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Summary

1. Microbes are critical components of ecosystems and vital to the services they provide. The essential

role of microbes is due to high levels of functional diversity, which are, however, not always mirrored

in morphological differentiation hampering their taxonomic identification. In addition, the small size

of microbes hinders the measurement of morphological and behavioural traits at the individual level,

as well as interactions between individuals.

2. Recent advances in microbial community genetics and genomics, flow cytometry and digital image

analysis are promising approaches, however they miss out on a very important aspect of populations

and communities: the behaviour of individuals. Video analysis complements these methods by

providing in addition to abundance and trait measurements, detailed behavioural information, capturing

dynamic processes such as movement, and hence has the potential to describe the interactions between

individuals.

3. We introduce bemovi, a package using R - the statistical computing environment - and the free image

analysis software ImageJ. Bemovi is an automated digital video processing and analysis work flow

to extract abundance and morphological and movement data for numerous individuals on a video,

hence characterizing a population or community by multiple traits. Through a set of functions, bemovi

identifies individuals present in a video and reconstruct their movement trajectories through space and

time, merges measurements from all treated videos into a single database to which information on

experimental conditions is added, readily available for further analysis in R.

4. We illustrate the validity, precision and accuracy of the method for experimental multi-species

communities of protists in aquatic microcosms. We show the high correspondence between manual and

automatic counts of individuals and illustrate how simultaneous time series of abundance, morphology

and behaviour are constructed. We demonstrate how the data from videos can be used in combination

with supervised machine learning algorithms to automatically classify individuals according to the

species they belong to, and that information on movement behaviour can substantially improve the

predictive ability and helps to distinguish morphologically similar species. In principle, bemovi should

be able to extract from videos information about other types of organism, including "microbes", so

long as the individuals move relatively fast compared to their background.

Key words: video analysis, microbial ecology, microcosm, trait-based ecology
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1 Introduction

Microbes are crucial components of all ecosystems providing important services such as organic

matter decomposition, production of biomass and oxygen, or carbon storage (Kirchman

2012). Nevertheless, they are still mostly treated as a ’blackbox’ in terms of their phenotypes,

ecology and behaviour (Finlay 2004). This is mainly due to methodological limitations which

can describe microbes at best at the population or community level. While these approaches

provided important insights into the functional diversity of microbes, limitations in describing

microbes at the individual level are in contrast with the insight that most ecological and

evolutionary processes are driven by individuals (Bolnick et al. 2003). The same limitations

apply to the use of microbial model systems such as protists, which have a long and successful

tradition in testing ecological and evolutionary theory (Gause 1934, Holyoak & Lawler 2005,

Elena & Lenski 2003, Kawecki et al. 2012).

Advances in microbiology have been driven by technological developments ever since

Antonie van Leeuwenhoek invented the compound microscope (Kreft et al. 2013). New

technologies like metagenomic studies, flow cytometry, digital image analysis and single-cell

microbiology provide insights about the structure and composition of microbial communities,

as well as the morphology, function and ecology of microbes at the individual level (Kreft

et al. 2013, Brehm-Stecher & Johnson 2004). Whereas these new technologies are powerful

in showing differences among individuals in physiology or morphology, they miss out on an

important component of the individual phenotype: behaviour, which is an important factor

shaping interactions among species (McGill & Mittelbach 2006). Digital video analysis can

adequately complement these approaches by providing quantitative descriptions of behaviour

via automated tracking (Dell et al. 2014), which is collected at the individual level in addition

to abundance and morphological data. Such methods apply to all types of empirical systems

where individual members of the community are characterized by movement, e.g. they should

work on samples freshly taken in the natural environment and also for the widely used micro-

and mesocosm systems.
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There are now different software to perform tracking, but these are focused on extracting

movement and behavioural information only, without associated morphology and abundance

data. They are also stand-alone, sometimes lack efficient ways of dealing with large numbers

of files, and may be difficult to customize and automate. Dell et al. (2014) give an extensive

overview of these software and their strengths and weaknesses. While previous demonstrations

relying on digital image analysis (e.g. Pennekamp & Schtickzelle 2013, Mallard et al. 2013)

tested and validated work flows aimed at single-species microcosms, extending the capability

of such systems to larger communities is required (Gaston & O’Neill 2004). Some success

with automatic classification of species was achieved with protists in activated wastewater

sludge (Amaral et al. 2008) and automated systems to analyse abundance and quantify

trait distributions during large-scale marine monitoring schemes (e.g. Zoo/PhytoImage

(http://www.sciviews.org/zooimage/) (Bell & Hopcroft 2008)). These show that such efforts

are worthwhile even with challenging field-collected samples. No studies so far however used

automated video analysis, which captures the dynamic movement behaviour of the study

organisms and therefore potentially a characteristic signature for species identities.

