
Inference of cell-cell interactions from population density

characteristics and cell trajectories on static and growing domains

Robert J. H. Ross ∗1, C. A. Yates †2, and R. E. Baker ‡1

1Wolfson Centre for Mathematical Biology, Mathematical Institute, University of

Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG

2Centre for Mathematical Biology, Department of Mathematics, University of Bath,

Claverton Down, Bath, BA2 7AY

October 31, 2014

Abstract

A key feature of cell migration is how cell movement is affected by cell-cell interactions.

Furthermore, many cell migratory processes such as neural crest stem cell migration [1, 2]

occur on growing domains or in the presence of a chemoattractant. Therefore, it is im-

portant to study interactions between migrating cells in the context of domain growth and

directed motility. Here we compare discrete and continuum models describing the spatial

and temporal evolution of a cell population for different types of cell-cell interactions on

static and growing domains. We suggest that cell-cell interactions can be inferred from pop-

ulation density characteristics in the presence of motility bias, and these population density

characteristics for different cell-cell interactions are conserved on both static and growing

domains. We also study the expected displacement of a tagged cell, and show that different

types of cell-cell interactions can give rise to cell trajectories with different characteristics.

These characteristics are conserved in the presence of domain growth, however, they are di-

minished in the presence of motility bias. Our results are relevant for researchers who study

the existence and role of cell-cell interactions in biological systems, so far as we suggest that

different types of cell-cell interactions could be identified from cell density and trajectory

data.
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1 Introduction

It is widely understood that cell-cell interactions play an important role in cell migration [3–6].

For example, multiple different cell-cell interaction mechanisms have been identified as pro-

moting metastasis in breast cancer [3], and repulsive interactions mediated via ephrins on the

surface of neural crest stem cells (a cell population that play a fundamental role in vertebrate

development) have been shown to be important in organising neural crest stem cell migration

[4]. Therefore, understanding interactions between motile cells is essential for understanding cell

migration in biological systems [7, 8]. However, although great progress has been made in the

identification and quantification of cell-cell interactions, work to understand the effect different

cell interactions have on cell motility at both individual and population levels is still ongoing

[9–14]. Mathematical and computational modelling allows us to assay a large range of cell-cell

interactions with complete control over parameters, and perform simulations in environments

that are difficult to reproduce or control experimentally, such as domain growth. This allows

us to test multiple hypotheses with relative ease.

Throughout this work we use mathematical and computational modelling to test simple mea-

surements that could be carried out during experiments in order to discern cell-cell interactions.

To do so we use a cell-based discrete random-walk model with volume exclusion to represent a

two-dimensional motile cell population [15]. Discrete random walk models based on a simple

exclusion process have been widely applied to the study of biological phenomena [16–20]. For

instance, discrete random walk models have been used to study spatial structure in cell aggre-

gations [16, 17], the growth of cell colonies [18], enteric colonic growth [19], infection spreading

and ecological interactions [20]. We use this model as it is straightforward to incorporate a

large number of cell-cell interactions, the focus of our study [3, 4, 12, 21–23]. We also study

these cell-cell interactions in the context of growth and motility bias. Motility bias represents

the directed migration of a cell caused, for example, by the presence of a chemoattractant [24–

26]. Chemoattractants have been shown to play a major role in cell migration. For instance,
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chemoattractants are known to be essential for the correct migration of cranial, cardiac and

enteric neural crest stem cells [2, 25, 27]. In addition, growth is an essential component of bio-

logical systems, especially in the context of development, when large scale cell rearrangements

are taking place [28]. This means that the inclusion of domain growth into models is necessary

to understand cell migration in many contexts.

Importantly, we derive continuum equivalents of our discrete models for the spatial and temporal

evolution of the cell population density, and the expected displacement of tagged cells on both

growing and static domains [21–23, 29]. This is important as discrete models are often computa-

tionally expensive. Continuum models can therefore be used to parameterise biological systems

efficiently, e.g. using Monte Carlo methods [30, 31], as well as being more analytically tractable.

By implementing simple measurements on our simulation results we show that cell-cell inter-

actions can be inferred from population density characteristics in the presence of motility bias,

and these population density characteristics for different cell-cell interactions are conserved on

both static and growing domains. Similarly, different cell-cell interactions can be inferred from

the characteristics of the trajectory of a tagged cell. The results presented here are relevant to

experimentalists in the field of cell biology, as the study of population density and cell trajec-

tory characteristics could be used to distinguish simply between different cell behaviours and

interactions.

The outline of this work is as follows. To begin we introduce a generic discrete model for

cells migrating on a growing domain. We also define mathematically different types of cell-cell

interactions for our discrete model, and derive corresponding continuum approximations of our

discrete models. We then compare the accuracy of these continuum approximations with their

discrete model counterparts. We do this for a range of cell-cell interactions, for both static

and growing domains. Finally, we show that different cell-cell interactions can be inferred from

population density and cell trajectory characteristics using simple measurements.
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2 Model formulation

In this section we first introduce our discrete modelling framework and the cell-cell interactions

that we employ throughout this work. We then derive continuum approximations of our discrete

models, and compare the discrete model simulation results with our continuum approximation

solutions.

