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ABSTRACT 

 Recent technological advances have created challenges for geneticists and a need to adapt to a wide 

range of new bioinformatics tools and an expanding wealth of publicly available data (e.g. mutation 

databases, software). This wide range of methods and a diversity of file formats used in sequence analysis is 

a significant issue, with a considerable amount of time spent before anyone can even attempt to analyse the 

genetic basis of human disorders. Another point to consider is although many possess ‘just enough’ 

knowledge to analyse their data, they do not make full use of the tools and databases that are available and 

also do not know how their data was created. The primary aim of this review is to document some of the key 

approaches and provide an analysis schema to make the analysis process more efficient and reliable in the 

context of discovering highly penetrant causal mutations/genes. This review will also compare the methods 

used to identify highly penetrant variants when data is obtained from consanguineous individuals as opposed 

to non-consanguineous; and when Mendelian disorders are analysed as opposed to common-complex 

disorders. 

INTRODUCTION 

Next generation sequencing (NGS) and other high throughput technologies have brought new 

challenges concomitantly. The colossal amount of information that is produced has led researchers to look 

for ways of reducing the time and effort it takes to analyse the resulting data whilst also keeping up with the 

storage needs of the resulting files – which are in the magnitude of gigabytes each. The recently emerged 

variant call format (VCF) has somewhat provided a way out of this complex issue [1]. Using a reference 

sequence and comparing it with the query sequence, only the differences between the two are encoded into a 

VCF file. Not only are VCF files substantially smaller in size (>300x in relation to BAM files which store 

all raw read alignments), they also make the data relatively easy to analyse since there are many 

bioinformatics tools (e.g. annotation, mutation effect prediction) which accept the VCF format as standard 

input. The Genome Analysis Toolkit (GATK) made available by the Broad Institute also provides useful 

suggestions to bring a universal standard for the annotation and filtering of VCF files [2]. The 

abovementioned reasons have made VCF the established format for the sharing of genetic variation 

produced from large sequencing projects (e.g. 1000 Genomes Project, NHLBI Exome Project - also known 

as EVS). However the VCF does have some disadvantages. The files can be information dense, initially 
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difficult to understand and parse. Comprehensive information about the VCF and its companion software 

VFCtools [1] are available online (vcftools.sourceforge.net).  

Because of the substantial decrease in the price of DNA sequencing and genotyping [3], there has 

been a sharp increase in the number of genetic association studies being carried out, especially in the form of 

genome-wide association studies (GWAS, statistics available at www.genome.gov/gwastudies/). As whole 

genome sequencing (WGS) is prohibitively expensive for large genetic association studies [4-6], whole 

exome sequencing (WES) has emerged as the attractive alternative – where only the protein coding region of 

the genome (i.e. exome) is targeted and sequenced [7]. This decision to carry out WES over WGS is not 

solely influenced by the cost which currently stands at one-third in comparison [8], but also by the fact that 

most of the known Mendelian disorders (~85%) are caused by mutations in the exome [9] and reliably 

interpreting variation outside of the exome is still challenging as there is little consensus (even with 

ENCODE data [10] and non-coding variant effect prediction tools such as CADD [11] and GWAVA [12]). 

For complex diseases, WES can provide more evidence for causality compared to GWAS, assuming that the 

causal variants are exonic. This is because the latter uses linkage disequilibrium (LD) patterns between 

common markers [13] whereas WES directly associates the variant itself with the phenotypes/disorder. 

Therefore using GWAS, especially in gene-dense regions, one cannot usually make conclusive judgements 

about which gene(s) is causal without further sequencing or functional analysis. WES has been successfully 

used in identifying and/or verifying over 300 causal variants for Mendelian disorders (statistics from 

omim.org/) [14,15]. WES currently stands at approx. $1000 for 50x read depth (variable prices, less for 

larger studies). However since there is a great deal of variation in the human genome [16], finding the causal 

variant(s), especially ones with low penetrance, is not going to be trivial. This problem can be exacerbated 

by the nature of the disorder(s) analysed. It is relatively easier to map variants causing rare monogenic 

diseases, as there is most likely to be a single variant present in the cases that is not in the controls; but in 

contrast, common complex (polygenic) disorders are much harder to dissect when searching for causal 

variants. 

In this paper, our aims are to (i) provide a guide for genetic association studies dealing with 

sequencing data to identify highly penetrant variants (ii) compare the different approaches taken when data 

is obtained from unrelated or consanguineous individuals, and (iii) make suggestions about how to rank 

single nucleotide variation (SNV) and/or insertion/deletions (indels) following the standard filtering/ranking 

steps if there are several candidate variants. To aid the process of analysing sequencing data obtained from 

consanguineous individuals, we have also made available an autozygosity mapping algorithm (AutoZplotter) 

which takes VCF files as input and enables manual identification of regions that have longer stretches of 

homozygosity than would be expected by chance. 
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STAGE 1 -  QUALITY CONTROL & VARIANT 

CALLING 

Before any genetic analysis, it is important to understand how the raw data were produced and 

processed to make better judgements about the reliability of the data received. Thorough quality control 

steps are required to ensure the reliability of the dataset. Lack of adequate prior quality control will 

inevitably lead to loss of statistical power; and increase false positive and false negative findings. Fully 

comprehending each step during the creation of the dataset will have implications on the interpretation stage, 

where genotyping errors (also known as ‘phantom’ mutations [17]) may turn out to be statistically 

associated (e.g. batch effects between case and control batches) or the causal variant may not be identified 

due to poorly applied quality control (QC) and/or filtering methods. The most fitting example for this comes 

from a recent Primary ciliary dyskinesia (PCD) study [18], where the causal variant was only detected after 

the authors manually noticed an absence of reads in the relevant region of the genome (personal 

communication with authors). The subsequent variant was not only missing in the VCF files, but also in the 

initial BAM files - requiring remapping of reads. Another point of consideration from this finding would be 

that the authors knew where to look because the RSPH9 gene (and the p.Lys268del mutation) was one of 

their a priori candidates [19]. This is also an example demonstrating the importance of deep prior 

knowledge and screening for known variants as it is impossible for one to manually check the whole exome 

(or the genome) for sequencing and mapping errors. 

