343 nodes and
1,608,168 edges.

Gene-disease associations were extracted from the GWAS Catalog [8] by overlapping associations into83

disease-specific loci. Loci were classified as low or high-confidence based on p-value and sample size of84

the corresponding GWAS. When possible, for each loci, the most-commonly reported gene across studies85

was designated as primary and subsequently considered responsible for the association. Additional genes86
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reported for the loci were considered secondary. Only high-confidence primary associations were included87

in the network yielding 938 associations between 99 diseases and 711 genes (Figure S1 visualizes a subset88

of these associations).89

Features quantify the network topology between a gene and disease90

To describe the network topology connecting a specific gene and disease, we computed 24 features, each91

describing a different aspect of connectivity. Each feature corresponds to a type of path (metapath)92

originating in a given source gene and terminating in a given target disease. The biological interpretation93

of a feature derives from its metapath (Table S1), and features simply quantify the prevalence of a specific94

metapath between any gene-disease pair. To quantify metapath prevalence, we adapted an existing95

method originally developed for social network analysis (PathPredict) [7], and developed a new metric96

called degree-weighted path count (DWPC, Figure S2D), which we employed in all but two features.97

The DWPC downweights paths through high-degree nodes when computing metapath prevalence. The98

strength of downweighting depends on a single parameter (w), which we optimized to w = 0.4 and that99

outperformed the top metric resulting from PathPredict (Figure S3A) [7]. Two non-DWPC features were100

included to assess the pleiotropy of the source gene and the polygenicity of the target disease. Referred101

to as ‘path count’ features, they respectively equal the number of diseases associated with the source102

gene and the number of genes associated with the target disease. For all features, paths with duplicate103

nodes were excluded, and, if present, the association edge between the source gene and target disease was104

masked.105

Machine learning approach to predict the probability of association of gene-106

disease pairs107

Further analysis focused on the 29 diseases with at least ten associated genes (Table 3). The 698 high-108

confidence primary associations of these 29 diseases were considered positives—gene-disease pairs with109

positive experimental relationships (as defined in Methods, Figure S1). The remaining 551,823 (i.e.110

unassociated) gene-disease pairs were considered negatives. Low-confidence or secondary associations111

were excluded from either set. We partitioned gene-disease pairs into training (75%) and testing (25%)112

sets and created a training network with the testing associations removed.113

To learn the importance of each feature and model the probability of association of a given gene-disease114

pair, we used regularized logistic regression which is designed to prevent overfitting and accurately es-115

timate regression coefficients when models include many features. Elastic net regression is a regression116

method that balances two regularization techniques: ridge (which performs coefficient shrinkage) and117

lasso (which performs coefficient shrinkage and variable selection) [9]. On the training set, we optimized118

the elastic net mixing parameter, a single parameter behind the DWPC metric, and two edge-inclusion119

thresholds (Figure S3). While cross-validated performance was similar across elastic net mixing parame-120

ters, ridge demonstrated the greatest consistency (Figure S3A), and thus we proceeded with logistic ridge121

regression as the primary model for predictions.122
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Method prioritizes associations withheld for testing123

We extracted network-based features for gene-disease pairs from the training network and modeled the124

training set. We next evaluated performance on the 25% of gene-disease pairs (175 positives, 137,956125

negatives) withheld for testing. Our predictions achieved an area under the ROC curve (AUROC) of 0.83126

(Figure 2A) demonstrating an excellent performance in retrieving hidden associations. Importantly, we127

did not observe any significant degradation of performance from training to testing (Figure 2A), indicating128

that our disciplined regularization approach avoided overfitting and that predictions for associations129

included in the network were not biased by their presence in the network. Furthermore, we observed that130

at 10% recall (the classification threshold where 10% of true positives were predicted as positives), our131

predictions achieved 16.7% precision (the proportion of predicted positives that were correct). Since the132

prevalence of positives in our dataset was 0.13%, the observed precision represents a 132-fold enrichment133

over the expected probability under a uniform distribution of priors (as in GWAS).134
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Figure 2. Predicting associations withheld for testing. Performance was evaluated on 25% of
gene-disease pairs withheld for testing. A) Testing and training ROC curves. At top prediction
thresholds, associated gene-disease pairs are recalled at a much higher rate than unassociated pairs are
incorrectly classified as positives. The testing area under the curve (AUROC) is slightly greater than
the training AUROC, demonstrating the method’s lack of overfitting. Performance greatly exceeds
random denoted by gray line. B) The precision-recall curve showing performance in the context of the
low prevalence of associated gene-disease pairs (0.13%). Nevertheless, at top prediction thresholds, a
high percentage of pairs classified as positives are truly associated. Prediction thresholds, shown as
points and colored by value, align with the observed precision at that threshold.

Predicting associations on the complete network135

As a next step in our analysis, we recomputed features on the complete network, which now included the136

previously withheld testing associations. On all positives and negatives, we fit a ridge model (the primary137

model for predictions) and a lasso model (for comparison). Standardized coefficients (Figure 3) indicate138

the effect attributed to each feature by the models. The lasso highlighted features that captured pleiotropy139
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(4 features), pathways (2), transcriptional signatures of perturbations (1) and protein interactions (1).140

Despite the parsimony of the lasso, performance was similar between models with training AUROCs of141

0.83 (ridge) and 0.82 (lasso). However, since multiple features from a correlated group may be causal,142

the lasso model risks oversimplifying. Ridge regression disperses an effect across a correlated group of143

features, providing users greater flexibility when interpreting predictions. From the ridge model, we144

predicted the probability that each protein-coding gene was associated with each analyzed disease and145

built a webapp to display the predictions (http://het.io/disease-genes/browse).146

{Cancer Hood}
{Positional}GeTeGaDGiGeTlDGeTlD

{GO Function}

{GO Component}

{miRNA Target}
{BioCarta}

{Oncogenic}
{TF Target}

GaD (any gene)

{Cancer M
odule}GiGiGaD

{GO Process}GiGaD{KEGG}
{Im

munologic}
{Reactome}

{Perturbation}
GaDmPmD

GaD (any disease)GaDlTlDGaDaGaD

2 0 2 4
Standardized Coe cient

Method (AUROC)
ridge (0.829)
lasso (0.823)