2.1 Discrete modelling framework

We use an agent-based, discrete random-walk model on a two-dimensional square lattice with

lattice spacing ∆ [20] and size Lx(t) by Ly(t). For discrete simulations in which the domain

does not grow, the lengths of the x and y axes are constant, Lx(t) = Lx and Ly(t) = Ly. All

simulations are performed with periodic boundary conditions at y = 0 and y = Ly(t), and

no-flux boundary conditions at x = 0 and x = Lx(t). Furthermore, in all simulations displayed

here, domain growth only occurs along the x axis. However, the growth mechanism presented

here is equally applicable in two dimensions [19].

The simulation runs with a fixed time step of duration τ . The lattice is populated by agents,

which represent biological cells. Each agent is assigned to a lattice site, from which it can move

into an adjacent site. If an agent attempts to move into a site that is already occupied, the

movement event is aborted. This process, whereby only one agent is allowed per site, is typically

referred to as an exclusion process [20]. In this work we neglect cell proliferation, death and

differentiation as they add significant complications to our methodology and provide little extra

insight.

At each time step, all cells on the lattice have the opportunity to move to an adjacent site

with probability P . On a square lattice, with a cell positioned at site (row = i, column = j)

and not on a boundary, adjacent sites would consist of sites (i, j − 1), (i − 1, j), (i, j + 1) and

(i + 1, j). To relate site coordinates to Cartesian co-ordinates, we use x = i∆, y = j∆. This

means the length of the x axis is Lx(t) = Nx(t)∆, where Nx(t) is the number of elements in the

x axis. For all simulations presented here P = 1. The random sequential update method we

employ means that if there are M cells in the domain, M sequential random cell movements to
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an adjacent site are attempted at each time step with replacement [15]. This means each cell is

chosen on average once per time step, however, in some time steps a cell may be selected more

than once or not at all.

Key to both the discrete and continuum models we derive throughout the course of this work

is the growth mechanism we employ. This growth mechanism, which we shall refer to as a

‘pushing’ mechanism, has been successfully used in modelling avian gut growth [19], and to

compare the accuracy of different stochastic update schemes for discrete models [29, 32]. Our

pushing growth mechanism is as follows: at each time step one site is randomly selected from

each row of the domain to undergo growth. This means that all rows remain the same length

throughout the simulation, and that domain growth is linear. We choose linear domain growth

as it has been shown to be present in many biological systems [2, 19, 33, 34]. However, this

growth mechanism is equally applicable to other types of isotropic domain growth, such as ex-

ponential growth [29]. If site (i, j) is selected for growth, the new site is inserted at (i, j), and

the ‘selected’ site is moved to (i, j + 1), taking its contents (i.e. an agent or no agent) with

it. This means new sites are unoccupied initially, and that all sites to the right of a site that

undergoes growth are ‘pushed’ one lattice spacing, ∆, in the positive x direction, along with

their contents. This growth mechanism is illustrated in Fig. 1.

2.2 Transition probabilities that represent cell-cell interactions

As outlined in the introduction it is known that cell-cell interactions play an important role in

cell migration [3, 5, 6]. Therefore, we implement a number of cell-cell interactions in both our

discrete and continuum models. These four types of cell-cell interaction, blind, adhesive, repul-

sive and myopic, imitate cell-cell interactions in biological systems [3, 5, 22, 22, 23]. We also

study the effect of motility bias, as it is known to play a crucial role in cell migration [24, 26, 27].

To define our cell-cell interactions we first introduce our notation [23]. For any site v on a

square lattice we define the nearest neighbourhood set N{v}. This set contains all lattice

sites that share a boundary with v, that is N = |N{v}| = 4 (away from the boundary) for a

two-dimensional square lattice. This neighbourhood is typically referred to as a von Neumann
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Figure 1: (Colour online). ‘Pushing’ growth mechanism. Growth in the x axis for a two-
dimensional lattice. The arrow indicates the direction of growth. In each row the red (dark
grey) site has been chosen to undergo a growth event, whereby the red site moves one lattice
spacing to right, carrying its contents. Consequently, all sites to the right of a red (dark grey)
site move one space to the right as well. The new site (yellow, light grey) is inserted where the
red site was at the start of the time step. This new site (yellow, light grey) is unoccupied.

neighbourhood, and these are the sites from which agent movements into and out of site v can

be made.

Throughout this work we use standard conservation arguments to derive our continuum ap-

proximations [35, 36]. The occupancy of site v is denoted by Cv, with Cv = 1 for an occupied

site and Cv = 0 for an unoccupied site. By averaging over many identically prepared realisa-

tions of our discrete system we obtain the expected occupancy of site v, denoted by 〈Cv〉. This

quantity represents the probability of occupancy of site v. We will use these expected occu-

pancies to derive the transition probabilities, which we we use in the derivation of continuous

approximations of our discrete models.