Targeted sequencing 

As far as WES projects are concerned, questions about coverage arise right from the start (Figure 1). 

Since knowledge concerning exons in our own genome is far from complete, there are differing definitions 

about the human exome coordinates. Therefore, the targeted regions by the commercially available Agilent 

SureSelect [20] and the Nimblegen SeqCap EZ [21] exome capture kits are not entirely overlapping [22]. 

Thus it is   possible that the missing regions of the exome due to the chosen probe kit may turn out to have 

the functional region in relation to the disorder analysed. One must also bear in mind that the kits available 

for targeting the exome are not fully efficient due to a certain quantity of poorly synthesized and/or designed 

probes not being able to hybridize to the target DNA. Next step is target enrichment where high coverage is 

vital as NGS machines produce more erroneous base calls compared to other techniques [23]; therefore, 

especially for rare variant analyses, it is important to have data with high average read depth (i.e. ≥50x).  
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Mapping sequence reads 

The raw reads produced should then be aligned to a reference genome (e.g. GRCh38 – see NCBI 

Genome Reference Consortium) and there are many open source and widely applied tools (Table 1). 

However, solely depending on automated methods and software can leave many reads spanning indels 

misaligned, therefore post-reviewing the data for mismapping is always a good practice, especially in the 

candidate regions. Attempting to remap misaligned reads with a lower stringency using software such as 

Pindel would be an ideal way to go about solving such a problem [24]. GATK provides a base recalibration 

and indel realignment algorithm for this purpose. 

Effective variant calling depends on accurate mapping to a dependable reference sequence. If 

available, using a population specific reference genome would be most ideal to filter out known neutral 

SNPs existing within the region of origin of the analysed subjects (e.g. East-Asian reference for subjects of 

Japanese origin). Inclusion of ambiguity codes (e.g. IUPAC codes) for known poly-allelic variants to create 

a composite reference genome can also be useful (although not essential).  

Variant calling 

There are many tools available for the identification of SNVs, indels, splice-site variants and CNVs 

present in the query sequence(s). Each variant calling tool has advantages and disadvantages and has made 

compromises relating to issues such as speed of analysis, annotation and reliability of the output file (Table 

2). Separating true variation from sequencing artefacts still represents a considerable challenge. When 

dealing with very rare disorders, the candidate regions in the output VCF (or BAM) files should be reviewed 

either by reviewing the QC scores in the VCF or by visualising the alignments in IGV [25]. Performing this 

step could highlight sequencing errors such as over-coverage (due to greater abundance of capture probes 

for the region or double capturing due to poorly discriminated probes hybridising to the same region) or 

under-coverage (due to probes not hybridising because of high variability in the region). For rare Mendelian 

disorders, since there is going to be a single causal variant it is important to analyse variants which are 

reliable. Therefore setting strict parameters for read depth (e.g. ≥10x), base quality score (e.g. ≥100) and 

genotype quality scores (e.g. ≥100) initially can eliminate wrong base and genotype calls. This can then be 

adjusted subsequently if no variants with a strong candidacy are found after filtering (also see Best Practices 

section of GATK documentation for variant analysis). 

There are many tools available for the identification of SNVs, indels, splice-site variants and CNVs present 

in the query sequence (see Table 2). GATK [2] is one of the most established SNP discovery and genome 

analysis toolkits, with extensive documentation and helpful forums. It is a structured programming 
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framework which makes use of the programming philosophy of MapReduce to solve the data management 

challenge of NGS by separating data access patterns from analysis algorithms. GATK is constantly updated 

and cited, and also has a vibrant forum which is maintained continually. 

SAMtools [26] is a variant caller which uses a Bayesian approach and has been used in many WGS and 

WES projects including the 1000 Genomes Project [16]. SAMtools also offers many additional features such 

as alignment viewing and conversion to a BAM file. A recent study has compared GATK, SAMtools and 

Atlas2 and found GATK to perform best in many settings [27]. However all three were highly consistent 

with an overlapping rate of ~90%. SOAPsnp is another highly used SNP and genotype caller and is part of 

the reliable SOAP family of bioinformatics tools (http://soap.genomics.org.cn/). 

Additional checks of autozygosity 

For data obtained from consanguineous families, confirming expected autozygosity (i.e. homozygous 

for alleles inherited from a common ancestor) would be an additional check worth carrying out. If the 

individual is the offspring of first cousins then the level of autozygosity would be near 6.25% (F=0.0625); 

and 12.5% (F=0.125) for offspring of double first cousins (or uncle-niece unions, see Supp. Figure S1 for a 

depiction of these). These values will be higher in endogamous populations (e.g. for offspring of first 

cousins: 6.25% + autozygosity brought about due to endogamy. See Supp. Fig. S3 for an example). 

Autozygosity could be checked by inspecting long runs of homozygosity (LRoH) for each individual by 

using tools such as Plink (for SNP chip data) [28], EXCLUDEAR (for SNP chip data) [29], 

AgilentVariantMapper (for WES data) [30] and AutoSNPa (for SNP chip data) [31] and dividing total 

autozygous regions by total length of autosomes in the human genome (can be obtained from 

http://www.ensembl.org/Homo_sapiens/Location/Genome). AutoZplotter (available to download in Supp. 

Materials) that we developed takes VCF files as input enabling easy and reliable visualisation and analysis 

of LRoH for any type of data (WGS, WES or SNP chip). 