Figure 3. Feature selection identifies a parsimonious yet predictive model. Ridge and lasso
models were fit from the complete network. The resulting standardized coefficients (x-axis) are plotted
for each feature (y-axis). Brackets indicate features from MSigDB-traversing metapaths (Gm{}mGaD).
The ridge model disperses effects amongst features whereas the lasso concentrates effects. The lasso
identifies an 8-feature model with minimal performance loss compared to the ridge model. Besides
KEGG, gene-set based features were largely captured by Perturbations. The lasso retains several
measures of pleiotropy as well as the one-step interactome feature (GiGaD).
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Degree-preserving network permutations highlight the importance of edge-147

specificity for top predictions and ten features148

Using Markov chain randomized edge-swaps, we created 5 permuted networks. Since metaedge-specific149

node degree is preserved, features extracted from the permuted network retain unspecific effects. These150

effects include general measures a disease’s polygenicity and a gene’s pleiotropy, multifunctionality, and151

tissue-specificity. On the first permuted network, we partitioned associations into training and testing152

sets. Testing associations were masked from the network, features were computed, and a ridge model was153

fit on the training gene-disease pairs.154

Compared to the unpermuted-network model, testing performance was noticeably inferior: the AU-155

ROC declined from 0.83 (Figure 2A) to 0.79 (Figure S4A) and the AUPRC (area under the precision-recall156

curve) declined from 0.06 (Figure 2B) to 0.02 (Figure S4B). We interpret the modest decline in AUROC157

but marked reduction in AUPRC as a direct consequence of the permutation’s particularly detrimental158

effect on top predictions (Figure S4C–D). In other words, edge-specificity was crucial for top predictions,159

while general effects gleaned from node degree performed reasonably well when ranking the entire spec-160

trum of protein-coding genes for association. A commonly-overlooked finding is that the discriminatory161

ability of gene networks largely relies on node-degree rather than the edge-specificity [10]. However, we162

found that for top predictions—which are the only predictions considered by many applications—edge-163

specificity was critical.164

Interestingly, predictions from the permuted-network model displayed a reduced dynamic range with165

none exceeding 4%, while predictions from the unpermuted-network model exceeded 75% (Figure S4D).166

Therefore, even though they achieve reasonable AUROC, the permuted-network predictions would have167

little utility as prior probabilities in a bayesian analysis where dynamic range is crucial. Furthermore,168

the signal present in permuted-network features was greatly diminished: few features survived the lasso’s169

selection resulting in an average lasso AUROC of 0.70 versus 0.80 for ridge (Figure S5). Permuting170

the network significantly reduced the predictiveness of features based on pleiotropy (2 features), protein171

interactions (2), transcriptional signatures of perturbations (1), tissue-specificity (1), pathways (3), and172

immunologic signatures (1) (Table S2). Six of the eight features selected by the lasso and eight of the173

top ten ridge features (ranked by standardized coefficients) were negatively affected by the permutation.174

Since our modeling technique preferentially selected/weighted features affected by permutation, we can175

infer that network components where edge-specificity matters underlie a large portion of predictions.176

Feature importance identifies the mechanisms underlying associations177

We assessed the informativeness of each feature by calculating feature-specific AUROCs. Feature-specific178

AUROCs universally exceeded 0.5, indicating that network connectivity, regardless of type, positively dis-179

criminates associations. However, performance varied widely by feature and within feature from disease to180

disease (Figure 4). Top performing domains consisted of transcriptional signatures of perturbations (AU-181

ROC = 0.74), immunologic signatures (0.70), and pleiotropy (0.68, 0.67, 0.64, 0.63). Notably, the models182

greatly outperformed any individual feature, highlighting the importance of an integrative approach.183

Features whose metapaths originate with an association (GaD) metaedge measure pleiotropy (Ta-184
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Figure 4. Decomposing performance shows the superiority of the integrative model and
compares individual features. Disease, feature, and model-specific performance on the complete
network. The AUROC (y-axis) was calculated for each classifier (x-axis). In addition to the ridge and
lasso models (rightmost panels), each feature was considered as a classifier. Line segments show the
classifier’s global performance (average performance across permuted networks shown in violet as
opposed to dark grey). Points indicate disease-specific performance and are colored by the disease’s
pathophysiology. Grey rectangles show the 95% confidence interval for mean disease-specific
performance. A) Features from metapaths that traverse an MSigDB collection. B) Features from
non-MSigDB-traversing metapaths. Metapaths are abbreviated using first letters of metanodes
(uppercase, Table 1) and metaedges (lowercase, Table 2). Feature descriptions are provided in Table S1.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2014. ; https://doi.org/10.1101/011569doi: bioRxiv preprint 

https://doi.org/10.1101/011569
http://creativecommons.org/licenses/by/4.0/


10

ble S1). The four pleiotropic features were among the top performing features that did not rely on185

set-based gene categorization (Figure 4). Of the four features, GaD (any disease) had the highest AU-186

ROC despite its lack of disease-specificity, reflecting both the sparsity of disease-specific features and187

the existence of genetic overlap between seemingly disparate diseases. GaDmPmD and GaDaGaD per-188

formed best for immunologic diseases and were affected by permutation, indicating that genetic overlap189

was greatest between immunologic diseases. On the other hand, the performance of GaDlTlD did not190

decrease after permutation indicating disease colocalization was not a primary driver of genetic overlap.191

We also observed that the lasso regression model discarded the majority of features with a minimal192

performance deficit, suggesting redundancy among features. Indeed, pairwise feature correlations showed193

moderate collinearity among features (Figure S6). Collinearity was especially pervasive with respect194

to the Perturbations feature, explaining its threefold increase in standardized coefficient in the lasso195

versus ridge model. The disappearance of all but one other MSigDB-based feature in the lasso model196

indicated that Perturbations—the feature traversing chemical and genetic transcriptional signatures of197

perturbations—exhausted meaningful gene-set characterization. In other words, the faulty molecular198

processes behind pathogenesis align with and are encapsulated by the processes perturbed by chemical199

and genetic modifications. The Immunologic signatures feature—traversing gene-sets characterizing “cell200

types, states, and perturbations within the immune system”—was highly predictive and correlated with201