2.2.1 Blind agent interactions

In ‘blind’ agent interactions the agent does not consider the occupancy status of adjacent sites

before attempting a move. In this sense the agent is ‘blind’ to its environment. The transition

probability for a blind agent, in which an agent attempts to move to one of the N nearest
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neighbour sites with probability P (1 + ρv→v′)/N is written as

T (v′|v)B =
P (1 + ρv→v′)

N
(1− 〈Cv′〉), (1)

such that

0 ≤
∑

v′∈N{v}

P (1 + ρv→v′)

N
≤ 1. (2)

In Eq. (1) T (v′|v)B is the probability that an agent will successfully move from site v to site

v′ ∈ N{v} during [t, t + τ), given it is at v at time t (the subscript B denotes blind) [21].

ρv→v′ is the bias present in moving from site v to v′, ρv→v′ ∈ [−1, 1] and Eq. (2) constrains

the values ρv→v′ can take. That is, the bias terms (and P ) must be chosen so that Eq. (2) is

satisfied. For our purposes ρv→v′ will be one of ±ρx or ±ρy, with ±ρx the bias for movements

in the positive/negative x directions and ±ρy for movements in the y direction. For example,

a movement from site (i, j)→ (i, j + 1) would have a bias of ρx. Conversely, a movement from

site (i, j)→ (i, j − 1) would have a bias of −ρx.

We now proceed to define more complicated agent interactions. To do so we adopt a tran-

sition probability notation similar to that used by Landman and Fernando [23], with some

modifications. From our nearest neighbourhood set N{v} we define two further sets. O{v}

is defined as the set of all nearest neighbour occupancy configurations in the set N{v}\{v′}.

O{v}n is then defined as a subset of O{v} containing exactly n occupied nearest neighbour sites

from the possible N − 1 sites in the set N{v}\{v′}. We then use O{v}kn to index the possible

choices of sites in O{v}n, where the superscript k denotes one of the
(
N−1
n

)
possible choices of

n distinct sites in O{v}n. Put simply, these represent all the possible combinations of occupied

sites in N{v}\{v′}. Additionally, we define Ukn{v} to be (N{v}\{v′})\Okn{v}. Therefore, U{v}

can be understood as the set of all possible combinations for unoccupied sites in the nearest

neighbourhood set of site v. These combinations are displayed in Fig. 2. With this notation

we can now define more complicated agent interactions for our discrete model.
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(a) O{v}10
or U{v}13.

(b) O{v}11
or U{v}12.

(c) O{v}21
or U{v}22.

(d) O{v}31
or U{v}32.

(e) O{v}12
or U{v}11.

(f) O{v}22
or U{v}21.

(g) O{v}32
or U{v}31.

(h) O{v}13
or U{v}10.

Figure 2: The nearest neighbourhood occupancy sets. The shaded sites indicate a site that is
occupied by a cell.

2.2.2 Adhesive/repulsive agent interactions

In adhesive and repulsive agent interactions, the number of sites that are occupied in the nearest

neighbourhood of an agent influence the probability of that agent completing a move. In this

sense the agent is not ‘blind’, as it takes its nearest neighbourhood into account before attempt-

ing a move. For adhesive reactions the success of a move decreases if the agent is in contact

with other agents that it can adhere to. Conversely, for repulsive interactions the success of

a move increases if an agent is in contact with other agents. In adhesive and repulsive agent

interactions an agent attempts to move to one of its N nearest neighbours with probability of

P (1 + ρv→v′)(1 + α)n/N , where n ∈ N signifies the number of nearest neighbours of v that

are occupied, −1 ≤ α < 0 for adhesive agent interactions, and 0 < α < 1 for repulsive agent

interactions. This transition probability was first suggested by Khain et al. [22], and has been

successfully applied to discrete models of wound healing and cell aggregation [22, 36, 37].

We denote the occupancy of sites u and w by Cu and Cw, respectively, and let u ∈ Okn{v}

and w ∈ Ukn{v} represent all configurations of occupied and unoccupied members of the nearest

neighbour set of site v, respectively. For a two-dimensional lattice the transition probability for
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adhesive/repulsive agent interactions with bias can be written as

T (v′|v)A/R =

(1− 〈Cv′〉)
N−1∑
n=0

P (1 + α)n(1 + ρv→v′)

N

(N−1
n )∑
k=1

∏
u∈Ok

n{v}

〈Cu〉
∏

w∈Uk
n{v}

(1− 〈Cw〉)

 , (3)

such that

0 ≤
∑

v′∈N{v}

[
P (1 + α)n(1 + ρv→v′)

N

]
≤ 1. (4)

Here, the subscript A/R denotes adhesive/repulsive agent interactions (adhesion or repulsion

depends on the sign of α). Note that if α is zero Eq. (3) is equivalent to Eq. (1), the blind

transition probability. This is because the sum of the probabilities of all possible neighbourhood

configurations is equal to unity. Once again, condition Eq. (4) constrains the values P , α and

ρv→v′ can take in Eq. (3).

2.2.3 Myopic agent interactions

The final interaction type we study is myopic agent interactions. A myopic agent never attempts

to move into an occupied site [38]. Instead, an agent’s probability of moving to an occupied

site is redistributed amongst non-occupied sites. That is

∑
v′∈Uk

n{v}

T (v′|v) =

 ∑
v′∈Uk

n{v}

P (1 + ρv→v′)

(N − n)

 = 1 ∀ k, n ∈ [1, ... N − 1]. (5)

For a transition probability describing myopic agent interactions without bias this means an

agent at site v attempts to move into an unoccupied site in N{v} with equal probability

P/(N − n), where n signifies the number of nearest neighbours of v that are occupied. If

bias is introduced, then not only is the number of occupied neighbours important, but also the

position of the occupied neighbours. An example of myopic agent interactions is displayed in

Fig. 3. For Fig. 3 (a), none of the nearest neighbour sites of v are occupied, so an agent at v
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would move to site v′ with probability

T (v′|v) =
(1− ρx)

4
.