STAGE 2 – FILTERING/RANKING OF 

VARIANTS 

 Once the quality control process is complete and VCF files are deemed analysis ready, the approach 

taken will depend on the type of disorder analysed. For rare Mendelian disorders, many filtering and/or 

ranking steps can be taken to reduce the thousands of variants to a few strong candidates. Screening 

previously identified genes for causal variants is a good starting point. Carrying out this simple check will 

allow the identification of the causal variant even from a single proband thus saving time and money. If no 
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previously identified variant is found in the proband analysed, there are several steps which can be taken to 

identify novel mutations.  

Using prior information to rank/filter variants 

Locus specific databases (see http://www.hgvs.org/dblist/dblist.html for a comprehensive list) and ‘whole-

genome’ mutation databases such as HGMD [32], ClinVar [33], LOVD (www.lovd.nl/) and OMIM [34] are 

very informative resources for this task. Finding no previously identified variants indicates a novel variant in 

the proband analysed. For rare Mendelian disorders, the look for the variant can begin by removal of known 

neutral and/or common variants (≥0.1%) as this would provide a smaller subset of potentially causal 

variants. This is a pragmatic choice as Mendelian disease causal variants are likely to be very rare in the 

population or unique to the proband. If the latter is true, the variant will be absent from public databases. For 

this process to be thorough, an automated annotation tool such as Ensembl VEP can be used. VEP enables 

incorporation of MAF (or GMAF, global MAF) from the EVS and the 1000 Genomes Project (see Supp. 

Material and Methods for details). 

Using effect prediction algorithms to rank/filter variants 

Ranking this subset of variants based on consequence (e.g. stop gains would rank higher than missense) and 

scores derived from mutation prediction tools (e.g. ‘probably damaging’ variants would rank higher than 

‘possibly damaging’ according to Polyphen-2 prediction) would enable assessment of the predicted impact 

of all rare mutations. It is important to understand what is assumed at each filtering/ranking stage; and 

comments are included about each assumption and their caveats in Figure 2.  

For individuals of European ancestry, a VCF file will have between eighty and ninety thousand 

variants for WES (more for individuals with African ancestry [35]); and approx. a tenth will be variants with 

‘predicted high impact’ (also known as Φ variants i.e. rare nonsense, missense, splice-site acceptor or donor 

variants, exonic indels [36]). There are many algorithms which predict the functional effect of these variants 

(Table 3). A large proportion of these algorithms utilize sequence conservation within a multiple sequence 

alignment (MSA) of homologous sequences to identify intolerant substitutions, e.g. a substitution falling 

within a conserved region of the alignment is less likely to be tolerated than a substitution falling within a 

diverse region of the alignment (see Ng for a review [37]).  A handful of these algorithms also utilize 

structural properties, such as the protein secondary structure and solvent accessible surface area, in order to 

boost performance.  Well known examples of a sequence-based and structure-based algorithm are SIFT [38] 

and PolyPhen [39] respectively.  Newer software such as FATHMM [40] and MutPred [41], which use 
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state-of-the-art hidden Markov models and machine learning paradigms, are worth using for their 

performance. There are also several tools such as CONDEL-2 [42] which combine the output of several 

prediction tools to produce a consensus deleteriousness score. Although SIFT and Polyphen are highly cited 

tools, comparative analyses carried out by Thusberg et al and Shihab et al found FATHMM, MutPred and 

SNPs&GO to perform better using the VariBench benchmarking dataset containing missense mutations 

[40,43]. For predicting the effects of non-coding variants, GWAVA [12] and CADD [11] should be used. 

Also Human Splice Finder (latest: v3.0) can be used for intronic variants which predicts whether splicing is 

affected by the variant or not [44]. Many of these tools can be incorporated into the analyses through the 

Ensembl website (http://www.ensembl.org/info/docs/tools/vep/index.html) where VCF files are annotated 

[45].  

Further filtering/ranking 

With current knowledge, there are fifty synonymous mutations with proven causality –  complex 

traits and Mendelian disorders combined [46]. This is a very small proportion when compared to the 

thousands of published clinically relevant non-synonymous (i.e. missense and nonsense) mutations. 

Therefore, when filtering variants for rare monogenic disorders, not taking non coding variants and 

synonymous variants into account in the initial stages is a pragmatic choice. If ranking is preferred, then 

tools such as SilVA [47] which ranks all synonymous variants and CADD [11] which ranks all variants 

(including synonymous variants) in the VCF files should be used. 

Highly penetrant (Mendelian or common-complex) disease causal variants are expected to be very 

rare, therefore most of them should not appear in publicly available datasets. However filtering all variants 

present in dbSNP which is common practice, should not be carried out as amplification and/or sequencing 

errors as well as potentially causal variants are known to make their way into this database [48,49]. Thus use 

of a MAF threshold (e.g. ≤0.1% in 1000 Genomes and/or EVS) is a wiser choice in contrast to using absence 

in dbSNP as a filter. Upon completion of these steps, a smaller subset of variants with strong candidacy will 

remain for further follow up to determine causality. 

As many online tools are expected to keep logs of the processes undergoing in their servers, to 

protect confidentiality of genetic information downloading a local version of the chosen tools (or the VEP 

cache from the Ensembl website) is recommended. VEP also enables incorporation of MAF from the EVS 

and the 1000 Genomes Project – and many other annotations (e.g. conservation scores, is variant position 

present in HGMD public version, PubMed), which will make the filtering steps more manageable. 
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STAGE 3 -  BUILDING EVIDENCE FOR 

CAUSALITY 

Figure 3 suggests the route to take to help differentiate causal variant(s) from non-causal ones for 

Mendelian disorders. At this stage one must gather all information that is available about the disorder and 

use them to determine which inheritance pattern fits the data and what complications there might be (e.g. the 

possibility of compound heterozygotes in disorders which show allelic heterogeneity). Supp. Figure S2 can 

be used to observe the contrast between the routes taken when analysing Mendelian (Figure 3) and complex 

disorders.  

