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Annotating RNA motifs in sequences and alignments
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Abstract
RNA performs a diverse array of important functions across all cellular life. These functions include important roles in
translation, building translational machinery and maturing messenger RNA. More recent discoveries include the miRNAs
and bacterial sRNAs that regulate gene expression, the thermosensors, riboswitches and other cis-regulatory elements
that help prokaryotes sense their environment and eukaryotic piRNAs that suppress transposition. However, there can
be a long period between the initial discovery of a RNA and determining its function. We present a bioinformatic
approach to characterise RNA motifs, which are the central building blocks of RNA structure. These motifs can, in
some instances, provide researchers with functional hypotheses for uncharacterised RNAs. Moreover, we introduce a
new profile-based database of RNA motifs - RMfam - and illustrate its application for investigating the evolution and
functional characterisation of RNA.
All the data and scripts associated with this work is available from: https://github.com/ppgardne/RMfam

Keywords
RNA — Motifs — Homology

1School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
2Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.

*Corresponding author: paul.gardner@canterbury.ac.nz

1. Introduction

Characterising functional RNAs is an extraordinarily difficult
task. Even highly transcribed RNAs from model organisms
have remained uncharacterised for decades after their discov-
ery. A specific example is the 6S sRNA, which was discovered
in 1971. The 6S sRNA is conserved across Bacteria and is
highly expressed in stationary-phase cells [1, 2]. But the role
of 6S as a regulator of RNA polymerase remained an enigma
for almost three decades [3]. Likewise, Y RNA, which was
discovered in 1981, is broadly conserved across metazoans
and is highly expressed [4]. It took two and a half decades
before Y RNAs were shown to be essential for the initiation
of DNA replication [5]. However, the mechanism for Y RNA
function still remains unclear. These and similar examples
show that it is remarkably difficult to functionally characterise
RNAs, even after decades of work.

A new generation of tools for RNA discovery is now avail-
able thanks to powerful new sequencing technologies. Entire
transcriptomes from species at different life stages, tissue
types and conditions can be studied with RNA-seq [6, 7, 8].
The total complement of RNA structures encoded in transcrip-
tomes is also accessible with SHAPE-seq [9] and functional
regions of entire genomes of bacteria can be probed with tech-
niques like TraDIS and Tn-seq [10, 11]. The data obtained by
these tools are unearthing novel RNAs at an unprecedented
rate, many of which are evolutionarily conserved, highly ex-
pressed, activated under specific conditions, essential and fold
into conserved secondary structures. Annotation efforts such
as those by the Rfam consortium [12, 13] are useful. However,
many RNAs are not found in this database and many that have

been curated remain uncharacterised [8]. To make sense of
the volumes of transcriptome data that is now being generated,
annotating this data and functionally characterising the cohort
of RNAs of Unknown Function (RUFs) is critical. A com-
plication for such work is that evolutionary turnover, as well
as sequence variation can be high for ncRNAs [14, 15]. Con-
sequently homology searches and other sequence-alignment
based analyses can be very challenging.

Many RNAs contain functional structures that recur both
within and across different RNA families. These motifs pro-
vide signatures that can identify functional components of
RNA sequences. The motifs that have been characterised to
date are involved in a diverse number of functions. These
include imparting structural stability, facilitating interactions
with other biomolecules, specifying cellular localisation and
coordinating gene regulatory signals [16, 17, 18, 19]