Perturbations. As expected this feature performed best for diseases with an immune pathophysiology.202

The one well-performing neoplastic disease (Figure 4) was chronic lymphocytic leukemia, a hematologic203

cancer with a strong immune component [11]. Additionally, the performance of both the Perturbation204

and Immunologic features was affected by permutation indicating information beyond the extent of a205

gene’s multifunctionality was encoded.206

Existing network-based gene-prioritization methods, frequently rely solely on protein-protein inter-207

actions. Our results supported incorporating protein interactions as the two interactome-based features208

were discriminatory (AUROCs = 0.65, 0.56) and affected by permutation. However, when compared209

to the integrative models or other top-performing features, performance of features that relied solely on210

the interactome was severely limited. Pathways, another founding resource for many approaches, proved211

important with KEGG selected by the lasso and all three pathway resources (AUROCs = 0.61 for KEGG,212

0.60 for Reactome, 0.55 for BioCarta) affected by permutation. The GeTlD feature—measuring to what213

extent a gene is expressed in tissues affected by the disease in question—peaked in performance around214

AUROC = 0.58 (Figure S3B), was affected by permutation, and required no preexisting knowledge of215

associated genes. In other words, while approaches based on tissue-specificity may have limited predictive216

ability on their own, they are broadly applicable (i.e. less susceptible to knowledge bias) and provide217

orthogonal information that could enhance the overall performance of a model.218

Case study: prioritizing multiple sclerosis associations219

The WTCCC2 multiple sclerosis (MS) GWAS tested 465,434 SNPs for 9,772 cases and 17,376 controls220

and identified over 50 independently associated loci [12]. Since the GWAS Catalog excludes targeted221

arrays (such as ImmunoChip), this study remains the largest MS GWAS in the Catalog. To evaluate our222
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method’s ability to prioritize associations identified in a future study, we masked the WTCCC2 MS study223

from the GWAS Catalog and created a pre-WTCCC2 network. The number of high-confidence primary224

MS associations was thus reduced from 50 to 13, with the 37 novel genes identified by WTCCC2 available225

to evaluate performance. On the pre-WTCCC2 network, we extracted features, fit a ridge model, and226

predicted each gene’s probability of association with MS. Amongst all 18,993 potentially novel genes, the227

37 WTCCC2 genes were ranked highly (AUROC = 0.79, Figure 5).228
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Figure 5. Prioritizing multiple sclerosis associations identified by a masked GWAS. From a
network with the WTCCC2 MS associations omitted, we predicted probabilities of association for all
potentially novel genes. The 37 novel genes identified by the WTCCC2 GWAS were considered
positives, and the resulting performance was plotted. The ROC (A) and precision-recall (B) curves
show performance, with AUCs in line with the testing performance across all diseases (Figure 2). A
prediction threshold (black cross) that resulted in high performance was selected as the discovery
threshold for further analysis. As the classification threshold decreases along the precision-recall curve,
the advent of each true positive is denoted by its gene symbol.

Prioritizing statistical candidates with network-based predictions identifies229

novel multiple sclerosis genes230

Finally, we designed a framework for discovering and validating novel MS genes that incorporates our231

network-based predictions. Meta2.5 is a meta-analysis of all MS GWAS prior to the WTCCC2 study [13].232

We calculated genewise p-values for Meta2.5 using VEGAS [14] and observed a large enrichment in nom-233

inally significant (p < 0.05) genes, suggesting multiple potential associations (Figure S8). We combined234

this set of experimental candidates with the top predictions from the pre-WTCCC2 network to discover235

genes with both strong statistical and biological evidence of association. To ensure novelty, we excluded236

genes from GWAS-established MS loci and the extended MHC region. We chose a threshold (Table S3) for237

network-based predictions that performed well in prioritizing the genes identified by WTCCC2 (Figure 5).238

This strategy discovered four genes, three of which—JAK2, REL, RUNX3—achieved Bonferroni239

validation on VEGAS-converted WTCCC2 p-values (Table 4). The probability of the observed validation240

rate occurring under random prioritization is 0.01 (Table S3), demonstrating that incorporating our241
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network-based predictions as a prior increased study power. JAK2 displays overexpression in MS-affected242

Th17 cells [15] and was implicated in an interactome-based prioritization of GWAS [2]. RUNX3, a243

transcription factor influencing T lymphocyte development, has been associated with celiac disease [16]244

and ankylosing spondylitis [17] and was hypermethylated in systemic lupus erythematosus patients [18].245

The region containing REL was uncovered in a recent MS ImmunoChip-based study with 14,498 cases [19,246

p. S40]. For the gene-dense region containing REL, the ImmunoChip study reported a long non-coding247

RNA, LINC01185, overlapping the lead-SNP, rs842639. However, since greater than 80% of the genome248

shows evidence of transcription [20], the probability of incidental overlap with long non-coding RNA is249

high. REL, however, is an essential transcription factor for lymphocyte development [21] and plays a250

critical role in autoimmune inflammation [22]. Hence, gene prioritization through integrative analyses251

offers not only to streamline loci discovery but also subsequent causal gene identification.252

Discussion253

In this work, we developed a framework to predict the probability that each protein-coding gene is asso-254

ciated with each of 29 complex diseases. Our predictions draw on a diverse set of pathogenically-relevant255

relationships encoded in a heterogeneous network. The predictions successfully prioritized associations256

hidden from the network. Using MS as a representative example, we were able to combine our predic-257

tions with statistical evidence of association to increase study power and identify three novel susceptibility258

genes in this disease. The disease-specific performance (measured by the AUROC) for MS was exceeded259

by twelve other diseases suggesting that our predictions have broad applicability for prioritizing genetic260

association analyses. Prioritization can range from a genome-wide scale to a single loci where this ap-261

proach can highlight the causal gene from several candidates within the same association block. For262

researchers focused on a specific disease, these predictions can be used to propose genes for experimental263

investigation. Inversely, researchers focused on a specific gene can use this resource to find suggestions264

for relevant complex disease phenotypes.265

Most previous explorations of the factors underlying pathogenicity have focused on a single domain266

such as tissue-specificity [23], protein interactions [24], pathways [1], or disease similarity [25]. The method267

presented here integrates disparate data sources, learns their importance, and unifies them under a com-268

mon framework enabling comparison. Therefore, we can conclude that perturbation gene sets—the core of269

our top-performing feature—are an underutilized resource for disease-associated gene prioritization. Not270

only did perturbations encompass other set-based gene categorizations, but they greatly outperformed271

features based on protein interactions, pathways, and tissue-specificity, which form the basis of several272

prominent prioritization techniques. In addition to characterizing the overall importance of each feature,273

our online prediction browser visually decomposes an individual prediction into its components.274