Public data as a source of evidence  

Having a candidate gene list based on previously published literature (e.g. by using OMIM or 

disease/pathway specific databases such as the Ciliome database [50]) and knowledge about the biology of 

the disorder (e.g. biological pathways) is useful. Software such as STRING and KEGG predicts protein-

protein interactions using a variety of sources [51,52]. SNPs3D is a user friendly interface which is designed 

to suggest candidates for different disorders [53]. UCSC Gene Sorter (accessible from 

https://genome.ucsc.edu/) is another useful tool for collating a candidate gene list as it groups gene 

according to several features such as protein homology, coexpression and gene ontology (GO) similarity. 

Uniprot’s (http://www.uniprot.org/) Blast and Align functions can provide essential information about the 

crucial role a certain residue plays within a protein if it is highly conserved throughout many species. This is 

especially important for SNVs (excluding nonsense mutations as they truncate the protein) where the SNV 

itself should be causal. 

An example of the filtering process for an autosomal recessive disorder such as PCD is depicted in 

Figure 5. If several variants pass the filtering steps, information about the relevant genes should be gathered 

using databases such as GeneCards (www.genecards.org/) and NCBI Gene (www.ncbi.nlm.nih.gov/gene) 

for functional information, GEO Profiles (www.ncbi.nlm.nih.gov/geoprofiles) and Unigene 

(www.ncbi.nlm.nih.gov/unigene) for translational data about the gene’s product; and if available, one can 

check if a homologue is present in different species using databases such as HomoloGene 

(www.ncbi.nlm.nih.gov/homologene) and whether a similar phenotype is observed in model organisms. For 

example, if the disorder affects the cerebral cortex but the gene product is only active in the tissues located 

in the foot, then one cannot make a good argument about the identified variant in the respective gene as 

being ‘causal’. There are many complications that may arise depending on the disorder such as genetic 

(locus) heterogeneity [54], allelic heterogeneity [55] and incomplete penetrance [56]. Therefore gathering as 
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many cases from the same family is helpful. However for very rare Mendelian disorders this may not be 

possible, thus it is important to seek other lines of evidence (e.g. animal models, molecular analyses).  

Mapping causal loci within families 

For rare Mendelian disorders, familial information can be crucial. The availability of an extended 

pedigree can be very informative in mapping which variant(s) fits the mode of inheritance in the case(s) and 

not in the unaffected members of the family (e.g. for autosomal recessive mutations, confirming 

heterozygosity in the parents is a must). This will provide linkage data where its importance is best 

displayed by Sobreira et al where WES data from a single proband was sufficient in discovering the causal 

variants in two different families [57]. Where available, previously published linkage data (i.e. associating a 

chromosomal region to a Mendelian disorder) should also made use of.  

Traditionally a LOD score of 3 (Prob. = 1/1000) is required for a variant/region to be accepted as 

causal. Reaching this threshold requires many large families with many affected individuals. However this is 

not feasible for most disease causal variants (which are very rare by nature) and other lines of evidence such 

as animal knockouts, molecular studies and alignments are required to make a case for the causality of 

variants, especially mutations which are not stop gains (e.g. missense).  

As mentioned previously, understanding the characteristics of a Mendelian disorder is important. If 

the disorder is categorised as ‘familial’ (i.e. occurs more in families than by chance alone), which are usually 

very rare by nature, then availability of familial data becomes crucial – as unaffected members of the family 

are going to be the main source of information when determining neutral alleles. Any homozygous (and 

rare) stop gains in previously identified genes would be prime candidates.  

Approach taken in families is different from the approaches taken when analysing common 

Mendelian disorders using unrelated individuals. For common Mendelian disorders (e.g. Finnish Heritage 

disorders [58-60]), fitting the dataset into a recessive inheritance model requires most (if not all) affected 

individuals to have two copies of the disease allele, enabling the identification of founder mutations as they 

will be overrepresented in the cases. These variants will be homozygous through endogamy and not 

consanguinity. 

Autozygosity mapping 

For consanguineous subjects, the causal mutation usually lies within an autozygous region 

(characterised by long regions of homozygosity, LRoH, which are generally >5Mb, see [61]), thus checking 

whether any candidate genes overlaps with an LRoH can narrow region(s) of interest. There are several tools 

which can identify LRoHs such as Plink, AutoSNPa and AgilentVariantMapper. We have made available a 
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python script (AutoZplotter) to plot heterozygosity/homozygosity status of variants in VCF files to allow for 

screening of short autozygous regions as well as LRoHs.  

AutoZplotter 

There are several software which can detect long runs of homozygosity reliably (>5Mb), however they 

struggle to identify regions that are shorter than these. Therefore we developed AutoZplotter which plots 

homozygosity/heterozygosity state and enables quick visualisation of suspected autozygous regions. The 

input format of AutoZplotter is VCF thus it suits any type of genetic data (e.g. SNP array, WES, WGS). 

AutoZplotter was used for this purpose in a previous study by Alsaadi et al [18]. 

Exceptional cases 

There can always be exceptional cases (in consanguineous families also) such as compound 

heterozygotes (i.e. individuals carrying different variants in the two copies of the same gene). This would 

require haplotype phasing and the confirmation of variant status (i.e. heterozygosity for one allele and 

absence of the other) in the parents and the proband(s) by sequencing of PCR amplicons containing variant 

or genotyping the variant directly. Beagle and HAPI-UR are two widely used haplotype phasing tools for 

their efficiency and speed [62,63].  

