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Insight, Innovation and Integration
Simulation study involving computational experiments dealing with Wnt signaling pathways abound in literature but often lack
a pedagogical perspective that might ease the understanding of beginner students and researchers in transition who intend to
work on modeling of the pathway. This paucity might happen due to restrictive policies which enforce an unwanted embargo on
the sharing of important scientific knowledge. The manuscript elucidates embedding of prior biological knowledge, integration
of heterogeneous information, transformation of biological hypothesis into computational framework and design of experiments
in a simple manner interleaved with aspects of Bayesian Network toolbox and Matlab code so as to help readers get a feel of a
project related to modeling of the pathway.
Abstract
A tutorial introduction to computational modeling of Wnt signaling pathway in a human colorectal cancer dataset using static
Bayesian network models is provided. The walkthrough might aid bio-logists/informaticians in understanding the design of
computational experiments that is interleaved with exposition of the Matlab code and causal models from Bayesian Network
toolbox. This is done in order to ease the understanding of beginner students and researchers in transition to computational
signaling biology, who intend to work in the field of modeling of signaling pathways. The manuscript expounds the compu-
tational flow of the contents in advance article Sinha1 via code development and takes the reader in a step by step process of
how • the collection and the transformation of the available biological information from literature is done, • the integration
of the heterogeneous data and prior biological knowledge in the network is achieved, • conditional probability tables for
nodes in biologically inspired tables are estimated, • the simulation study is designed, • the hypothesis regarding a biological
phenomena is transformed into computational framework, and • results and inferences drawn using d-connectivity/separability
are reported. The manuscript finally ends with a programming assignment to help the readers get hands on experience of a
perturbation project. Matlab code with dataset is made available under GNU GPL v3 license at google code project on https:
//code.google.com/p/static-bn-for-wnt-signaling-pathway and https://sites.google.com/
site/shriprakashsinha/shriprakashsinha/projects/static-bn-for-wnt-signaling-pathway.
Latest updates can be found in the later website.

1 A journey of thousand miles begins with a
single step

A tutorial introduction to computational modeling of Wnt sig-
naling pathway in a human colorectal cancer dataset using
static Bayesian network models is provided. This work en-
deavours to expound in detail the simulation study in Mat-
lab along with the code while explaining the concepts related
to Bayesian networks. THIS IS DONE IN ORDER TO EASE
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THE UNDERSTANDING OF BEGINNER STUDENTS AND RE-
SEARCHERS IN TRANSITION TO COMPUTATIONAL SIGNAL-
ING BIOLOGY, WHO INTEND TO WORK IN THE FIELD OF
MODELING OF SIGNALING PATHWAYS. The manuscript elu-
cidates • embedding of prior biological knowledge, • integra-
tion of heterogeneous information, • transformation of biolog-
ical hypothesis into computational framework and • design
of experiments in a simple manner. This is interleaved with
aspects of Bayesian Network toolbox and Matlab code so as
to help readers get a feel of a project related to modeling of
the pathway. Programming along with the exposition in the
manuscript could clear up issues faced during the execution of
the project.

This manuscript uses the contents of the advance article
Sinha1 as a basis to explain the workflow of a computational
simulation project involving Wnt signaling pathway in hu-
man colorectal cancer. The aim of Sinha1 was to computa-
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Fig. 1 A cartoon of wnt signaling pathway contributed by Verhaegh
et al. 2. Part (A) represents the destruction of β-catenin leading to
the inactivation of the wnt target gene. Part (B) represents activation
of wnt target gene.

tionally test whether the activation of β-catenin and TCF4
based transcription complex always corresponds to the tumor-
ous state of the test sample or not. To achieve this the gene
expression data provided by Jiang et al.3 was used in the com-
putational experiments. Further, to refine the model, prior bi-
ological knowledge related to the intra/extracellular factors of
the pathway (available in literature) was integrated along with
epigenetic information.

Section 4 of Sinha1 has been reproduced for completeness
in tables 1 to 7 in order. These tables provide introductory
theory that will help in understanding the various aspects of
the Matlab code for modeling and simulation experiments that
are explained later. More specifically, tables 1 and 2 give
an introduction to Bayesian networks. Tables 3 and 4 give a
brief introduction to the canonical Wnt signaling pathway and
the involved epigenetic factors, respectively. Table 5 gives a
description of the three Bayesian network models developed
with(out) prior biological knowledge. Tables 6, 7 and 8 de-
velop the network models with epigenetic information along
with biological knowledge. Finally, table 9 discusses a net-
work model that has negligible prior biological knowledge.
Code will be presented in typewriter font and functions
in the text will be presented in sans serif. Reasons for taking
certain approach and important information within the project
are presented in SMALL CAPITALS.