Automated video analysis usually consists of three main steps: video acquisition, video

processing/analysis, and data interpretation (Dell et al. 2014). To fulfil the latter two steps,

we introduce a new R package, bemovi, and show its validity and scope of application.

For guidance on the image acquisition setup, refer to Dell et al. (2014) or Pennekamp &

Schtickzelle (2013). Bemovi is an automated digital video processing and analysis work flow

to extract abundance, morphological and movement data for numerous individuals on a video,

hence characterizing a microbial population or community by multiple traits. We illustrate

how the individual trait data can be used to predict species identity in a multi-species

community, and how the characteristics of the movement improve the predictive ability of

the classification model compared to morphological data only. We then derive population

abundance by counting the individuals of each species and validate these against manual

counts taken simultaneously for both single and multi-species communities.
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2 Description of the bemovi package and its functions

The bemovi work flow relies on two freely available, open source and cross-platform software

widely used in the scientific community: R - the statistical computing environment (R

Development Core Team 2012) and ImageJ, a powerful image processing and analysis

software (Ferreira & Rasband 2010). ImageJ shows considerably better performance than

a native R solution for the video processing steps (Pennekamp & Schtickzelle 2013). We

therefore built bemovi as a set of modular R functions (Table 1) calling ImageJ and reading

its output, creating a seamless work flow that deals efficiently with large numbers of video

files and merge results into databases for easy analysis. Additional helper functions are

provided to help in setting up and validating the use of bemovi on the experimenter system.

bemovi, is readily available from github (https://github.com/pennekampster/bemovi), a

solution allowing for easy package upgrading and diffusion, and has been thoroughly tested

on Macintosh OS X, Windows 7 & 8 and Ubuntu Linux.

bemovi is built to process a directory containing a set of videos files shot with identical

settings, with three main steps (Table 1): (1) identify individuals present in a video and

reconstruct their movement trajectories, (2) merge measurements from all treated videos

into a single database to which information on experimental conditions is added, (3) perform

basic analyses.

In the first step (i.e. identify and track particles), each single video is split into a

stack of images (= frames) ordered in time (Dell et al. 2014), and each of these images is

treated sequentially to locate individuals (function: locate_and_measure_particles) and

reconstruct their movement trajectories (function link_particles). bemovi first uses a

dynamic ’difference image’ segmentation to discriminate individuals from the background,

where an image at a constant time offset gets subtracted from the frame to be analyzed

(Pennekamp & Schtickzelle 2013). The resulting difference image, only containing the particles

that moved, is then binarized (i.e. converted to black and white) using a user defined threshold.

Both the time offset and the threshold must be carefully adjusted and validated by the user

5

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2014. ; https://doi.org/10.1101/011072doi: bioRxiv preprint 

https://doi.org/10.1101/011072
http://creativecommons.org/licenses/by-nc-nd/4.0/


to minimise segmentation errors (e.g. nearly immobile individuals are erased in the difference

image and considered background if the offset is too short). A helper function assists with

finding the appropriate threshold (function: check_threshold_values). Binarized images

are then analysed by the ParticleAnalyzer function of ImageJ, which extracts for each particle,

X- and Y-position and morphology (area, mean, minimum and maximum of the grey value,

perimeter, width, length and angle with the dominant-axis of a fitted ellipse, circularity,

aspect ratio, roundness and solidity) (Ferreira & Rasband 2010).

Once particles have been identified and localised on each frame, their movement trajectories

are reconstructed by linking the position of each particle through the stack of images. We use

the MOSAIC ParticleTracker plug-in for ImageJ (Sbalzarini & Koumoutsakos 2005) because

it can track simultaneously hundreds of particles in an unrestricted viewing field (e.g. cells

swim in and out), even when some of them miss out on certain frames due to detection

problems. The algorithm deals with occlusions (i.e. when a particle collides with another

particle [individual or debris]) conservatively by interrupting the trajectory and starting a

new one. For computational efficiency and to avoid the common problem that large variation

in size and shape hampers efficient detection in tracking applications (Dell et al. 2014), we

pass the X- and Y-positions extracted by the ParticleAnalyzer to the ParticleTracker. Two

arguments are required for this step: the maximum displacement of particles between two

successive frames and the number of frames over which a particle can be linked if missing on

some intervening frame(s). They must also be carefully validated to avoid errors (e.g. creating

an erroneous link between different particles if displacement and/or link range are too large,

or broken links if they are too small). After trajectories are re-constructed, movement metrics

are computed for each: move length, absolute angle, turning angle, net squared displacement

and gross displacement for the trajectory in its whole. For a detailed description on the

calculation and interpretation of these metrics, refer to textbooks on the quantitative analysis

of trajectories such as Turchin (1998).