Identifying highly penetrant variants for common-complex 

disorders 

For common complex disorders, identifying causal variants in outbred populations has proven to be a 

difficult and costly process (Supp. Figure S2); and these disorders can have many unknowns such as the 

significance of environmental factors [64-66] and epistasis [67]. Many of the causal variants may be 

relatively rare (and almost always in heterozygous state) in the population introducing issues with statistical 

power. Traditional GWAS do not attempt to analyse them thus they are largely ignored – leaving a lot of 

heritability of common complex disorders unexplained. Analysing individuals with extreme phenotypes 

where the segregation of disease mimics autosomal recessive disorders (e.g. in consanguineous families) can 

be useful in identifying highly penetrant causal genes/mutations for complex disorders (e.g. obesity and 

leptin gene mutations [68]). The genetic influence in these individuals is predicted to be higher and are 

expected to have a single highly penetrant variant in homozygous state. These highly penetrant mutations 

can mimic Mendelian disorders causal variants. Therefore similar study designs can be used (e.g. 

Autozygosity/homozygosity mapping). 
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CONCLUSIONS  

The NGS era has brought data management problems to traditional geneticists. Many data formats 

and bioinformatics tools have been developed to tackle this problem. One can easily be lost in the plethora 

of databases, data formats and tools. “Which tools are out there? How do I use it? What do I do next with the 

data I have?” are continually asked questions. This review aims to guide the reader in the rapidly changing 

and ever expanding world of bioinformatics. Figure 4 depicts a summary of the analysis process from DNA 

extraction to finding the causal variant, putting into perspective which file formats are expected at each step 

and which bioinformatics tools we prefer due to reasons mentioned before. Researchers can then appreciate 

the stage that they are at and how many other steps are required for completion as well as knowing what to 

do at each step. 

Whole exome sequencing is the current gold standard in the discovery of highly penetrant disease 

causal mutations. As knowledge on the non-coding parts of the genome can still be considered to be in its 

early days, the human exome is still a pragmatic target for many. As approx. 1600 known Mendelian 

disorders (and ~3500 when suspected ones are included) and most common-complex disorders are still 

waiting for their molecular basis to be figured out (from omim.org/statistics/entry, true as of 15/07/14), 

future genetic studies have much to discover. However for these projects to be fruitful, careful planning is 

needed to make full use of available tools and databases (see Table 4).  

Finally, with this paper we have also made AutoZplotter available (input format: VCF), which plots 

homozygosity/heterozygosity state and enables quick visualisation of suspected autozygous regions. This 

can be important for shorter autozygous regions where other autozygosity mappers struggle. 
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Table 1: Tools for aligning reads to a reference genome  
Name References Comment 
BFAST 
Bowtie 2  
 
BWA 
MAQ 
SOAP2 

[69] 
[70]  
 
[71] 
[72] 
[73] 

These aligners use similar algorithms to determine contiguous sequences 
however MAQ and BWA are widely used and have been praised for their 
computational efficiency and multi-platform compatibility [74].  

Table 1 Tools for aligning reads to a reference genome  
These are some of the many tools built for aligning reads produced from high throughput sequencing. Some have made speed 
their main purpose whereas others have paid more attention to annotating the files produced (such as mapping quality). Thus a 
manual review of candidate regions may prove to be crucial especially when dealing with very rare disorders. 
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Table 2: Tools for identifying variation from a reference genome using NGS reads 
Name References URL Comment 
GATK [2] http://www.broadinstitute.org/gatk/ - Probably the most established genome analysis toolkit 

- Includes tools such as Unified Genotyper (SNP/genotype caller), Variant filtration 
(for filtering SNPs) and Variant Recalibrator (for SNP quality scores) 

- Very well documented with forums 
- Input: SAM format 
- Output: VCF format 

QCALL [75] ftp://ftp.sanger.ac.uk/pub/rd/QCALL 
 

- Theoretically calls ‘high quality’ SNPs even from low-coverage sequencing data 
- Makes use of linkage disequilibrium information 

PyroBayes [76] http://bioinformatics.bc.edu/marthlab/wiki/index.php/PyroBayes 
 

- Theoretically makes ‘confident’ base calls even in shallow read coverage for reads 
produced by Pyrosequencing machines.  

SAMTools [26] http://samtools.sourceforge.net/ 
 

- Computes genotype likelihoods 
- BCFtools calls SNP and genotypes 
- Successfully used in many WGS and WES projects such as the 1000 Genomes 

Project [16].  
- Offers additional features such as viewing alignments and conversion of SAM to a 

BAM format 
SOAPsnp [77] http://soap.genomics.org.cn/soapsnp.html - Part of the reliable SOAP family of bioinformatics tools 

- Well documented website; and cited and used by many [78,79]. 
Control-FREEC [80] http://bioinfo-out.curie.fr/projects/freec/ 

 
- Identifies copy number variations (CNV) between case and controls from 

sequencing data 
- R script available for visualising CNVs by chromosome 
- Input format: BAM 

Atlas2 [81] https://www.hgsc.bcm.edu/software/atlas-2 - Calls SNPs and indels for WES data 
- Requires BAM file as input 
- Output: VCF format 

Table 2 Tools for identifying variation from a reference genome using NGS reads 
GATK, SOAPsnp and SAMTools have constantly been cited in large genetic association projects indicating their ease of use, reliability and functionality. However, this is also helped by the 
fact that they have additional features. There are other tools such as Beagle [63], IMPUTE2 [82] and MaCH [83] which have modules for SNP and genotype calling but are mostly used for 
their main purpose such as imputation and haplotype phasing.

.
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Table 3: Tools for predicting variant effects 
Name Reference MCC Comments 
*SIFT [84,85] 0.30 

(unweighted) 
Highly cited with many projects using and citing it since 2001. Uses 
available evolutionary information and is continually updated. Easy to use 
through VEP. Provides two classifications: ‘Deleterious’ and ‘Tolerated’. 