However, in Fig. 3 (b), a site in the nearest neighbourhood of v is occupied, and so the

(a) (b)

Figure 3: Myopic neighbourhood example. In panel (a) an empty nearest neighbourhood is
displayed. With this configuration T (v′|v) = (1−ρx)/4. In panel (b), a nearest neighbourhood in
which one site is occupied is shown. The transition probability associated with this is T (v′|v) =
(1− ρx)/(3− ρx).

probability of moving to this occupied site from v must be redistributed amongst the unoccupied

sites. Therefore, an agent at site v would move to site v′ with probability

T (v′|v) =
(1−ρx)

4
(1−ρx)

4 +
(1+ρy)

4 +
(1−ρy)

4

=
(1− ρx)

(3− ρx)
.

The probability of a myopic agent attempting a move and it being successful can be written as

T (v′|v)M = (1− 〈Cv′〉)×

N−1∑
n=0

(N−1
n )∑
k=1

 (1 + ρv→v′)

(1 + ρv→v′) +
∑

w∈Uk
n{v}(1 + ρv→w)

∏
u∈Ok

n{v}

〈Cu〉
∏

w∈Uk
n{v}

(1− 〈Cw〉)


 . (6)

The subscript M denotes that this is the transition rate for myopic agent interaction.

2.3 Population-level density continuum equations

We have described a range of transition probabilities that represent known cell-cell interactions.

In this section we derive corresponding continuum approximations for the spatial and temporal
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evolution of the population density and expected displacement of a tagged agent on both static

and growing domains, and then compare our approximations with the results of our discrete

model simulations.

2.3.1 Static domains

We begin by deriving a continuum approximation for a static domain with agents that undergo

blind interactions [35]. To derive our continuum approximation we proceed as follows. If the

change in the average occupancy of site v during the time interval [t, t + τ) is denoted by

δ〈Cv(t)〉, and the change in average occupancy due to a transition from v → v′ is T (v′|v)〈Cv〉

[35], then by summing over all members of the nearest neighbourhood set N{v} the discrete

conservation equation for agents with blind agent interactions can be written as

δ〈Cv(t)〉 =
∑

v′∈N{v}

[
T (v|v′)B〈Cv′〉 − T (v′|v)B〈Cv〉

]
. (7)

To derive a partial differential equation (PDE) describing the spatio-temporal evolution of the

agent population density from Eq. (7) we make a change of variables, such that v → (x, y) and

〈Cv(t)〉 → C(x, y, t), and then perform Taylor series expansions on Eq. (7). It has previously

been shown [21, 39, 40] that Eq. (7) is related to a PDE in the limit as ∆→ 0 and τ → 0, such

that ∆2/τ is held constant. Thus, the spatial and temporal evolution of the continuous density,

C(x, y, t), for a population with blind agent interactions on a two-dimensional square lattice is

governed by

∂C

∂t
= D∇2C −∇ · [vC(1− C)], (8)

where v = (vx, vy) is the advective velocity with components

vx = lim
∆,τ→0

(
Pρx∆

2τ

)
, vy = lim

∆,τ→0

(
Pρy∆

2τ

)
, (9)

and diffusivity given by

D = lim
∆,τ→0

(
P∆2

4τ

)
, (10)
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which implies ρx = O(∆) and ρy = O(∆) [38].

If we follow the same procedure for the adhesive, repulsive and myopic agent interaction transi-

tion probabilities, that is Eqs. (3) and (6), we can derive equations for the spatial and temporal

evolutions of the density, C(x, y, t), for adhesive, repulsive and myopic interactions. These

equations are listed in Table 1.

2.3.2 Growing domains

We now include domain growth, as illustrated in Fig. 1, into the continuum approximations of

our discrete models. To do so we define the two adjacent column sites of v, i.e. (i, j − 1) and

(i, j+ 1) as vL and vR, respectively. The two adjacent row sites of v, i.e. (i− 1, j) and (i+ 1, j)

are defined as vU and vD, respectively. Ignoring agent movement, we can write a difference

equation to account for the effect of growth in the x direction on the average occupancy status

of site v, that is

δ〈Cv(t)〉 =
−Pgi
Nx(t)

〈Cv(t)〉

+
Pg(i− 1)

Nx(t)
〈CvL(t)〉. (13)

Here, Pg represents the probability of a growth event in the time duration [t, t+ τ). The terms

on the right-hand side (RHS) of Eq. (13) represent the ways in which a growth event can affect

the occupancy status of site v. The first term on the RHS of Eq. (13) represents site v being

occupied and a growth event occurring to the left of, and including, site v. The second term on

the RHS of Eq. (13) represents a growth event occurring to the left of site v and causing site

v to become/remain occupied. If we transform Eq. (13) from discrete to continuous variables

and perform Taylor series expansions, noting that

Nx(t) = Lx(t)/∆, (14)

and

Pg∆ = Lx(t+ τ)− Lx(t), (15)
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and take ∆→ 0 and τ → 0 such that ∆2/τ is held constant we obtain