A number of publications detail bioinformatic methods
for the de novo discovery of RNA motifs from RNA pri-
mary sequences [20, 21]. There are also tools that can screen
RNA secondary structures [22] and RNA tertiary structures
[23]. The de scito (knowledge-based) approaches for the
annotation of RNA motifs include sequence and structure
descriptors [24, 25], primary and secondary structure-based
profile methods for specific motifs [26, 27] and even meth-
ods that combine primary, secondary and tertiary data [19].
We complement these approaches by introducing a resource
that identifies a range of previously characterised RNA motifs
in RNA sequences and alignments using covariance models
(CMs) [28, 29, 30, 31, 32].
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We present 34 alignments, consensus structures and cor-
responding probabilistic models of published RNA motifs.
We call this resource RMfam, or RNA Motif Families (all
associated data and computer code is freely available from
our repository hosted on GitHub: http://github.com/
ppgardne/RMfam). These have been used to predict ap-
proximately 1,900 conserved motifs in the Rfam (v11.0) align-
ments of RNA families; many of which are confirmed in the
published literature. Finally, we show examples of the appli-
cability of our approach for studying RNA function, evolution
and alignment curation.

2. MATERIALS & METHODS

2.1 Distinction between Rfam and RMfam
The Rfam database collects and curates “seed alignments” of
RNA families. These are non-coding RNAs, cis-regulatory el-
ements and self-splicing introns. The alignments are manually
constructed and annotated with consensus secondary struc-
tures, and used to seed probabilities for covariance models
(CMs) for each family. The Rfam CMs are widely used for
genome annotation projects to identify RNA loci (e.g. [33]).
A requirement before each family can pass Rfam quality-
control is that it is specific. In other words, there exists a
bit score threshold for each CM that distinguishes between
sequence matches that are related to the family and obvious
false-positive matches. Consequently, many RNA motifs are
not included in Rfam as they lack the required specificity
[34, 35, 36, 12, 13].

2.2 What is an RNA motif?
For the purposes of this work an RNA motif is a non-trivial,
recurring RNA sequence and/or secondary structure that can
be predominantly described by local sequence and secondary
structure elements. The motif is generally not restricted to
a particular family or taxonomic group. Note that in other
contexts, such as structural biology, a more general definition
of motif is frequently used, e.g. [37].

Accurate probabilistic methods for annotating structured
RNAs on DNA sequences called hidden Markov models
(HMMs) and covariance models (CMs) are now available
[28, 29, 30, 31, 32, 38]. From a given alignment, probabilis-
tic models of conserved sequence (HMMs) and conserved
sequence plus secondary-structure (CMs) can be built and
used to filter large numbers of sequences for candidate ho-
mologous and/or analogous regions [39]. CMs cater to the
characteristics of RNA sequence evolution that are imposed
by basepairing (i.e. variation tends to preserve basepairing),
the result is that the accuracy of CMs is greater than alterna-
tive approaches [40]. The computational speed of CMs has

tended to be poor, however a lot of effort has been expended
on improving the speed of the approach while maintaining the
accuracy. Improvements include using HMMs as pre-filters
to accelerate CMs, query-dependent banding and Dirichlet
mixture priors [41, 39, 42, 38, 43].

RMfam sequences, structures and alignments were col-
lated from a variety of heterogeneous and sometimes over-
lapping data repositories [12, 23, 44, 27, 45, 46, 47, 48, 37,
49, 50, 51]. Where possible we sourced data from publicly
accessible RNA motif resources, these included the FR3D
MotifLibrary [37], the models supplied with RMDetect [19],
the comparative RNA website [47] and SCOR [46]. We also
used information from specialised resources such as the k-
turn structural database [44] and SRPDB [52], as well as
generating our own alignments for motifs such as the Shine-
Dalgarno and Rho-independent terminators based upon the
context of genome annotations (e.g. [27]). RNAFrabase was
frequently used as a source of RNA secondary structure anno-
tations derived from PDB structures [53, 54]. Finally, where
necessary, we extracted sequences from publications. This
was often a manual effort, involving manually transcribing se-
quences and structures from figures in published manuscripts.
Where possible, these were mapped to PDB (downloaded
June 2014) nucleotide sequences [55, 56, 57], the EMBL
nucleotide archive [58] and Rfam (v11.0) [12, 13]. The prove-
nance of each dataset is stored in the corresponding Stockholm
alignment. Each of these motifs were then passed through
quality control steps, where the sensitivity and specificity of
the resulting motif is assessed (See Figures 1 and S10-S43). If
these failed (e.g. the CM cannot identify member sequences
or the false-positive rate is extremely high), then the motif
was not included in the database. Each motif is also assigned
a curated score-threshold. This threshold (in bits) provides a
reasonable distinction between true and false matches.