2 Intuition behind the endeavour

2.1 The project and issues involved

Drafting a manuscript that contains a pedagogical outlook of
all the theory and the programming is a challenging task. This

is because the background work of coding a modeling and
simulation project faces several issues that need to be over-
come. Here a few of these issues are discussed, but are by
no means complete. Some of the issues might be general
across the different computational biology projects while oth-
ers might be more specific to the current project.

The advanced article of Sinha1 contains three different net-
work models, one of which is the naive Bayes model. The im-
plemented Naive Bayes model is a simplification of the primi-
tive model proposed in Verhaegh et al.2. The other two models
are improvements over the Naive Bayes model which incor-
porate prior biological knowledge. This manuscript describes
the implementation of these models using a single colorectal
cancer dataset. THE REASON FOR DOING THIS WAS TO TEST
THE EFFECTIVENESS OF INCORPORATING PRIOR BIOLOGI-
CAL KNOWLEDGE GLEANED FROM LITERATURE STUDY OF
GENES RELATED TO THE DATA SET AS WELL AS TEST A BI-
OLOGICAL HYPOTHESIS FROM A COMPUTATIONAL POINT
OF VIEW. The main issues that one faces in this project are
• finding biological causal relations from already published
wet lab experiments, • designing the graphical network from
biological knowledge, • translating the measurements into nu-
merical values that form the prior beliefs of nodes in the net-
work, • estimating the conditional probability values for nodes
with parents, • framing the biological hypothesis into compu-
tational framework, • choosing the design of the learning ex-
periment depending on the type of data, • inferring the hidden
biological relations after the execution of the Bayesian net-
work inference engine and finally • presenting the results in a
proper format via statistical significance tests.

2.2 Biological causal relations

Often, biological causal relations are imbedded in the litera-
ture pertaining to wet lab experiments in molecular biology.
THESE RELATIONS MANIFEST THEMSELVES AS DISCOV-
ERY/CONFIRMATION OF ONE OR MULTIPLE FACTORS AF-
FECTING THE EXPRESSION OF A GENE BY EITHER INHIBIT-
ING OR ACTIVATING IT. In context of the dataset used in the
current work, the known causal relations were gleaned from
review of such literature for each intra/extracellular factor in-
volved in the pathway. The arcs in the Bayesian networks with
prior biological knowledge encode these causal semantics.
FOR THOSE FACTORS WHOSE RELATIONS WERE NOT YET
CONFIRMED BUT KNOWN TO BE INVOLVED IN THE PATH-
WAY, THE CAUSAL ARCS WERE SEGREGATED VIA A LATENT
VARIABLE INTRODUCED INTO THE BAYESIAN NETWORK.
The latent variable in the form of ’sample’ (see figure 2) is
extremely valuable as it connects the factors whose relations
have not been confirmed till now, to factors whose influences
have been confirmed in the pathway. Detailed explanation of
the connectivity can be found in table 7 and 8. ALSO, THE IN-
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Fig. 2 Influence diagram of MPBK+EI contains partial prior biological knowledge and epigenetic information in the form of methylation
and histone modification. In this model the state of Sample is distinguished from state of TRCMPLX that constitutes the Wnt pathway.

Fig. 3 Influence diagram of MNB+MPBK is a Naive Bayes model that contains minimal prior biological knowledge. In this model the state
of TRCMPLX is assumed to be indicate whether the sample is cancerous or not.

TRODUCTION OF LATENT VARIABLE IN A CAUSAL MODEL
OPENS THE AVENUE TO ASSUME THE PRESENCE OF MEA-
SUREMENTS THAT HAVEN’T BEEN RECORDED. Intuitively,
for cancer samples the hidden measurements might be differ-
ent from those for normal samples. The connectivity of factors
through the variable provides an important route to infer bio-
logical relations. Finally, the problem with such models is that
it is static in nature. This means that the models represent only
a snapshot of the connectivity in time, which is still an impor-
tant information for further research. By using time course
data it might be possible to reveal greater biological informa-
tion dynamically. The current work lacks in this endeavour
and considers the introduction of time course based dynamic
models for future research work.