*PolyPhen-2 [39] 0.43 Provides a high quality multiple sequence alignment pipeline and is 
optimized for high-throughput analysis of NGS data. Cited and used by 
many projects of different types. Easy to use through VEP. Provides three 
classifications: ‘Probably Damaging’, ‘Possibly Damaging’ and ‘Benign’. 

*FATHMM [40] 0.72 A highly performing prediction tool. Clear examples are available on the 
website. Offers flexibility to the user for weighted (trained using inherited 
disease causing mutations) and unweighted (conservation-based approach) 
predictions. Also offers protein domain-phenotype association information. 

GERP++ 
(and GERP) 

 [86-88] N/A Determines constrained elements within the human genome; therefore 
variants in them are likely to induce functional changes. Can provide unique 
details about the candidate variant(s). 

PhyloP [89] N/A Helps detect non-neutral substitutions. Similar aim with GERP 

CADD [11] - Provides annotation and scores for all variants in the genome considering a 
wide range of biological features 

GWAVA [12] - Provides predictions for the non-coding part of the genome. 

*SNAP [90] 0.47 Predicts the effects of non-synonymous polymorphisms. Cited and used 
many times; and should be used to check whether the predicted effect is 
matched by the putative causal variant. However it was labelled ‘too slow’ 
for high throughput analyses by [43]. 

PupaSuite [91] - Identifies functional SNPs using the SNPeffect [92] database and 
evolutionary information. 

Mutation 
Assessor-2 

[93] - Predicts the impact of protein mutations. User friendly website and accepts 
many formats. 

*PANTHER [94,95] 0.53 
(unweighted) 

Predicts the effect of amino acid change based on protein evolutionary 
relationships. It provides a number ranging from 0 (neutral) to -10 (most 
likely deleterious) and allows the user to decide on the “deleteriousness” 
threshold. It is constantly updated making it a very reliable tool. 

CONDEL-2 [42] - Combines FATHMM and Mutation Assessor (as of version 2) in order to 
improve prediction. It theoretically outperforms the tools it is using in 
comparison to when the tools are used individually. 

*MutPred [41] 0.63 Predicts whether a missense mutation is going to be harmful or not based on 
a variety of features such as sequence conservation, protein structure and 
functional annotations. Praised in recent comparative study by [43]. 

*SNPs&GO [96] 0.65 Reported to have performed best amongst many prediction tools in [43]. 
Provides two classifications: ‘Disease related’ and ‘neutral’. 

Human Splicing 
Finder 

[44] N/A Predicts the effect of non-coding variants in terms of alteration of splicing. 
Useful for compound heterozygotes if one allele is intronic. 

Others [97], [98], [99], [100] 0.19 
0.43 
0.40 

- 

*nsSNPAnalyzer (requires 3D structure coordinates), *PhD 
SNP, *Polyphen (not supported any more), PMUT 

Table 3 Tools for predicting variant effects: Identifying neutral and pathogenic mutations  
Many methods have been developed to predict the effect of missense mutations. Many of the tools listed above use different features 
and datasets to predict these effects; thus once the decision is made about which tool to use, the theory behind the predictions should 
always be kept in mind. Tools such as CONDEL-2 combine several of these tools to determine a consensus score which theoretically 
results in higher accuracy when compared to the individual tools. 
*Comprehensive information about the prediction tool including accuracy, specificity and sensitivity available in [43] and [40]. N/A: 
not applicable. MCC: Matthew’s Correlation Coefficient. MCCs from [40]. 
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Table 4: What is needed for a genetic study? 

Material Notes 
‘Sufficient’ number of high-quality 
sequencing/genotype data 

Amount needed can vary from one proband and a 
few family members (for very rare Mendelian 
disorders) to 10000 case and controls (for certain 
complex disorder/traits) 

List of candidate genes Websites such as OMIM and GHR; and software 
such as SNPs3D can be helpful 

Identification of variant calling tool Such as in Table 2 
Identification of variant effect predictor tool Such as in Table 3; tools usually require conversion 

of VCF to VEP format (Ensembl website) 
Knowledge of human population variation databases i.e. HapMap, 1000 Genomes Project, EVS, dbSNP, 

internal databases 
Knowledge of databases storing information about 
genes and their products 

i.e. OMIM, Gene (NCBI), GeneCards, Unigene 
(NCBI), GEO Profiles (NCBI), HomoloGene 
(NCBI), Mouse knockout databases (such as MGI, 
TIGM and NC3RS). Search the literature using 
PubMed and/or Web of Science. 

Table 4 What is needed for a genetic study? 
The most important factors when carrying out a genetic association study are (i) the availability of data (ii) expertise and (iii) careful 
planning
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Targeting the exome 
- Defining the human 

exome 

Exome enrichment 
- Efficiency of the ‘capturing’ 

method 
- Coverage depth 
- Consistency between case and 

controls 

Sequencing 
- NGS technologies with short 

reads are more error prone (adjust 
coverage depth according to 
technique used) 

Alignment 
- Reference sequence 
- Manual review (indels, 

candidate regions, regions with 
low coverage) 

Variant calling 
- Reference genome (population 

specific?) 

Variant filtering (i.e. artefacts) 
- Minimum depth/coverage 
- Base quality scores 

VCF file 
- Manual inspection of ambiguous 

calls 
- Amount of meta-line information 

made available 

Classification of individuals 
and Obtention of DNA 

- Misclassification (especially for very 
rare and/or heterogeneous 
diseases/syndrome) 

Figure 1: Steps in whole-exome sequencing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Steps in whole-exome sequencing  
Understanding how the VCF file was created is important, as it can give an idea about where something may have gone 
wrong. The stages proceed from top to bottom and we’ve proposed ‘consideration points’ for each step (below the title).  