We observed a prominent influence of pleiotropy, consistent with previous studies that identified perva-275

sive overlap of susceptibility loci across complex diseases [26], especially those of autoimmune nature [27].276

Since many existing prioritization techniques are agnostic to the compendia of GWAS associations, they277

fail to adequately leverage pleiotropy. Unlike approaches initiated from a user-provided gene list, our278

study only provides predictions for 29 diseases. By not relying on user-provided input, our predictions279
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can serve as independent priors for future analyses. By predicting probabilities, we provide an extensi-280

ble and interpretable assessment of association that circumvents the limitations inherent to frequentist281

analyses [28]. Many approaches return no assessment for the majority of genes which fall outside of their282

set of predicted positives. Here, we overcome this issue and provide a comprehensive and genome-wide283

output by returning a probability of association for each protein-coding gene.284

High-throughput biological data is frequently noisy and incomplete [29]. Combining orthogonal re-285

sources can help overcome these issues. Accordingly, we found that our integrative model outperformed286

any individual domain. While this method has shown encouraging performance, some limitations are287

worth noticing. For example, many biological networks preferentially cover well-studied vicinities [30].288

Knowledge biases that span multiple presumably-orthogonal resources could diminish the benefits of289

integration. Here, several of the literature-derived domains were removed by the lasso suggesting redun-290

dancy. Biases in network completeness can also lead to high-quality predictions for well-studied vicinities291

and low-quality predictions for poorly-studied vicinities. The permutation analysis provided evidence292

of this disparity: edge-specificity was critical for top predictions yet only moderately beneficial for the293

remainder of predictions. Subsequently, we caution users to avoid overinterpreting predictions for poorly-294

characterized genes. To help place predictions in context, the online browser provides a gene’s mean295

prediction across all diseases and a disease’s mean prediction across all genes. As more systematic and296

unbiased resources become available [29], high-quality predictions will be possible for a higher percentage297

of network vicinities.298

We reason that the desirable qualities of our predictions are the consequence of the heterogenous299

network edge prediction methodology. The approach is versatile (most biological phenomena are decom-300

posable into entities connected by relationships), scalable (no theoretical limit to metagraph complexity301

or graph size), and efficient (low marginal cost to including an additional network component). We have302

extended the previous metapath-based framework set forth by PathPredict [7], by: 1) incorporating reg-303

ularization allowing coefficient estimation for more features without overfitting; 2) designing a framework304

for predicting a metaedge that is included in the network; 3) developing an improved metric for assessing305

path specificity; and 4) implementing a degree-preserving permutation. Metapath-based heterogeneous306

network edge prediction provides a powerful new platform for bioinformatic discovery.307

Methods308

Heterogeneous networks309

We created a general framework and open source software package for representing heterogeneous net-310

works. Like traditional graphs, heterogeneous networks consist of nodes connected by edges, except that311

an additional meta layer defines type. Node type signifies the kind of entity encoded, whereas edge type312

signifies the kind of relationship encoded. Edge types are comprised of a source node type, target node313

type, kind (to differentiate between multiple edge types connecting the same node types), and direction314

(allowing for both directed and undirected edge types). The user defines these types and annotates each315

node and edge, upon creation, with its corresponding type. The meta layer itself can be represented as316
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a graph consisting of node types connected by edge types. When referring to this graph of types, we use317

the prefix ‘meta’. Metagraphs—called schemas in previous work [6, 7]—consist of metanodes connected318

by metaedges. In a heterogeneous network, each path, a series of edges with common intermediary nodes,319

corresponds to a metapath representing the type of path. A path’s metapath is the series of metaedges320

corresponding to that path’s edges. The possible metapaths within a heterogeneous network can be321

enumerated by traversing the metagraph. We implemented this framework as an object-oriented data322

structure in python and named the resulting package hetio. Users are free to browse, use, or contribute323

to the software, through the online repository (http://github.com/dhimmel/hetio).324

Network construction325

Protein-coding genes were extracted from the HGNC database [31]. Resources were mapped to HGNC326

terms via gene symbol (ambiguous symbols were resolved in the order: approved, previous, synonyms)327

or Entrez identifiers. Disease nodes were taken from the Disease Ontology (DO) [32]. Due to the limited328

number of diseases with GWAS, relevant disease references were manually mapped to the DO. Tissues329

were taken from the BRENDA Tissue Ontology (BTO) [33]. Only tissues with profiled expression were330

included enabling manual mapping. Nodes for the 14 MSigDB metanodes were directly imported from the331

Molecular Signature Database version 4.0 [34]. MSigDB collections that were supersets of other collections332

were excluded. Diseases were classified manually into 10 categories according to pathophysiology. The333

‘idiopathic’ and ‘unspecific’ categories were not included as pathophysiology nodes, since they do not334

signify meaningful similarities between member diseases.335

Association processing336

Disease-gene associations were extracted from the GWAS Catalog [8], a compilation of GWAS associa-337

tions where p < 10−5. First, associations were segregated by disease. GWAS Catalog phenotypes were338

converted to Experimental Factor Ontology (EFO) terms using mappings produced by the European339

Bioinformatics Institute. Associations mapping to multiple EFO terms were excluded to eliminate cross-340

phenotype studies. We manually mapped EFO to DO terms (now included in the DO as cross-references)341

and annotated each DO term with its associations.342

Associations were classified as either high or low-confidence, where exceeding two thresholds granted343

high-confidence status. First, p ≤ 5 × 10−8 corresponding to p ≤ 0.05 after Bonferroni adjustment for344

one million comparisons (an approximate upper bound for the number of independent SNPs evaluated by345

most GWAS). Second, a minimum sample size (counting both cases and controls) of 1,000 was required,346

since studies below this size are underpowered [35]—i.e. any discovered associations are more likely than347

not to be false—for the majority of true effect size distributions commonly assumed to underlie complex348

disease etiology [28].349

Lead-SNP were assigned windows—regions wherein the causal SNPs are assumed to lie—retrieved350

from the DAPPLE server [4]. Windows were calculated for each lead-SNP by finding the furthest upstream351

and downstream SNPs where r2 > 0.5 and extending outwards to the next recombination hotspot.352