∂C

∂t
= −L′x(t)

∂

∂x

[
x

L(t)
C

]
. (16)

Here, L′x(t) represents the growth rate of our domain in the positive x direction. This is the

same term derived by Baker et al. [41] and Crampin et al. [42] for the effect of domain growth

on population density. It is also the same equation derived by Hywood et al. [29] and Binder

and Landman [32] if the site spacing is taken to zero in their derivation. This term can now

be added to our previous equations for the evolution of population density, Eqs. (8), (11) and

(12) to represent the effects of domain growth. For instance, with the addition of growth Eq.

(8) becomes

∂C

∂t
+ L′x(t)

∂

∂x

[
x

Lx(t)
C

]
= D∇2C −∇ · [vC(1− C)]. (17)

2.4 Cell trajectories

Initially, we derive equations for the expected displacement of a tagged agent on a two-dimensional

square lattice on a static domain.

2.4.1 Static domains

The expected displacement of a blind tagged agent at site v in the positive x direction given its

position along the x axis is px at time t during the time-interval [t, t+ τ) is [21]

δpx = ∆T (vR|v)B −∆T (vL|v)B, (18)

and in the positive y direction, given its position in the y axis is py at time t, is

δpy = ∆T (vU |v)B −∆T (vD|v)B. (19)
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If we rearrange and divide by τ , with ∆2/τ held constant as ∆, τ → 0 simultaneously, it has

been shown by Simpson et al. [21] that for an agent with blind agent interactions

dpx
dt

= −2D
∂C

∂x
+ vx(1− C), (20)

and

dpy
dt

= −2D
∂C

∂y
+ vy(1− C). (21)

Where C, D, vx and vy are defined as previously. If we follow this same procedure with the

relevant transition probabilities, Eqs. (3) and (6), we can the derive equations for the expected

displacement of agents with adhesive, repulsive and myopic cell interactions. The resulting

equations for the expected displacement of a tagged agent are listed in Table 2, including

the analogous equations for displacement in the y direction. Solving Eqs. (20)-(25) gives the

expected displacement of a tagged agent initially at [px(0), py(0)]. As can be seen from Eqs.

(20)-(25) the rate of change in expected displacement depends explicitly on the average agent

density. It should also be noted that if α = 0 in Eqs. (22) and (23) we recapitulate expected

displacement equation for a blind agent.

2.4.2 Growing domains

To add growth to Eqs. (20)-(25) we proceed in the following manner. Ignoring agent movement,

the expected displacement of an agent at position px(t), at time t, in the positive horizontal

direction during the time interval [t, t+ τ) due to growth is

δpx = Pg∆
px

Lx(t)
. (26)

On dividing and taking ∆ and τ → 0, Eq. (26) becomes

dpx
dt

= Lx(t)′
px

Lx(t)
. (27)
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As with the population density equations we simply add this growth term to the expected

displacement equations previously derived. For instance, with domain growth Eq. (20) becomes

dpx
dt

= −2D
∂C

∂x
+ vx(1− C) + L′x(t)

px
Lx(t)

. (28)

3 Comparing continuum approximations to discrete model re-

sults

We now compare our continuum approximations with the results of our discrete models. The

results presented here are not exhaustive, however they serve to present our key findings. For

static domains simulations are performed on a square lattice with Lx(t) = 200 and Ly(t) = 20,

with ∆ = 1. For growing domains one site is added to each row per time step (i.e. Pg = 1). All

sites between 85 ≤ x ≤ 115 are initially occupied with an agent, and an agent at site (114, 10)

is tagged. We chose this initial location for our tagged agent as it emphasises the differences

between different types of agent interaction. All simulations have periodic boundary conditions

at y = 0 and y = Ly(t), and no-flux boundary conditions at x = 0 and x = Lx(t). Together

these conditions allow us to treat the system as translationally invariant in the y axis, hence we

can write 〈C(x, y, t)〉 = 〈C(x, t)〉.

In all simulations we consider three values of bias parameter ρx = 0, 0.1, 0.5, with ρy = 0

for all simulations. The density profiles from the discrete models, 〈C(x, t)〉, are obtained by

averaging the column occupancy for R identically prepared realisations of the discrete model.

That is,

〈C(x, t)〉 =
1

R

R∑
r=1

Cr(x, t), (29)

where Cr(x, t) represents the averaged column occupancy in a single simulation at time t. We

also we calculate the average displacement of the tagged agent over R identically prepared

realisations of the discrete simulation, that is

〈x(t)〉 =
1

R

R∑
r=1

xr(t), (30)

17

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 4, 2014. ; https://doi.org/10.1101/011080doi: bioRxiv preprint 

https://doi.org/10.1101/011080


where xr(t) represents the displacement of a tagged agent in simulation r at time t. Compar-

isons of simulation and continuum results are presented at t = 100 for static domains, and

t = 200 for growing domains.