The second step (i.e. data merging) combines the morphology and movement metrics
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acquired on each video into a single database and links this information with a video

description file containing any relevant information on experimental conditions for each video

(e.g. treatment level, video capture settings), using the video file name for merging (function:

merge_data).

In the third step (i.e. data processing), aggregation of the morphology and movement

metrics (mean and STD) is performed on the trajectory level (each trajectory has a unique

ID of file name and trajectory number). As a final processing step, data can be filtered

based on movement and morphology (function: filter_data). For error checking and

validation of results, a helper function for visualizing the output of bemovi was developed

(function: create_overlays). The function overlays the original video data with the extracted

trajectories and therefore can help to troubleshoot erroneous and incomplete tracking results.

3 An illustration on aquatic microbial communities: species

classification, population dynamics, and trait dynamics

Video analysis by bemovi provides quantitative measures of the abundance of individuals as

well as detailed information on morphology and movement at the individual level. We here

illustrate its application to the study of microbial populations and communities of multiple

ciliate species in aquatic microcosms using a similar setup as Petchey (2000).

Information on traits exhibited by individuals in a mixed community is usually used to

predict their species identity as long as sufficient differences in trait space exist (Gorsky et al.

2010). Figure 1 shows the differences in two morphological traits (cell size and aspect ratio)

among 8 species grown separately in monocultures. Some species like Paramecium caudatum

and Paramecium aurelia show considerable overlap, whereas many species occupy quite

distinct areas of the morphological trait space, aiding in their automatic classification. With

a supervised machine learning algorithm, the randomForest classification (Breiman 2001,

Cutler et al. 2007), we were able to reach a high classification success (89%; Figure 2) into
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the right species classification based on all traits, even if confusion between morphologically

similar species was higher (e.g. Colpidium campylum from Tetrahymena thermophila (and vice

versa) 36% and 18%). When the movement characteristics were considered, in addition to

morphology, classification error dropped importantly. Highly similar species like P. caudatum

and P. aurelia however, remain indistinguishable.

In another experiment, four ciliate species (T. thermophila, P. caudatum, Colpidium

striatum and Didinium nasutum) were grown in mono- and mixed cultures, with the aim to

compare automatic (using bemovi) and manual counts. We separately took 10 samples from

each culture to assess the abundance measurement error, i.e. variability when repeatedly

sampling from the same microcosm. Automatic and manual counts showed high correspon-

dence (R2: 0.91) (Figure 3), regardless whether counts were performed on mono- or mixed

cultures. Measurement error was overall similar between the two methods, though manual

counts tend to be more precise at low densities (i.e. Didinium), and automatic counts more

precise at high densities (i.e. Tetrahymena) (Figure 3). These differences are explained

by the small and fixed sampling volume (0.0722mL) used for the automatic counts in this

experiment, compared to the variable volume sampled during manual counting (up to 0.5mL

for low density populations, and down to 0.0185mL for high density cultures. Reducing

sampling error in the automated counts could be achieved by increasing the volume videoed.

Because the four species used in this experiment are well separated in trait space, very low

classification error of about 2% was observed.

Finally, we followed mono- and mixed cultures for a period of 28 days and obtained

species identification and estimation of abundance both automatically and manually. Both

methods captured very well the monoculture growth dynamics of P. caudatum, C. striatum

and T. thermophila (Figure 4). Although T. thermophila showed some discrepancy between

the methods, overall both were closely correlated (Pearson correlation coefficient: 0.93).