Associations were ordered by confidence, sorting on following criteria: high/low confidence, p-value (low353

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2014. ; https://doi.org/10.1101/011569doi: bioRxiv preprint 

https://doi.org/10.1101/011569
http://creativecommons.org/licenses/by/4.0/


15

to high), and recency. In order of confidence, associations were overlapped by their windows into disease-354

specific loci. By organizing associations into loci, associations from multiple studies tagging the same355

underlying signal were condensed. A locus was classified as high-confidence if any of its composite356

associations were high-confidence and low-confidence otherwise.357

For each disease-specific loci, we attempted to identify a primary gene. The primary gene was resolved358

in the following order: 1) the mode author-reported gene; 2) the containing gene for an intragenic lead-359

SNP; 3) the mode author-reported gene for an intragenic lead-SNP (in the case of overlapping genes); 4)360

the mode author-reported gene of the most proximal up and downstream genes. Steps 2–4 were repeated361

on each association composing the loci, in order of confidence, until a single gene resolved as primary.362

Loci where ambiguity was unresolvable or where no genes were returned did not receive a primary gene.363

All non-primary genes—genes that were author-reported, overlapping the lead-SNP, or immediately up364

or downstream from the lead-SNP—were considered secondary.365

Accordingly, four categories of processed associations were created: high-confidence primary, high-366

confidence secondary, low-confidence primary, and low-confidence secondary. We assume that our pri-367

mary gene annotation for each loci represents the single causal gene responsible for the association. To368

investigate the validity of this assumption, we evaluated the performance of our predictions separately369

using each category of association as positives (Figure S7). For both confidence levels, primary associa-370

tions outperformed secondary associations suggesting our method succeeded at categorizing causal genes371

as primary. However, for high-confidence secondary associations, the AUROC equaled 0.74, which could372

result from multiple causal genes per loci or categorizing sole causal genes as secondary. The perfor-373

mance decline from high to low confidence associations was severe, pointing to a preponderance of falsely374

identified loci in the GWAS Catalog when p > 5× 10−8 or sample size drops below 1000.375

Protein interactions376

Physical protein-protein interactions were extracted from iRefIndex 12.0, a compilation of 15 primary377

interaction databases [36]. The iRefIndex was processed with ppiTrim to convert proteins to genes,378

remove protein complexes, and condense duplicated entries [37].379

Tissue-specific gene expression380

Tissue-specific gene expression levels were extracted from the GNF Gene Expression Atlas [38]. Starting381

with the GCRMA-normalized and multisample-averaged expression values, 44,775 probes were converted382

to 16,466 HGNC genes and 84 tissues were manually mapped and converted to 77 BTO terms. For both383

conversions, the geometric mean was used to average expression values. The log base 10 of expression384

value was used as the threshold criteria for GeT edge inclusion.385

Disease localization386

Disease localization was calculated for the 77 tissues with expression profiles. Literature co-occurrence387

was used to assess whether a tissue is affected by a disease. We used CoPub 5.0 to extract R-scaled388

scores between tissues and diseases measuring whether two terms occurred together in Medline abstracts389
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more than would be expected by chance [39]. DO terms for diseases with GWAS and BTO tissues with390

expression profiles were manually mapped to the ‘biological identifier’ terminology used by CoPub. The391

R-scaled score was used as the threshold criteria for TlD edge inclusion.392

Feature computation metrics393

The simplest metapath-based metric is path count (PC ): the number of paths, of a specified metapath,394

between a source and target node. However, PC does not adjust for the extent of graph connectivity395

along the path. Paths traversing high-degree nodes will account for a large portion of the PC, despite396

high-degree nodes frequently representing a biologically broad or vague entity with little informativeness.397

The previous work evaluated several metrics that include a PC denominator to adjust for connectivity and398

reported that normalized path count (NPC ) performed best [7]. The denominator for NPC equals the399

number of paths from the source to any target plus the number of paths from any target to the source. We400

adopt the any source/target concept to compute the two GaD features. However, dividing the PC by a401

denominator is flawed because each path composing the PC deserves a distinct degree adjustment. If two402

paths—one traversing only high-degree nodes and one traversing only low-degree nodes—compose the PC,403

the network surrounding the high-degree path will monopolize the NPC denominator and overwhelm the404

contribution of the low-degree path despite its specificity. Therefore, we developed the degree-weighted405

path count (DWPC ) which individually downweights each path between a source and target node. Each406

path receives a path-degree product (PDP) calculated by: 1) extracting all metaedge-specific degrees407

along the path (each edge composing the path contributes two degrees); 2) raising each degree to the408

−w power, where w ≥ 0 and is called the damping exponent; 3) multiplying all exponentiated degrees409

to yield the PDP. The DWPC equals the sum of PDPs. See Figure S2C–D for a visual and algebraic410

description of the DWPC.411

Machine learning approach412

Regularized logistic regression requires a parameter, λ, setting the strength of regularization. We op-413

timized λ separately for each model fit. Using 10-fold cross-validation and the “one-standard-error”414

rule to choose the optimal λ from deviance, we adopted a conservative approach designed to prevent415

overfitting [40].416

On the training set of gene-disease pairs, we optimized the elastic net mixing parameter (α), the417

DWPC damping exponent (w), and two edge inclusion thresholds. First, we optimized α and w on the418

20 features whose metapaths did not include threshold-dependent metaedges. For each combination of α419

and w, we calculated average testing AUROC using 20-fold cross-validation repeated for 10 randomized420

partitionings. After setting α and w (Figure S3A), we jointly optimized the two edge-inclusion thresholds421

using the AUROC for the GeTlD feature, whose metapath is composed from the two edges requiring422

thresholds (Figure S3B).423
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Degree-preserving permutation424

