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Allele-specific sequencing reads provide a powerful signal for identifying molecular quan-

titative trait loci (QTLs), however they are challenging to analyze and prone to techni-

cal artefacts. Here we describe WASP, a suite of tools for unbiased allele-specific read

mapping and discovery of molecular QTLs. Using simulated reads, RNA-seq reads and

ChIP-seq reads, we demonstrate that our approach has a low error rate and is far more

powerful than existing QTL mapping approaches.

Next generation sequencing data can be used to identify allele-specific signals because

reads that overlap heterozygous sites can be assigned to one chromosome or the other. Molecu-

lar QTLs are associated with allelic imbalance1–4, and thus allele-specific reads can potentially

augment the power of statistical tests for QTL discovery5. However, use of allele-specific reads

can introduce artefacts into many stages of analysis. Uncorrected mapping of allele-specific

reads can be highly biased and can easily yield false signals of allelic imbalance6, 7. Homozy-
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gous sites which are incorrectly called as heterozygous are another source of false positives,

and allele-specific read counts are overdispersed compared to the theoretical expectation of a

binomial distribution8. Here we describe a suite of tools called WASP that is designed to over-

come these technical hurdles. WASP carefully maps allele-specific reads, corrects for incorrect

heterozygous genotypes and other sources of bias, and models overdispersion of sequencing

reads. Finally, by integrating allele-specific information into a QTL mapping framework WASP

attains greater power than standard QTL mapping approaches.

Mapping of reads to a reference genome is biased by sequence polymorphisms6. Reads

which contain the non-reference allele may fail to map uniquely or map to a different (incorrect)

location in the genome6. A common approach is to map to a ‘personalized’ genome where the

reference sequence is replaced by non-reference alleles that are known to be present in the

sample9. However, personalized genomes do not fully address the mapping problem because

the genomic locations that are uniquely mappable in the reference and non-reference genome

sequences differ (Fig. 1). While these type of errors may only affect a small number of sites,

they comprise a large fraction of the most significant results when tests of allelic imbalance are

performed genome-wide (Fig. 1).

WASP uses a simple approach to overcome mapping bias that can be readily incorporated

into any read mapping pipeline. First, reads are mapped normally using a mapping tool selected

by the user; mapped reads that overlap single nucleotide polymorphisms (SNPs) are then iden-

tified. For each read that overlaps a SNP, its genotype is swapped with that of the other allele

and it is re-mapped. If a re-mapped read fails to map to exactly the same location, it is discarded

(Fig. 1). Unknown polymorphisms in the sample are not considered but will typically have little

effect since the tests of allelic imbalance are only performed at known heterozygous sites.
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We evaluated the performance of WASP’s remapping method by simulating reads at het-

erozygous sites in a lymphoblastoid cell line that has been completely genotyped and phased

(GM12878). At each heterozygous SNP we simulated all possible overlapping reads from both

haplotypes, additionally allowing reads to contain mismatches at a predefined sequencing er-

ror rate. We mapped the simulated reads using three approaches to account for mapping bias:

mapping to a genome with N-masked SNPs, mapping to a personalized genome, and mapping

to the genome using WASP. While reads mapped to the N-masked and personalized genomes

were substantially biased and resulted in a large number of false positives, reads mapped using

WASP were almost perfectly balanced (Fig. 1).
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Figure 1 Mapping of allele specific reads. (a) Mapping to ‘personalized’ genomes

can result in allelic bias because reads from one allele may not map uniquely. (b)

Schematic of mapping pipeline to remove allelic bias. (c) The percentage of simulated

100 bp reads at heterozygous sites where a read with one allele maps correctly and

the corresponding read with the other allele does not. Reads were simulated with se-

quencing errors introduced at several different rates. (d) The fraction of false-positives

as a function of the effect size using a nominal Benjamini-Hochberg false-discovery

rate of 10%. We simulated 100 bp allele-specific reads under null (odds-ratio = 1)

and alternative models (odds-ratio > 1) of allelic imbalance at heterozygous sites in

the genome. 90% and 10% of sites were assumed to be null and alternative sites

respectively. We mapped reads using WASP or the personal- or N-masked mapping

strategies and called allele-specific sites using a binomial test.

WASP employs a number of techniques to remove noise and biases from mapped reads.

Amplification bias is a common feature of experiments that yield libraries with low complexity

(e.g. ChIP-seq). To control for amplification bias it is common to remove ‘duplicate’ reads that

map to the same location. However, existing tools that remove duplicate reads retain the one

with the highest mapping score, which will usually match the reference10. WASP provides a

tool to filter duplicate reads at random, thus eliminating reference bias from this step.

GC content often affects read depth in a manner that is inconsistent between sequencing

experiments1, 11. In addition, the distribution of read depths across the genome differs from

experiment to experiment. For example, ChIP-seq experiments with more efficient pull-downs

tend to have more reads within peaks. WASP corrects for both of these issues by fitting poly-
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nomials to the genome-wide read counts and calculating a corrected read depth for each region

(see Methods).