2.3 Benchmarking motif annotations

In the following we briefly describe the benchmarks we have
used to evaluate our motif annotations. These are described
in further detail and with more elaborate results in the Supple-
mentary Materials.

In order to determine the accuracy of our approach we
ran a series of three benchmarks. These were evaluated on
individual motifs (see Figures 1B and S10-S43), as well as
on the collective RMfam results (see Figures 1A and S9).
The first uses “RMfam sequences” which are taken from the
seed alignments. Ten shuffled sequences, with identical di-
nucleotide distributions, were generated for each RMfam seed
sequence [59]. Together these serve as positive and negative
controls for our test.

We constructed two further tests based upon Rfam (v11.0)
families. We identified Rfam families where there exists good
evidence (primarily based upon literature) that a motif is con-
served in the family of related sequences (Supplementary
Table 1). These serve as positive controls for two further tests.
For the “Rfam sequences” benchmark we randomly selected at
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least five sequences from each Rfam seed alignment (if fewer
than five sequences were available, then all were included).
We generated ten shuffled versions of each sequence; all had
an identical di-nucleotide distribution to the native sequence.
These sequences were all annotated with RMfam motifs, their
CM scores were recorded and used to evaluate the accuracy of
the annotations. Finally, for a “Rfam alignments” benchmark,
we evaluated the accuracy of RMfam annotations in an align-
ment context. Each Rfam alignment was filtered, removing
sequences more than 90% identical. The remaining sequences
were annotated with RMfam CMs, retaining only those that
cover more than 10% of the seed sequences and more than
two Rfam seed sequences. The summary statistic we use for
this final benchmark is a “sum-bits” score, this is the sum of
the bit scores for each match in all the sequences in a seed.

The accuracy metrics that we report here are the Matthew’s
correlation coefficient (MCC) [60], sensitivity and specificity.

The CMs built from RNA motifs tend to be short and
contain little sequence information. In RMfam the mean se-
quence length is just 34.3 nucleotides and the mean number of
basepairs is 10.9. Therefore scans of large sequence databases
with these models result in a number of false-positives. We
propose that annotating sequence alignments of ncRNAs have
the potential to improve the specificity of our predictions. This
assumes that evolutionarily conserved motifs are more likely
to be correct. In theory this approach could be extended to
genome alignments of e.g. transcribed regions.

3. RESULTS

In this study we present 34 RMfam alignments and probabilis-
tic models of published RNA motifs (all freely available from
our repository hosted on GitHub: http://github.com/
ppgardne/RMfam). These have been used to predict ap-
proximately 2,500 conserved motifs in the Rfam (v11.0) seed
alignments; many of which are confirmed in the published
literature. Furthermore, our permutation tests have shown
that both the sensitivity and specificity of this approach is
remarkably high given the short motifs we use (See Figures 1
and S9-S44).

3.1 Function
One of the most labour intensive stages of RNA research is
identifying the function of newly discovered RNAs. In or-
der to illustrate the utility of RMfam for this task we show
the matches between a model of the CsrA-binding site and
two RNA families of unknown function, TwoAYGGAY and
Bacillaceae-1 (Rfam IDs RF01731 and RF01690, see Fig-
ure 2). CsrA is a bacterial RNA binding protein that regulates
the translation and stability of mRNAs [62]. It binds mRNAs
carrying CsrA binding motifs, physically occluding ribosome-
binding sites. This binding can itself be regulated by com-
petition between the mRNAs and highly expressed sRNAs
that host numerous CsrA binding sites. However, this class of
sRNA (CsrB, CsrC, RsmX, RsmY and RsmZ) has only been
identified in Gammaproteobacteria [63, 64]. The ncRNAs,

TwoAYGGAY and Bacillaceae-1, were initially discovered in
a large-scale bioinformatic screen [65]. Some further analysis
identified two tandem-GAs in one of the stems that char-
acterise the structure of TwoAYGGAY [19]. The matches
between these families and the CsrA binding motif were dis-
covered in this work and provide a testable hypothesis for
further validation that there are also CsrA binding sRNAs in
Clostridia (TwoAYGGAY), and Bacillales and Lactobacillales
(Bacillaceae-1). The validation of these predictions is a work
in progress with our collaborators.