Starting from the complete network, a permuted network was created by swapping edges separately for425

each metaedge. Edge swaps were performed by switching the target nodes for two randomly selecting426

edges [41]. For each metaedge, the number of attempted swaps was ten times the corresponding edge427

count. We adopted a Markov Chain strategy where additional rounds of permutation were initiated from428

the most-recently permuted network [41]. A training network was generated from the first permuted429

network by masking 25% of the associations for testing. Testing performance for the permuted training430

network model is shown by Figure S4. When contrasting this performance with the unpermuted-network431

model, we employed the Condensed-ROC curve to magnify the importance of top predictions [42]. Using432

the exponential transformation with a magnification factor of 460—the value which maps a FPR of 0.01 to433

0.99—we concentrated on the top 1% of predictions (Figure S4C). A one-sided unpaired DeLong test [43]434

was used to assess whether feature-specific AUROCs from the complete network exceeded those from the435

first permuted network (Table S2).436

Multiple sclerosis gene discovery437

We excluded 588 genes from the discovery phase of the multiple sclerosis analysis. First we excluded438

genes in the extended MHC region (spanning from SCGN to SYNGAP1 on chromosome 6 [44]) due439

to the complex pattern of linkage characterizing this region containing several highly-penetrant MS-risk440

alleles [12]. Second, we excluded putative MS genes: high-confidence primary genes from the GWAS441

Catalog and reported genes for the WTCCC2-replicated loci. We omitted genes in linkage disequilibrium442

with the putative genes by excluding: 1) consecutive sequences of nominally significant genes (using the443

WTCCC2-VEGAS p-values) that included a putative gene; and 2) high-confidence secondary genes from444

the GWAS catalog. Post exclusion, 1211 genes were nominally significant in Meta2.5, four of which445

exceeded the network-based discovery threshold. Using a hypergeometric test for overrepresentation, we446

calculated the probability of randomly selecting 4 of the 1211 genes and Bonferroni validating at least 3447

of the 4 on WTCCC2 (Table S3).448

Data availability449

See Datasets S1–10 for the supporting data. The website provides additional resources (http://het.io/disease-450

genes/downloads/) as well as an interface for browsing results (http://het.io/disease-genes/browse/).451

Project related code is available from the github repository (http://github.com/dhimmel/hetio).452

Ethics Statement453

This study was approved by the UCSF institutional review board on human subjects under protocol454

#10-00104.455
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signatures database (MSigDB) 3.0. Bioinformatics 27: 1739–40.

35. Sawcer S (2008) The complex genetics of multiple sclerosis: pitfalls and prospects. Brain 131:

3118–31.

36. Razick S, Magklaras G, Donaldson IM (2008) iRefIndex: a consolidated protein interaction

database with provenance. BMC Bioinformatics 9: 405.
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Figure S1. Bipartite network of gene-disease associations. Gene-disease associations were
extracted from the GWAS Catalog. Here we show the 698 high-confidence primary associations for the
29 diseases with at least 10 associations. Diseases (large nodes) and their incident edges are colored
according to disease pathophysiology. The network highlights pervasive pleiotropy as well as the overlap
of susceptibility genes among autoimmune diseases.
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Figure S2. Heterogeneous network edge prediction methodology. A) We constructed the
network according to a schema, called a metagraph, which is composed of metanodes (node types) and
metaedges (edge types). B) The network topology connecting a gene and disease node is measured
along metapaths (types of paths). Starting on Gene and ending on Disease, all metapaths length three
or less are computed by traversing the metagraph. C) A hypothetical graph subset showing select nodes
and edges surrounding IRF1 and multiple sclerosis. To characterize this relationship, features are
computed that measure the prevalence of a specific metapath between IRF1 and multiple sclerosis. D)
Two features (for the GeTlD and GiGaD metapaths) are calculated to describe the relationship
between IRF1 and multiple sclerosis. The metric underlying the features is degree-weighted path count
(DWPC ). First, for the specified metapath, all paths are extracted from the network. Next, each path
receives a path-degree product measuring its specificity (calculated from node-degrees along the path,
Dpath). This step requires a damping exponent (here w = 0.5), which adjusts how severely high-degree
paths are downweighted. Finally, the path-degree products are summed to produce the DWPC.
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Figure S3. Parameter optimization. Using the training network, optimal parameter values (yellow
dashed lines) were chosen. A) Using average cross-validated AUROC to assess performance, six elastic
net mixing parameters were evaluated. For each mixing parameter value α, 10 feature metrics were
evaluated: the DWPC for 9 weighting exponents (w, magenta with a 99.99% loess confidence band) and
the NPC (violet with a 99.99% confidence interval). The DWPC with w = 0.4 outperformed the NPC,
the best metric from previous work, as well as the path count which equals the DWPC when w = 0.
Performance variability was minimized when α = 0. B) Edge-inclusion thresholds for two metaedges
were jointly optimized. Expression threshold refers to the minimum microarray intensity required for a
tissue-specific expression (GeT ) edge. Localization threshold refers to the minimum literature
co-occurrence score required for a disease localization (TlD) edge. Treating the DWPC (w = 0.4) for
the GeTlD metapath as a classifier, the AUROC was calculated at each pairwise threshold combination.
The optimal thresholds were chosen as the center of a stable, high-performing, and
computationally-feasible section of the solution space.
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Figure S4. Performance of the degree-preserving permutation. Testing performance is
contrasted between ridge models for the permuted-network and unpermuted-network. A) Testing and
training ROC curves for the permuted-network model. B) Testing precision-recall curve for the
permuted-network model. C) Testing CROC curves for the permuted-network and unpermuted-network
models. The FPR has been scaled to focus on the first 1% placing greater emphasis on top predictions.
While both models vastly outperform random (grey line), the unpermuted-network model provides far
superior top predictions. D) For both networks, gene-disease pairs were stratified by deciles of the
predicted probabilities for positives. For each strata, the percent of positive pairs (precision) is plotted.
The fold change over permuted is denoted for the unpermuted deciles.
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Figure S5. Disease, feature, and model-specific performance across permuted-network
models. Disease, feature, and model-specific AUROCs were calculated separately for each of 5
permuted networks and averaged. The figure is analogous to Figure 4, except all measures refer to
permuted-network performance. Disease-specific performance tends towards the mean, as
disease-specific information has been altered by permutation. For features ending with an association
(GaD) metaedge, global performance exceeds disease-specific performance. These features capture
disease polygenicity, which improves the ranking of gene-disease pairs only if multiple diseases are
included. Performance of the lasso model is affected, since the signals become too weak and few features
survive regularization.
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Figure S6. Pairwise feature correlation. Pearson’s correlation coefficients (shown by color and as
a percent) were calculated for all pairwise feature combinations. Features were ordered using Ward’s
hierarchical clustering. Moderate collinearity is pervasive across features. The four pleiotropy-focused
features form a tight cluster (top left). Perturbations and Immunologic signatures are correlated with
many other features, including several other MSigDB features.
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Figure S7. Performance of the predictions on the four categories of associations. Keeping
unassociated gene-disease pairs as negatives, ROC curves were calculated separately for each category
of association as positives. Predictions from the complete-network ridge model were used as the
classifier. For both high and low-confidence associations, primary gene annotations received higher
predictions than secondary gene annotations. High-confidence associations received considerably higher
predictions than low-confidence associations suggesting a high frequency of false positives amongst
low-confidence associations.
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Figure S8. Excess of nominally significant genewise p-values in Meta2.5. The histogram of
genewise p-values from Meta2.5, a meta-analysis of multiple sclerosis GWAS preceding the WTCCC2
study. If no associations are present, uniformly distributed p-values (grey line) would be expected.
Instead, we observed an excess of nominally significant genes (p ≤ 0.05, red) indicating a set of genes
likely enriched for true associations.
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Tables