Finally, we introduce a measure for the ‘concavity’ of the expected displacement profile of

our tagged agents. To do so we draw a straight line between the initial and final position

of a tagged agent, and subtract the area beneath the straight line from the area beneath the

expected displacement trajectories of the agent (using the trapezium rule). This difference is

then normalised with respect to the distance the agent has travelled. The concavity measure is

illustrated graphically in Fig. 4. We will show that with this measure it is possible to identify

different types of agent interaction.

(a) Time

Expected 
displacement

(b) Time

Expected 
displacement

Figure 4: Concavity measure. The dotted line is the trajectory of a tagged agent. A straight line
has been drawn connecting the start and final point of the tagged agent. The region between
these two lines is shaded and used to calculate the concavity measure. (a) Negative concavity,
(b) positive concavity.

On a static domain the population-level continuum Eqs. (8), (11) and (12) are solved with a

centred-in-space finite difference method and implicit Euler method with Picard iteration with

δt = 0.05 and δx = 0.5 for time integration, and absolute error tolerance ε = 10−8. From the

solutions of these equations we approximate ∂C/∂x, ∂C/∂y and C using linear interpolation,

and then solve Eqs. (20), (22) and (24) with initial position [px(0), py(0)] as in [21].

For simulations on a growing domain implement the change of variables used by Crampin

et al. [42], that is ξ = x/L(t) and t = τ . This allows Eqs. (8), (11) and (12) to be solved on

a fixed domain [32, 42]. Growing domain equations are solved with a centred-in-space finite

difference method and implicit Euler method with Picard iteration with δτ = 0.05 and δξ = 0.1

for time integration, and absolute error tolerance ε = 10−8.
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3.1 Static domain

We begin by testing the accuracy of our continuum approximations of our discrete model on

static domains.

Adhesive agent interactions

Fig. 5 row (a)-(b) shows results from discrete model simulations and the corresponding con-

tinuum approximation for blind agent interactions. These results have been presented before

[21], however, we briefly describe them here. The averaged density profile of the discrete model

simulations, taken from 100 repeats, compares well with the solution of Eq. (8) for all values of

ρx, as can be seen in Fig. 5 row (a). The effect of the non-linear advection term introduced into

Eq. (8) by a non-zero ρx is seen in the asymmetry of the density plots, whereby the agent den-

sity skews to the right and reduces in height more quickly compared to agents without motility

bias. Fig. 5 row (b) shows that the expected displacement of the tagged agent predicted by the

solution of Eq. (20) compares well with the discrete simulation for all values of ρx. Importantly,

the expected displacement depends on the initial position of the tagged agent [21]. We studied

different initial tagged agent positions, and found that expected displacement characteristics

were conserved for all interactions, although reduced in intensity, as the initial position of the

tagged agent approached the centre of the initial condition i.e. positions (10, 100-101) on the

lattice [21].

Fig. 5 row (c) shows a comparison of the discrete model simulation and continuum approx-

imation solution for agents with adhesive interactions with α = −0.2. Like the blind case,

the averaged density profiles of the discrete model simulations and the solution of Eq. (11)

compare excellently for all values of ρx for this value of α. However, compared to agents with

blind interactions, agents with adhesive interactions spread less, due to more movements being

aborted. Importantly, the density profile for the agent adhesion process is convex on its RHS

in the presence of motility bias (the direction of positive bias). This is due to two reasons: (i)

agents with adhesive interactions have dispersed less by t = 100; (ii) the adhesive interaction

means once an agent has left a high density region it is more likely to move again, resulting in

the density skewing in the direction of positive motility bias. Finally, Fig. 5 row (d) shows that
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the evolution of the expected displacement for the tagged agent predicted by Eq. (22) compares

well with the simulation data for all values of ρx. In the case of agent adhesion the expected

displacement of the agent is less than for an agent with blind interactions, as would be expected.

Repulsive agent interactions

We now study our repulsive-type agent interactions, that is, agents with repulsive and myopic

interactions. Fig. 6 row (a) shows the averaged density profile for the discrete model simula-

tion and continuum approximation solution for agents with repulsive interactions for α = 0.2.

Compared to agents with blind interactions, agents with repulsive interactions spread more due

to movement probability being ‘redistributed’ from occupied sites to unoccupied sites in the

nearest neighbourhood set. As with blind and adhesive interactions the density profiles of the

averaged simulation data and solution of Eq. (11) compare excellently for all values of ρx for

α = 0.2. This excellent agreement between the continuum approximation and discrete model is

maintained for any 0 < α < 0.2. When this threshold is passed the condition stipulated by Eq.

(4) is violated and the continuum approximation becomes inaccurate (dependent on the value

the motility bias, ρx).