3.2 Evolution

Non-coding RNAs are remarkably tolerant of genetic vari-
ation, as evident by the wide degree of sequence variation
that can be found between evolutionarily related ncRNAs
[66, 67, 68, 15]. However, structure frequently constrains the
evolution of RNA sequences. That said, structures can also be
dynamic. For example, motifs that confer structural stability
can be exchanged over time, resulting in a rich and complex
evolutionary history. This illustrates that studying the gain
and loss of RNA motifs over evolutionary time-scales can
help characterise the dynamic evolution of RNA sequences
and structures.

A good example of this is the Lysine riboswitch. This is a
convenient example, that for illustrative purposes that we will
describe in further detail. As illustrated in Figure 3 many mo-
tifs may be exchanged, e.g. the U-turn motif with a k-turn in
the P2 stem or the T-loop and the GNRA tetraloop in stem P4.
Interestingly, the motif distributions are relatively clade-like,
with closely related riboswitches more likely to share mo-
tifs, e.g. the GNRA tetraloop found in the Pasteurellales and
Vibrionales taxonomic groups. This type of annotation infor-
mation is valuable for researchers investigating the structure
and evolution of RNA families.

3.3 Curation

Another use of the results presented in this work is of im-
portance for the curators of RNA alignments and sequences
[12, 69, 70]. Until now it has been difficult to analyse the evo-
lutionary conservation of motifs in the context of an alignment,
although some progress has been made when crystallographic
data is available, e.g. the RNASTAR collection of structural
RNA alignments [70]. With the help of RMfam, malformed
alignments can be detected and corrected where conserved
RNA motifs are incorrectly aligned. We illustrate an example
of this for the Rfam (v11.0) 5S rRNA alignment that contains
a misaligned, yet highly conserved sarcin-ricin motif (see Fig-
ure S45), and for the Rfam RsmY alignment, which is a CsrA
binding sRNA. The RsmY alignment has a mis-annotated
consensus structure that does not include a further CsrA bind-
ing motif (see Figure S46). These motifs generally occur in
pairs, as CsrA is a homodimeric protein, with each half of the
protein binding a motif [71, 72].
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Figure 1. In the above plots we assess the accuracy of motif annotation and test whether annotating alignments instead of
sequences improves the prediction accuracy. We have applied three different benchmarks (described in the text). In sub-figure
A we show a ROC plot for pooled RMfam annotations. This plots the sensitivity versus specificity of all the motif annotations
on sequences or alignments at different score thresholds. The ’x’s illustrate where on the curve the maximum Matthew’s
Correlation Coefficient is located, and the corresponding bit scores are indicated. In sub-figure B we illustrate the maximum
MCC of CM annotation for each motif from the 3 different benchmarks.

4. DISCUSSION & CONCLUSION

The chief motivation for this work is to functionally charac-
terise novel ncRNAs. Our vision for the RMfam resource is to
annotate RNAs of unknown function (e.g. [8]). These motif
annotations will help develop further functional hypotheses
and accelerate experimental characterisation.