MetaNode Count Source

Disease 99 Disease Ontology
Gene 19,116 HGNC (coding)
Tissue 77 BRENDA (BTO)
Pathophysiology 8 manual
Positional 326 MSigDB (C1)
Perturbation 3,402 MSigDB (C2)
BioCarta 217 MSigDB (C2)
KEGG 186 MSigDB (C2)
Reactome 674 MSigDB (C2)
miRNA Target 221 MSigDB (C3)
TF Target 615 MSigDB (C3)
Cancer Hood 427 MSigDB (C4)
Cancer Module 431 MSigDB (C4)
GO Process 825 MSigDB (C5)
GO Component 233 MSigDB (C5)
GO Function 396 MSigDB (C5)
Oncogenic 189 MSigDB (C6)
Immunologic 1,910 MSigDB (C7)

Table 1. Metanodes. The kind, number of corresponding nodes, and data source for each type of
node.
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MetaEdge Count Source

Disease - association - Gene 938 GWAS Catalog
Disease - membership - Pathophysiology 90 manual
Disease - localization - Tissue 1,086 CoPub 5.0
Gene - expression - Tissue 251,366 GNF BodyMap
Gene - interaction - Gene 97,938 iRefIndex
Gene - membership - Positional 18,343 MSigDB (C1)
Gene - membership - Perturbation 366,211 MSigDB (C2)
Gene - membership - BioCarta 4,456 MSigDB (C2)
Gene - membership - KEGG 12,656 MSigDB (C2)
Gene - membership - Reactome 35,597 MSigDB (C2)
Gene - membership - miRNA Target 33,455 MSigDB (C3)
Gene - membership - TF Target 161,258 MSigDB (C3)
Gene - membership - Cancer Hood 41,913 MSigDB (C4)
Gene - membership - Cancer Module 48,220 MSigDB (C4)
Gene - membership - GO Process 75,155 MSigDB (C5)
Gene - membership - GO Component 34,880 MSigDB (C5)
Gene - membership - GO Function 23,578 MSigDB (C5)
Gene - membership - Oncogenic 30,166 MSigDB (C6)
Gene - membership - Immunologic 370,862 MSigDB (C7)

Table 2. Metaedges. The kind, number of corresponding edges, and data source for each type of edge.
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Disease Pathophysiology HC-P HC-S LC-P LC-S

Crohn’s disease immunologic 67 179 4 2
multiple sclerosis immunologic 50 43 38 29
type 2 diabetes mellitus immunologic 49 49 20 15
breast carcinoma neoplastic 43 65 2 6
ulcerative colitis immunologic 40 96 2 3
prostate carcinoma neoplastic 34 202 3 4
type 1 diabetes mellitus immunologic 33 56 9 6
rheumatoid arthritis immunologic 30 27 20 11
coronary artery disease metabolic 29 43 15 9
obesity metabolic 28 22 34 18
celiac disease immunologic 24 32 9 8
systemic lupus erythematosus immunologic 22 35 14 8
refractive error degenerative 21 11 2 1
primary biliary cirrhosis immunologic 20 16 2 0
vitiligo immunologic 20 27 4 0
age related macular degeneration degenerative 18 30 11 18
metabolic syndrome X metabolic 17 11 1 0
asthma immunologic 17 23 13 4
psoriasis immunologic 16 14 5 5
schizophrenia psychiatric 15 27 20 13
chronic lymphocytic leukemia neoplastic 14 16 3 4
migraine unspecific 13 15 38 58
Alzheimer’s disease degenerative 12 11 27 18
Graves’ disease immunologic 12 15 1 1
Parkinson’s disease degenerative 12 21 8 13
atopic dermatitis immunologic 11 15 5 1
bipolar disorder psychiatric 11 34 26 74
lung carcinoma neoplastic 10 14 6 6
ankylosing spondylitis immunologic 10 5 6 6

Table 3. Diseases. Associations were predicted for 29 diseases with at least 10 positives. For these
diseases, the number of high-confidence primary (HC-P), high-confidence secondary (HC-S),
low-confidence primary (LC-P), and low-confidence secondary associations (LC-S) that were extracted
from the GWAS Catalog is indicated.

Gene Meta2.5 HNLP WTCCC2

JAK2 0.047 0.102 0.0015
REL 0.001 0.040 0.0003
SH2B3 0.012 0.034 0.0130
RUNX3 0.016 0.025 0.0073

Table 4. Multiple sclerosis gene discovery. Four genes showed nominal statistical evidence of
association (Meta2.5 column) and exceeded the network prediction threshold (HNLP column). Three
genes achieved Bonferroni validation (bold) in an independent GWAS (WTCCC2 column).
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Path Count Measures the number of . . .