In contrast to agents with adhesive interactions, the density profile for agents with repulsive

interactions is concave on the RHS of the agent population in the presence of bias. This is be-

cause agents with repulsive interactions have dispersed more by t = 100. This is an important

observation as visualising the profile of the cells at the edge of a cell population is experimentally

tractable. We suggest that looking at the shape of the leading edge could aid researchers in

identifying cell behaviours and interactions. For instance, a chemoattractant could be placed in

the vicinity of a cell population in vitro, and the density profile at the edge of this population

could then be measured to test whether there are adhesive or repulsive interactions between

the cells. Fig. 6 row (b) shows that the evolution of the expected displacement for the tagged

agent predicted by Eq. (22) compares well with the simulation data for all values of ρx. As pre-

dicted the expected displacement of an agent with repulsive interactions is greater than would

be expected for an agent with blind or adhesive interactions. Therefore, the magnitude of the

displacement of individual agents is indicative of the type of interactions between agents.
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Finally, Fig. 6 row (c) shows the discrete model simulations and continuum approximation

solutions for agents with myopic interactions. Like all other agent interactions the density

profiles of the averaged simulation data and the solution of Eq. (12) compare excellently for

all values of ρx. As with agents with repulsive interactions the RHS of the agent population

exhibits a concave profile. The myopic agent interaction can be thought of in some sense to be

a ‘maximised’ repulsive interaction. The expected displacement Eq. (24) also agrees well with

the simulation data for all values of ρx, as can be seen from Fig. 6 row (d). A tagged agent

with myopic interactions exhibits the greatest expected displacement by t = 100 compared to

the other interactions, which we would expect.

In Fig. 7 the evolution of the standard error of the mean (SEM) for the displacement of

the tagged agent in the discrete model simulation for all agent interactions has been plotted

against time with and without motility bias. It can be seen that without bias the repulsive-type

interactions exhibit a larger SEM in the displacement of the tagged agent at all time points

in the discrete model simulations, when compared to blind and adhesive interactions. There-

fore, we could expect cells with repulsive-type cell-cell interactions to exhibit greater variance

in their displacement in cell trajectory experiments. In the presence of motility bias, however,

the SEM of different agent interactions becomes less distinguishable. This is the opposite to

what is found when considering the population density, in which case it is in the presence of

motility bias that different agent interactions become distinguishable. This difference between

the collective and individual migration of agents is an interesting and important observation.

3.2 Growing domain

We now compare the solutions of our continuum approximations to our discrete model simula-

tions on a growing domain. Fig. 8 row (a) shows a comparison of the discrete simulation and

continuum results for agents with adhesive interactions. The density profiles of the averaged

simulation data and the solution of Eq. (11) are not as accurate as compared to a static domain

for adhesive interactions. This is especially evident in the left-hand side (LHS) of the agent

population for ρx = 0.5. However, the agent population retains its convex character in the
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Figure 7: (Colour online). The evolution of the SEM for the position of the tagged agent for all
agent interactions. The SEM was calculated from 100 repeats of the discrete model simulation
for each agent interaction. (a) ρx = 0, (b) ρx = 0.5. Blind (red), adhesive (green), repulsive
(black), myopic (blue).

presence of motility bias on its RHS. This is an important observation, in that the population

density for agents with adhesive interactions maintain their population density characteristics

in the presence of domain growth. Fig. 8 row (b) shows that the expected displacement of the

tagged agent predicted by the solution of Eq. (22) compares well with the simulation data for

all values of ρx. Compared with a static domain the displacement of the tagged agent is much

greater, as we would expect due to domain growth.

Fig. 8 row (c) shows the spatial and temporal evolution of the population density for agents

with repulsive interactions on a growing domain. The averaged density profile of the discrete

model simulations compares excellently with the continuum solution of the growth analogue of

Eq. (11) for all values of ρx. This is different to the adhesion process, where the continuum

solution does not accurately predict the averaged density profile on the LHS of the population.

Like the non-growing domain the density profile for agents with repulsive interactions is con-

cave on the RHS of the agent population. Therefore, both agents with adhesive and repulsive

interactions maintain their population density characteristics caused by motility bias in the

presence of growth. This is an important consideration when translating experiments carried

out in vitro to growing domains. Finally, as before, Fig. 8 row (d) shows that the evolution of

the expected displacement of the tagged agent predicted by Eq. (22) compares excellently with

the discrete model simulation for all values of ρx.
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3.3 Summary

These results, for all agent interactions, have shown that our continuum approximations of

our discrete model are accurate for static domains, and for the parameters values presented

here could be used as our model instead of our discrete model. This is important as discrete

simulations are time-consuming and difficult to complete parameter sweeps with. However, with

the addition of domain growth our continuum approximations for the spatial and temporal

evolution of the population density for agents with adhesive interactions were less accurate,

especially on the LHS of the agent population. We found this to be the case for agents with

myopic interactions too, but not for agents with blind interactions, which gave results that were

similar in accuracy to agents with repulsive interactions. Finally, our continuum approximations

for the expected displacement of a tagged agent were accurate for all four interactions for the

parameter values presented here (data not shown for blind and myopic interactions).