 

Initially, setting stringent 
parameters at this stage is 
recommended 
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Initial VCF file 
- Manual review of a priori 

‘candidate’ regions/variants 

Annotation of variants 
- Cross check amongst different 

prediction tools 

Identification of variants in 
control databases 

- Check: 1000 Genomes Project, 

dbSNP, Internal databases, EVS 

Subset of ‘candidate’ SNVs  
At this stage: need to gather available 
information about the disorder/disease under 
analysis (e.g. dominant/recessive mode of 
inheritance, gene functions, and translational 
data) 

 

Identification of candidate 
genes 

- a priori knowledge 
- Gene Ontology terms 

- OMIM info 

Figure 2: Post-VCF file procedures 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Assumptions 
Causal variant is most 
likely to alter the protein 
sequence 

Notes 
Advisably, feed the data into multiple prediction 
tools (Table 3) and apply weight according to 
consistency of predictions. Rank indels and 
nonsense in exons highest, then splice 
donor/acceptor mutations; and then predicted 
‘damaging’ SNVs higher than ‘tolerated’ ones.  

Assumptions 
Causal variant is most 
likely coding 

Notes 
Either filter variants in non-coding 
regions or use CADD C-score to rank all 
variants. 

Assumptions 
The variant responsible 
for Mendelian disorders 
will not be present in 
publicly available 
control databases (or 
will be rare) 

Notes 
Rank SNVs according to frequency in 
1000 Genomes Project, EVS and dbSNP; 
ranking very rare/unique variants higher 
than common ones - or filter all common 
ones. 
 

Assumptions 
Previous literature is 
reliable 

Notes 
If there are genes known to be associated 
with the disorder/pathway, rank them higher 
than the others (i.e. for PCD, the prime 
candidates would be genes affecting the 
relevant organ/organelles involved in the 
respiratory pathway such as the lung and 
cilia). GeneCards website provides 
comprehensive information about every gene 

Figure 2: Post-VCF file procedures (example for sequencing data) 
Every step can be automated through the use of pipelines and bioinformatics tools. Whilst performing the steps listed above, 
one must always bear in mind the assumptions behind the procedures. Ranking of rare SNVs would be advised over 
filtering as it allows the researcher to observe all variants as a continuum from most likely to least likely. 
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Collection of ‘ranked’ 
variants per individual 

Figure 3: Finding ‘the one’ in Mendelian Disorders 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Does the disease/disorder 
follow a dominant or recessive 

mode of inheritance? 

Dominant Recessive 

Identify most biologically plausible 
variants 

- Predicted functional effect (see Table 3) 
- Is the gene product active in the 

tissue/region? 
- Homologues in different species? 
- Functional analyses in model organisms 

(e.g. knockouts) 

Yes No 
Return to Figure 2 and re-check 
assumptions 

Send top candidates for 
replication 

- Sequence more exome/genomes 
- Independent cohort 

How prevalent is the 
disorder? 

*Familial disorders Common disorders (e.g. 
Finnish heritage disorders) 

Dominant Recessive 

Remove alleles present in 
unaffected family members 

Remove heterozygote alleles 
present in other affected family 
members; and homozygotes in 
unaffected ones 

Fit data into recessive model 
(i.e. allele must be in 
homozygous state in most (if 
not all) affected individuals) 

Fit data into dominant model 
(i.e. allele must be in 
heterozygous state in most (if 
not all) affected individuals) 

(If possible) Replicate 
Genotype candidate SNVs in more family 

members (check for consistency) 

Publish 
Include as many candidate SNVs in paper 
as possible for potential future analyses by 

other groups 

Rank variants according to biological 
plausibility 

- Predicted functional effect (see Table 3) 
- Is the gene product active in the 

tissue/region? 
- Homologues in different species 
- Functional analyses in mouse knockouts 

Replicated? 

Publish 
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Figure 3 Finding ‘the one’ in Mendelian Disorders: Searching for the causal variant (WES example) 
After potentially causal variants are identified, one must put into practice what past literature suggests about the disorder and 
make certain decisions about which path to follow in Table 3. Familial (very rare) disorders are more likely to be following a 
recessive mode of inheritance, thus family data is crucial (to rule out de novo mutations). Also it is crucial to include as many 
family members as possible. For common Mendelian disorders, if the disorder is following a recessive inheritance model, the 
possibility of the existence of compound heterozygotes should be taken into account when fitting the data into a recessive model. 
Finally, functional post-analysis of candidate variant(s), especially in mouse knockouts, can be crucial. 

*If a consanguineous family, identify regions where there are long runs of homozygosity (LRoH) for each individual; and 
amongst these regions, the ones which are shared by the affected and not by the unaffected. 
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Figure 4 Summary of whole analysis process: DNA sample to identification of variant The tools mentioned here are the ones 
we prefer to use for a variety of reasons such as documentation, ease of use, performance, multi-platform compatibility and speed. 
See Supp. Material and Methods for examples of parameters/commands to use where applicable. 

Next Generation 
Sequencing 

DNA extraction 

Exome capture and 
amplification 

Output: Raw reads in FASTA format 

Align reads to reference 
genome (e.g. hg19) using 

BWA + use picard to mark 
duplicated reads 

Output: Alignment files in BAM format 

Call SNPs using SOAPsnp 
and call InDels using 
SAMtools (mpileup) 

Output: raw SNP and Indels in CNS and SAM format 

Validate variants using 
GATK 

Output: Validated SNP and Indels in VCF file format 

Annotate variants in VCF 
file using Ensembl VEP 

Output: Annotated SNP/InDels in VEP format 

Variant effect predictions from 
SIFT, Polyphen-2, FATHMM, 

CONDEL-2, CADD 

Note: These predictions can be done via VEP 

Rank/Filter variants 

E.g. according to consequence, candidate genes, mode of 

inheritance, autozygosity mapping and frequency in public and 

internal databases (see Fig. 6 and Supp. Material and Methods) 

 Check literature on the 
candidate gene/variants 
using GeneCards and 

PubMed 

Note: Autozygosity mapping is a powerful technique for 

analysis of autosomal recessive disorders in consanguineous 

individuals 

Autozygosity mapping using Plink and 
AutoZplotter in consanguineous individuals 
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Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Filtering steps applied to all mutations in the exome (Primary ciliary dyskinesia example) 
After all the filtering steps in the above figure are applied, the total will be reduced to a single candidate. The numbers here are for 
illustration purposes only (adapted from [36]). Homozygosity step is added as PCD is an autosomal recessive disorder. Φ 
mutations are ‘predicted high impact’ mutations as proposed by Alsaadi and Erzurumluoglu et al [36] (see SO_terms_SNP.txt in 
Supp. data). 