GaD (any disease) diseases that the source gene is associated with, ignoring the association
with the target disease if present.

GaD (any gene) genes that the target disease is associated with, ignoring the association
with the source gene if present.

DWPC Measures the extent that . . .

GeTlD the source gene is expressed in tissues affected by target disease.
GiGaD genes associated with the target disease interact with the source gene.
GiGiGaD genes associated with the target disease interact with genes that interact

with the source gene.
GaDaGaD genes associated with the same diseases as the source gene are associated

with the target disease.
GaDmPmD diseases with the same pathophysiology as the target disease are associated

with the source gene.
GaDlTlD diseases affecting the same tissues as the target disease are associated with

the source gene.
GeTeGaD genes expressed in the same tissues as the source gene are associated with

the target disease.
GiGeTlD genes interacting with the source gene are expressed in tissues that are

affected by the target disease.
{Positional} genes located in the same cytogenetic band as the source gene are associated

with the target disease.
{Perturbation} genes belonging to the same perterbation signatures as the source gene are

associated with the target disease.
{BioCarta} genes involved in the same BioCarta pathways as the source gene are asso-

ciated with the target disease.
{KEGG} genes involved in the same KEGG pathways as the source gene are associ-

ated with the target disease.
{Reactome} genes involved in the same Reactome pathways as the source gene are as-

sociated with the target disease.
{miRNA Target} genes sharing 3’-UTR microRNA binding motifs with the source gene are

associated with the target disease.
{TF Target} genes sharing transcription factor binding sites with the source gene are

associated with the target disease.
{Cancer Hood} genes present in the same expression neighborhoods of cancer-related genes

as the source gene are associated with the target disease.
{Cancer Module} genes belonging to the same cancer modules as the source gene are associ-

ated with the target disease.
{GO Process} genes participating in the same GO Biological Processes as the source gene

are associated with the target disease.
{GO Component} genes belonging to the same GO Cellular Components as the source gene

are associated with the target disease.
{GO Function} genes contributing to the same GO Molecular Functions as the source gene

are associated with the target disease.
{Oncogenic} genes belonging to the same cancer-dysregulated cellular pathways as the

source gene are associated with the target disease.
{Immunologic} genes belonging to the same immunologic signatures as the source gene are

associated with the target disease.

Table S1. Features. The 24 features computed for each gene-disease pair and the aspect of network
topology described.
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Feature AUROC p-AUROC p-value

GaDmPmD 0.643 0.547 1.6× 10−20

GiGaD 0.558 0.514 2.1× 10−9

{Perturbation} 0.740 0.667 2.3× 10−7

GeTlD 0.573 0.518 1.8× 10−5

{KEGG} 0.613 0.566 5.6× 10−5

GaDaGaD 0.633 0.592 1.5× 10−4

{BioCarta} 0.548 0.526 0.001
{Reactome} 0.599 0.562 0.002
{Immunologic} 0.703 0.665 0.006
GiGiGaD 0.646 0.621 0.05
{Cancer Module} 0.629 0.612 0.11
GeTeGaD 0.570 0.554 0.14
{TF Target} 0.612 0.596 0.16
{GO Component} 0.560 0.547 0.17
{Positional} 0.529 0.520 0.19
GiGeTlD 0.628 0.616 0.20
{GO Process} 0.626 0.617 0.26
GaD (any disease) 0.683 0.676 0.30
{GO Function} 0.577 0.571 0.31
{Cancer Hood} 0.533 0.532 0.45
GaD (any gene) 0.620 0.620 0.49
GaDlTlD 0.674 0.674 0.49
{Oncogenic} 0.601 0.604 0.60
{miRNA Target} 0.562 0.569 0.72

Table S2. Feature-specific performance before and after network permutation. Ten features
(bold) showed a significant (p < 0.05, one-sided DeLong test) decrease in performance.

Value
Prediction Threshold 0.024
False Positive Rate 0.001
Recall 0.108
Precision 0.133
Lift 68.4
Novel & Meta2.5-nominal Total 1211
Discovered 4
Bonferroni Cutoff 0.0125
Discovered < Bonferroni 3
Total < Bonferroni 199
Replication p-value 0.015

Table S3. Multiple sclerosis gene discovery statistics. The upper section details the
high-performing network prediction threshold. The lower section details the hypergeometric test for
overrepresentation of validating genes.
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Supporting Data

Dataset S1. Predictions. Predicted probabilities of association between all genes (rows) and diseases

(columns).

Dataset S2. Features. The features (columns) computed for each gene-disease pair (rows). Column

names with beginning with ‘XB’ refer to standardized features.

Dataset S3. Serialized network. A JSON formatted text file storing the complete network. The top

level is an JSON object with four pairs (metanodes, metaedges, nodes, edges). The value for each pair is

a JSON array containing the corresponding items.

Dataset S4. Processed GWAS Catalog Loci. Loci-disease associations. The file includes the gene

resolution information for each loci including the studies and SNPs underlying the association.

Dataset S5. Gene-Disease Associations. All gene-disease associations extracted from the GWAS

catalog for the four categories of association.

Dataset S6. Disease Ontology Modifications. Ten DO terms that appeared in the GWAS Catalog

were redundant with other terms. Seven were removed. Three were merged with recipient terms by

removing the term and transferring the associations.

Dataset S7. Tissue-specific gene expression. A processed version of the GNF BodyMap providing a

gene’s (row, HGNC symbols) expression value for each of 77 tissues (columns, BRENDA Tissue Ontology

IDs).

Dataset S8. Disease localization. Literature co-occurrence scores between diseases and tissues com-

puted using CoPub 5.0.

Dataset S9. Terminology Mappings. All mappings that were manually performed. Specifically,

tissue and disease mappings to CoPub ’Biologic Identifiers’, tissue mappings to GNF BodyMap samples,

disease mappings to the EFO terms appearing in the GWAS Catalog, and disease pathophysiologies.

Dataset S10. Multiple Sclerosis Analysis. For each gene (row), the genewise Meta2.5 and WTCCC2

p-values and network-based predictions are reported.

Dataset S11. Vector Images. PDF formatted versions of the figures.
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