3.4 Tagged agent trajectories

We now briefly discuss the results of our continuum approximations for the expected displace-

ment of a tagged agent in more detail, and how they could be used to identify different agent

interactions. Fig. 9 shows the expected displacement of the tagged agent for all interactions

when ρx = 0. All four trajectories have inflection points, which signify when the tagged agent

0 10 20 30 40 50
114.5

115.0

115.5

116.0

116.5

117.0

117.5

p
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t 

Figure 9: (Colour online). The expected displacement trajectory of a tagged agent in the
positive x direction for all interactions with respect to time. Eqs. (20), (22) and (24) with
ρx = 0 and on a static domain. Blind (green), adhesive (red), repulsive (black), myopic (blue).

passes the inflection point in the agent population density profile. This can be seen most easily

by looking at Eq. (20) with ρx = 0. If we take the partial derivative with respect to time we
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Figure 10: (Colour online) Agent trajectory concavity measure with respect to adhesion pa-
rameter α for a tagged agent initially situated at (10, 114). (a) Static domain, ρx = 0 (blue),
ρx = 0.1 (green), ρx = 0.5 (red). (b) Growing domain, same colour scheme as (a).

obtain

d2px
dt2

= −2D
∂

∂t

(
∂C

∂x

)
. (31)

Additionally, we know that

∂C

∂x
≤ 0 ∀ t, ∀x > 100. (32)

So for d2px/dt
2 to change sign we require ∂/∂t(∂C/∂x) to change sign at the position of the

tagged agent. This occurs when the tagged agent passes the inflection point in the agent

population density profile, as the second derivative at the position of the tagged agent changes

in sign. This observation, although qualitative, could be of some use to researchers trying to

identify cell properties through cell trajectories. Cells with repulsive cell-cell interactions may

be expected to exhibit a convex trajectory in their displacement for a shorter amount of time,

as they pass the inflection point of the density sooner (blue and black lines, Fig. 9), after which

they exhibit a concave trajectory. Conversely, cells with adhesive cell-cell interactions take

longer to pass the inflection point in the density, and so their expected displacement trajectory

exhibits a convex shape for a longer amount of time compared to cells with repulsive cell-cell

interactions (red line, Fig. 9).
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Fig. 10 displays how the concavity measure of a tagged agent depends on the adhesion parameter

α. Fig. 10 (a) shows the concavity measure for a static domain. The blue line shows the non-

biased case, ρx = 0. We can see that for most positive values of α (i.e. repulsive interactions) the

trajectory has a positive concavity measure. However, as α approaches zero, that is, interactions

become blind, the concavity measure becomes negative, as for adhesive interactions the tagged

agent trajectory is convex. Therefore, we suggest that the concavity measure could be used to

identify repulsive and adhesive cell-cell interactions experimentally. In the presence of a strong

motility bias, ρx = 0.5, the concavity measure is negative for all values of α. This is important

as it suggests that repulsive interactions may not exhibit concave profiles in the presence of

motility bias. Meanwhile, Fig. 10 (b) shows the same continuum approximation solutions with

the addition of growth. Here we see that while growth reduces the magnitude of the concavity

measure of the trajectory of a tagged agent with repulsive interactions, it does not make the

concavity measure negative. Therefore, trajectory characteristics associated with different agent

interactions are conserved in the presence of the growth mechanism implemented in this work.

4 Discussion and conclusion

In this work we have formulated discrete and continuous models for a range of agent interactions,

representing known cell-cell interactions in biological systems. These have been implemented

on both static and growing domains, using a ‘pushing’ growth mechanism [19, 29, 32]. Our con-

tinuum approximations accurately predict evolution of the averaged population density over a

wide range of parameter space. The density profiles resulting from different types of interactions

are differently shaped. Agents with myopic and repulsive cell-cell interactions display concave

profiles in the presence of a motility bias, whereas agents with adhesive interactions exhibit a

convex profile in the presence of motility bias. These profiles were conserved on both static

and growing domains, suggesting this behaviour would be conserved in the presence of domain

growth, an important consideration when considering whether experimental data collected in

vitro is applicable to growing domain environments. As discussed in Section 3, visualising the

profile of the cells at the edge of a cell population in the presence of a chemoattractant is poten-

tially experimentally tractable, and so this knowledge could help researchers identify different

cell-cell interactions.
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We have also presented continuum equations describing the expected displacement of a tagged

agent with different interaction mechanisms. By studying the expected trajectory of a tagged

agent with different agent interactions (Fig. 9) we showed that different agent interactions give

rise to different trajectory profiles and magnitudes. For agents with repulsive interactions our

tagged agent exhibited a largely concave trajectory compared to an agent from with adhesive

interactions. This is because the agent passes the inflection point of the density profile sooner,

at which point it begins to decelerate. In the presence of strong motility bias the differences

in the trajectories of tagged agents with different agent interactions was lost. Moreover, agents

with repulsive-type interactions exhibited greater expected displacement compared to agents

with adhesive interactions. This is an obvious but important consideration when analysing

cell trajectory data, and could be used to identify cell-cell interactions. We also found that

repulsive-type agent interactions exhibited a greater SEM when compared to blind or adhesive

interactions. Therefore, the SEM could also be used as a potential means by which to distinguish

between repulsive-type cell-cell interactions. The difference in the magnitude of the SEM for

tagged agents with different agent interactions was lost in the presence of a strong motility bias.

This highlights how understanding the effect of different agent interactions in the presence of

motility bias is not straightforward. Ironically, the presence of motility bias is what allows us to

distinguish between different agent interactions when looking at the population density. How-

ever, the presence of motility bias obscures the differences between the trajectories of tagged

agents with different agent interactions. This is an interesting difference between analysing

population and individual agent level statistics from our discrete and continuum models.
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