In this work, we have shown that RMfam is surprisingly
accurate. Despite the fact that the average RMfam motif con-
sists of just 34.3 nucleotides and 10.9 basepairs, we show that
the covariance models are specific enough to distinguish be-
tween motif-hosting sequences and negative control sequences
(See Figures 1 and S10-S43). Our approach shows improved
performance when evolutionary information encoded in Rfam
sequence alignments is incorporated into the predictions. We
hypothesise that annotated genome alignments may be a use-
ful source of motifs and we will investigate this idea further
in future. As a discovery tool this resource has already made
some useful predictions. We have predicted the existence
of two new CsrA binding ncRNAs, potentially the first of
this class of regulatory molecules to be found outside of the
Gammaproteobacteria. However, further work needs to be

carried out to validate this claim.

4.1 Future work and potential applications
We have identified some future developments and applications
for the RMfam resource. We plan to continue developing the
accuracy of the motif annotation tools as well as increase the
access to RMfam annotations via other databases and expand
the number of motifs included in RMfam. Furthermore, it may
be possible to boost the accuracy of RNA secondary structure
prediction tools by constraining these with predicted motifs.
We elaborate further on these ideas below.

The Lysine riboswitch example raises the possibility that
certain types of motif are preferentially exchanged during
the evolution of ncRNAs. Do stable hairpin motifs such as
the GNRA and T-loops replace each other more frequently
than we expect by chance? This would blur the lines between
our understanding of homologous and analogous structures
[73]. Another possibility is that certain motifs co-occur more
frequently than we expect. For example, are k-turns more
frequently closed by U-turns than we expect? If correct, these
enrichments of favoured exchanges and co-occurances could
be used to increase our confidence in motif annotations and
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Figure 2. The secondary structures and sequence conservation of CsrA binding motif and two new candidate CsrA binding
sRNAs, TwoAYGGAY and Bacillaceae-1 illustrated with R2R [61]. These families each have two strong matches to the
CsrA-binding motif, this new evidence provides a strong case that these RNAs regulate the activity of the regulatory protein,
CsrA, by sequestering this nucleotide-binding protein. The “core” of the TwoAYGGAY structure is shown, the Rfam (v11.0)
model contains a further external stem that is not well conserved. Also, the reverse-complement (RevComp) of the
Bacillaceae-1 is illustrated, this strand has the matches to the CsrA binding motif and the original discoverers of this ncRNA
are not confident of the strand (personal communication, Weinberg Z).

can assist with the design of functional RNAs.
Typical RNA structure prediction methods to not incor-

porate information about RNA motifs. We propose that RM-
fam predictions can be used as constraints for existing RNA
structure prediction software, thus improving the accuracy of
structure prediction tools which can often be inaccurate [74].
This approach is analogous to the fragment-library approach
that is frequently used for tertiary structure prediction [75].

Another application for RMfam covariance models is as a
pre-filter to accelerate the more complex methods, for exam-
ple, the Bayesian network approach implemented in RMdetect
[19].

Increasing the access of motif annotations is another goal
of the authors. We are active in the Rfam and RNAcentral
consortia, both of which curate non-coding RNAs, the former
ncRNA alignments and the latter ncRNA sequences [12, 69,
13]. Our results show that curators can benefit greatly from
motif annotations (see Figures S44-S45) and it is likely that
RMfam annotations will be incorporated into these databases
in future releases.

New technologies such as the sequencing of cross-linked
RNA and protein are a potential source of new RNA-protein
motifs. In the future we will mine these datasets [76, 77,
78] for new additions to the RMfam database. Furthermore,
we will continue to add new motifs to RMfam as they are
published.

Finally, as previously mentioned, the specificity of the
RMfam annotations is generally low. However, incorporating
the genomic and taxonomic context of annotations into the
predictions may result in performance gains. For example,
Shine-Dalgarno and rho-independent terminators are gener-
ally located in bacterial sequences and at the extremities of
annotated genes. A probabilistic incorporation of contextual
information will likely result in further performance gains.

In summary, we have developed a resource for annotating

diverse sets of RNA motifs in nucleotide sequences and align-
ments. We have proven the accuracy using benchmarks, and
the utility of this resource for alignment curation, evolutionary
analyses and shown that it has some promise for the prediction
of RNA function.
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