Furthermore, cell size dynamics (Figure 5) illustrate the ability of bemovi to capture trait

dynamics. Over the first twenty days, C. striatum and T. thermophila decreased in size,
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whereas P. caudatum remained rather stable. After a resource pulse (replacement of 50% of

the medium) on day 20, cell sizes increased where present. Figure 6 shows how a dynamic trait

such as movement speed changes during the 28 day experiment. The species show stronger

overlap in movement speed than in size, but the distribution of speed seems more stable

through time and unaffected by the resource pulse on day 20. Such patterns demonstrate the

potential of bemovi in trait-based community ecology, though deep analysis of the patterns

illustrated here are beyond the scope of this article.

3.1 Strengths and limitations

Bemovi shares the advantages of other automated image analysis systems: 1) results (videos)

can be stored for later analysis or re-analysis, 2) use of a computer reduces observer bias, 3)

video acquisition is usually faster than manual counts and the effort is constant regardless of

community complexity (whereas manually counting complex communities can be very time

consuming) (Pennekamp & Schtickzelle 2013). For illustration, an experiment including all

pairwise combinations of 6 species required 9 person hours to count a total of 108 microcosms.

In comparison, video acquisition was achieved in about 2.5 hours. Besides the considerable

increase in speed, the work flow presented here extracts far more information than counts

because multiple traits are collected simultaneously, at no extra cost. Automatic classification

of species also allows to quantify classification uncertainty in multiple species communities in

contrast to manual observations. Classifications below a certain threshold (e.g. 90%) could

be identified as ’uncertain’ or measures of classification error integrated in the statistical

inference framework.

Some limitations need to considered when using bemovi. First, the tracking of individuals

is done in two dimensions, although the environment may be often rather three dimensional.

Whereas this may be largely representative for organisms living on a plane (such as ground-

dwelling insects for instance), for others such as aquatic organisms this simplification may

be problematic for extrapolating the measured movement in the 3D environment. Several
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studies however show how 2D tracking successfully predicts spread rates even in higher

dimensional systems (Giometto et al. 2013, Pennekamp 2014). Complex environments with

many physical obstacles (e.g. debris particles in our medium) prevent reliable tracking in

three dimensions, because individuals may be frequently invisible to one of the three required

cameras. Nevertheless, software and hardware rapidly develop ultimately leading to systems

performing 3D tracking (Dell et al. 2014).

Another limitation, which applies to video tracking in general, is the occurrence of

occlusions (i.e. when a particle collides with another particle [individual or debris]) (Dell

et al. 2014). This can result in errors and their propagation when identifying individuals

is required (e.g. in studies of collective movement and social interactions in a swarm of

animals). Some recently developed tracking algorithms such as the idTracker (Pérez-Escudero

et al. 2014) or the Ctrax software (Branson et al. 2009) can deal with such situations using

powerful ’fingerprinting’ techniques to keep track of individuals or including probabilistic

models, which predict the position after the occlusion, and therefore may be able to maintain

the individual identity. Due to the large numbers of individuals tracked simultaneously, the

use of computationally intensive ’fingerprinting’ or manual verification are currently not

suited to the goals of bemovi. Given that the work flow is highly modular, another tracking

software could easily replace the plug-in used and therefore extend for 3D tracking or having

more power in maintaining individual identities.

4 Conclusions

Microbes are important for all the ecosystems on the planet, but are still mostly studied

at the population or community level. This contrasts with the notion that most ecological

processes are driven by individuals (Dell et al. 2014). Recent technological advances allow now

to study microbes at the individual level and discover whether variation among individuals is

as important for microbes as for animals and plants (Kreft et al. 2013). The video analysis
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work flow we presented here complements techniques such as flow cytometry and metagenetic

approaches, because it allows to study the behaviour of microbes within populations and

communities in situ. Characterizing behaviour may thus reveal unrecognised functional

diversity, previously masked by low morphological and potentially genetic differentiation.

Dell et al. (2014) conclude their review on automated video analysis in ecology with a

call to developers. They ask for video analysis systems that are easy to use, do not require

marking of individuals, are flexible to work with in a variety of experimental settings and with

different organisms, allow tracking of a large number of individuals simultaneously, overcome

significant data management issues, and are mostly automated. We believe bemovi is a

promising step in this direction and will allow microbial biologists, to follow new and exciting

research lines such as the effects of intraspecific and inter-individual variation for ecological

and evolutionary dynamics. Furthermore, though we tested utility for microbes, it is likely

that bemovi will be useful for analysing any objects moving against a relatively stationary

background. For example, insects or birds on a surface could be tracked and analysed, and it

might even be possible to track and count birds flying in the sky or fish in the sea (though

movement data would need to be treated with caution, given the 2D constraint of bemovi.)
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