 

 

 

 

 

 

88000 SNPs and indels 

35000 SNPs and indels 

5000 SNPs and indels 

300 SNPs and indels 

1 SNV and 1 insertion 

1 SNV 

Homozygous state 

Φ mutations 

Within suspected ciliome genes 

Frequency in dbSNP, internal databases, 
EVS and 1000GP 

Comparison with family members (affected and 
unaffected) 

No of mutations left in 
analysis Filtering steps and Notes 
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Supp. Material and Methods 

These commands are here to guide the user. However where complications arise, other options may have to 
be included thus requires reading documentation provided by the bioinformatics tools. 

Parameters used in BWA for read alignments: bwa aln -o 1 -e 50 -m 10000 -t 4 -i 15 -q 10 -I 

-I at the end is for Illumina NGS platforms 

Parameters used in GATK (for SNPs): java -jar GenomeAnalysisTK.jar -T UnifiedGenotyper -
stand_call_conf 50 -stand_emit_conf 10.0 -A DepthOfCoverage -A RMSMappingQuality -baq 
CALCULATE_AS_NECESSARY 

Parameters used in GATK (for InDels): java -jar GenomeAnalysisTK.jar -T UnifiedGenotyper -
stand_call_conf 50 -stand_emit_conf 10.0 -A DepthOfCoverage -A RMSMappingQuality -baq 
CALCULATE_AS_NECESSARY -glm INDEL 

Obtaining Ensembl VEP annotations for VCFs (including SIFT, Polyphen and Condel predictions):  

1- Download latest package (and *plugins) from Ensembl website: 
(www.ensembl.org/info/docs/variation/vep/index.html) 

2- Tar xvf downloaded file(s) 
3- perl INSTALL.pl – and download Homo sapiens cache(s) 
4- perl variant_effect_predictor.pl -i file.vcf -o file.vep --protein --cache --regulatory --gmaf --force_overwrite --sift b --polyphen b --

plugin Condel,/data/home/~/ensembl-tools-release-75/scripts/variant_effect_predictor/ensembl-variation-VEP_plugins-
e6cec6a/config/Condel/config,b --fork 8 --canonical --individual all --pubmed --maf_esp --symbol 

*to use Condel plugin: 
1- Download latest Ensembl plugins from: https://github.com/ensembl-variation/VEP_plugins 
2- tar -xvf downloaded file 
2- mv Condel.pm ~/.vep/Plugins (create Plugins folder if not there; also .vep is a hidden folder) 
3- edit the condel_SP.conf file (in config/Condel/config/) and set the 'condel.dir' parameter to 
/data/home/~/variant_effect_predictor/ensembl-variation-VEP_plugins-e6cec6a/config/Condel 

Example of commands used to filter variants in VEP file: To grab list of all rare/unique and homozygous 
mutations in candidate genes: grep -f Candidate_genes.txt file.vep | grep -f SO_terms_SNP.txt | grep CANONICAL | grep HOM 
| grep _[A-Z]/ > file_candidate_mutations.txt 

or use grep GMAF=[A-Z]:0.00 instead of grep _[A-Z]/ for variants which are present in the 1000GP but rare 

Files used: 

Candidate_genes.txt: a text file containing Ensembl IDs of your candidate genes – one per row 

SO_terms_SNP.txt: a text file containing VEP SO terms which would be classified as a Φ mutation (available as Supp. File) 

Command for Autozygosity plotting in AutoZplotter: python autozplotter.py 

Parameters used for Autozygosity mapping in Plink: plink --file <ped/map> --homozyg --noweb --
homozyg-window-kb 1000 --homozyg-window-het 1 --homozyg-group --out <output> 
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Union of double (first) cousins, where both 

parents share the same four grandparents 

F = 0.125 

Union between first cousins, a very 

common form of consanguineous 

unions  

F = 0.0625 

.
C

C
-B

Y
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted N
ovem

ber 6, 2014. 
; 

https://doi.org/10.1101/011130
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/011130
http://creativecommons.org/licenses/by/4.0/


24 

 

 

 

Supp. Figure S1 Consanguineous Unions where F ≥ 0.0625 

 

 

 

 

 

 

 

 

 

 

 

Uncle-niece unions are common in 

Southern India, an uncommon type 

anywhere else (Aunt-nephew unions 

is also consanguineous, and their 

offspring would be expected to have 

similar F value)  

F = 0.125 
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All (QC checked) variants 
from sample/exomes 

 

Supp. Figure S2: Finding ‘the lot’ in Complex disorders 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i) Use collapsing 
methods 

Combining multiple rare 
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Supp. Figure S2 Finding ‘the lot’ in Complex disorders: Searching for causal variants (WES example) 
The standard procedure is to compare cases with controls and detect whether there are any significant differences in the 
allele frequencies of each variant. The statistical power of this approach is going to predominantly depend on sample size 
and penetrance of the causal variant. Covariates should be identified and population stratification should be controlled for 
in the regression models. The clinical significance of the variant must also be taken into account especially when searching 
for variants with very low effect sizes. One must consider whether it is worth sequencing more exomes in order to reach 
exome wide significance for the identification of a variant which does not have any considerable effect on patients’ health. 
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