Both allele-specific and total read depth counts are more dispersed than expected under

models of binomial and poisson sampling8, 12. To accommodate overdispersion in the data,

WASP estimates separate overdispersion parameters for each individual and genomic region

used in a study. Finally, to account for any remaining unknown covariates, WASP allows prin-

cipal components to be included in the model fitting procedure (see Methods).

Following correction for biases described above, WASP uses a statistical test, the com-

bined haplotype test (CHT), to identify cis-acting QTLs. The CHT tests whether the genotype

of a ‘test SNP’ is associated with total read depth and allelic imbalance in a ‘target region’

(Fig. 2). The CHT jointly models two components: the allelic imbalance at phased heterozy-

gous SNPs and the total read depth in the target region. The two components of the test are

linked together by shared parameters that define their effect sizes.

For a target region and test SNP pair, the CHT models the expected number of reads for an

individual as a function of the individual’s genotype, the effect size, the GC content, additional

covariates (such as principal component loadings), and the total number of mapped reads in the

region (across all individuals). The probability of the observed number of reads in the target

region is calculated using the expected number of reads and two overdispersion parameters.

Allelic imbalance of reads overlapping heterozygous SNPs within a target region is mod-

eled as a function of the shared effect size parameters. The probability of the observed allele-

specific read counts is then defined by the effect size and a single overdispersion parameter. We

also allow for the possibility of genotyping errors by assuming that allele-specific read counts
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are drawn from a mixture, with a small probability that a given individual is a mistyped ho-

mozygote.

To evaluate the performance of WASP on a small dataset, we used it to call novel QTLs

genome-wide using data from H3K27ac ChIP-seq experiments that were performed in 10 lym-

phoblastoid cell lines12. Remarkably, WASP identifies 2426 H3K27ac QTLs (10% FDR),

whereas a linear regression approach is unable to identify any (Fig. 2).

We also evaluated the ability of WASP to call gene expression QTLs (eQTLs) in a larger

dataset. We obtained a set of 2098 expression QTLs (eQTLs) identified in 462 lymphoblastoid

cell lines (LCLs) derived from European individuals13. We tested whether we could identify

these eQTLs, using an independent dataset of RNA-seq from 69 Yoruba LCLs1. WASP discov-

ers 627 of these eQTLs at a false discovery rate (FDR) of 10%, which is impressive considering

(1) our smaller sample size, (2) that some fraction of the original eQTLs are false positives, and

(3) that some of the European eQTLs will be absent or at very low frequency in the Yoruba

(Fig. 2). This number increases to 673 when 5 principal components are included as covari-

ates. By comparison, when we adopt a standard eQTL discovery method (linear regression on

quantile normalized and GC-corrected data), we identify only 446 eQTLs (617 when 5 prin-

cipal components are included as co-variates). P -values obtained by running the CHT on the

same dataset with permuted genotypes do not depart substantially from the null expectation,

indicating that the test is well-calibrated (Supplementary Fig. S4).

6

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2014. ; https://doi.org/10.1101/011221doi: bioRxiv preprint 

https://doi.org/10.1101/011221
http://creativecommons.org/licenses/by-nd/4.0/


A GG

G CA

target region
test 

SNP

read depth

test

allelic imbalance

test

a schematic of combined haplotype test b QQ plot of H3K27ac p-values 

for 10 individuals

0 1 2 3 4 5

40

-log10 of expected p-values

-l
o

g
1

0
 o

f 
o

b
s
e

rv
e

d
 p

-v
a

lu
e

s

30

20

10

0

WASP

Linear Model

c QQ plot of p-values for 

GEUVADIS eQTLs

0.0 0.5 1.0 1.5 2.0 2.5 3.0

100

80

60

20

0

-l
o

g
1

0
 o

f 
o

b
s
e

rv
e

d
 p

-v
a

lu
e

s

40

-log10 of expected p-values

WASP

Linear Model

Figure 2 The combined haplotype test and its performance. (a) Schematic of the

combined haplotype test. A ‘test SNP’ is tested for association with mapped reads

within a ‘target region’. All reads are used by the read depth component of the test;

allele-specific reads are used by the allelic imbalance component of the test. (b) Iden-

tification of novel QTLs using H3K27ac ChIP-seq data from 10 Yoruba lymphoblastoid

cell lines. (c) Identifying European eQTLs from the GEUVADIS consortium using an

independent dataset of RNA-seq from 69 Yoruba lymphoblastoid cell lines.

These results demonstrate that WASP is a powerful approach for the identification of

molecular QTLs, particularly when sample sizes are small. WASP accounts for numerous biases

in allele-specific data and is flexible enough to work with different read mappers and multiple

types of sequencing data such as ChIP-seq and RNA-seq. By modeling biases and dispersion

differences directly, WASP eliminates the need for quantile normalization of the data, thereby

making estimated effect sizes more interpretable.

The source code and documentation for WASP are open source and can be downloaded

from https://github.com/bmvdgeijn/WASP/.
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