2.3 Bayesian networks, parameter estimation, biological
hypothesis

Bayesian networks are probabilistic graphical models that en-
code causal semantics among various factors using arcs and
nodes. The entire network can represent a framework for a
biological pathway and can be used to predict, explore or ex-
plain certain behaviours related to the pathway. As previously
stated, the directionality of the arcs define the causal influence
while the nodes represent the involved factors. Also, it is not
just the arcs and nodes that play a crucial role. Information
regarding the strength of the belief in a factor’s involvement
is encoded as prior probability (priors) or conditional proba-
bility values. Estimation of these probabilities are either via
expert’s knowledge or numerical estimations in the form of
frequencies gleaned from measurements provided in the liter-
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Fig. 4 Cases for d-connectivity and d-separation. Black (Gray)
circles mean evidence is available (not available) regarding a
particular node.

ature from wet lab experiments. In this project, frequencies as
well as expert knowledge are used for the parameters (i.e the
priors and the conditional probabilities) of the nodes which are
discrete in nature. SINCE THE MODELS ARE A SNAPSHOT IN
TIME, DISCRETE NODES HELP IN ENCODING SPECIFIC BE-
HAVIOUR IN TIME. Here discretization means defining the
states in which a factor can be (say a gene expression is on
or off, or methylation is on or off, etc). As stated above, this
leads to loss of continuous information revealed in time series
data.

As depicted in the model in figure 2 and described in ta-
bles 6, 7 and 8 to test one of the biological hypothesis that
TRCMPLX is not always switched on (off) when the sam-
ple is tumorous (normal), the segregation of TRCMPLX
node from SAMPLE node was designed in Sinha1. Prim-
itive models of naive Bayes network assume direct correspon-
dence of TRCMPLX and SAMPLE, as depicted in Sinha1

and Verhaegh et al.2. THE SEGREGATED DESIGN HELPS IN
FRAMING THE BIOLOGICAL HYPOTHESIS INTO COMPUTA-
TIONAL FRAMEWORK. The basic factor in framing the bi-
ological hypothesis to a computational framework requires
knowledge of how the known factors of the pathway are in-
volved, how the unknown factors need to be related to the
known factors and finally intuitive analysis of design of the
model (for static data). Note that the model is a representation
and not complete. Larger datasets will complicate the model
and call for more efficient designs.

2.4 Choice of data

In a data dependent model, the data guides the working of the
model and the results obtained depend on the design of the ex-
periments to be conducted on the data. The current work deals
with gene expression data from 24 human colorectal tumors vs
matched normal mucosa. Different expression values across
the samples are recorded for total of 18 genes known to work
at different cellular regions in the pathway. THIS DATA FROM
JIANG et al. 3 WAS SPECIFICALLY CHOSEN BECAUSE IT COV-
ERS A SMALL RANGE OF IMPORTANT GENES, WHOSE EX-
PRESSION MEASUREMENTS ALONG WITH CRUCIAL INFOR-
MATION REGARDING EPIGENETIC FACTORS THAT MIGHT
BE INVOLVED IN INFLUENCING THE GENE EXPRESSION,
ARE ENOUGH TO BUILD A WORKING PROTOTYPE MODEL.
ALSO, THIS DATASET THOUGH NOT COMPLETE, CONTAINS
THE ENOUGH INFORMATION TO DESIGN SMALL COMPUTA-
TIONAL EXPERIMENTS TO TEST CERTAIN BIOLOGICAL HY-
POTHESIS WHICH WILL BE SEEN LATER.

From one point of view, this paper’s analysis is essentially
an exercise in biomarker validation: do the genes selected for
follow-up predict tumor status of tissue samples? In the im-
plementation used here, they do not do so with full reliability.
This raises the question of the validity of using the small sub-
set of the WNT pathway chosen as a predictive biomarker of
tumor status. Quite correct! That is why the idea was to segre-
gate the node Sample from TRCMPLX and check the bi-
ological hypothesis whether the active (inactive) state of tran-
scription complex is directly related to the sample being tu-
morous (normal), from a computational perspective. It was
found that it is not necessary that TRCMPLX is switched
on (off) when the sample is tumorous (normal) given a cer-
tain gene expression. By developing a biologically inspired
model on this small dataset, one is able to detect if the pre-
dictions always point to the biological phenomena or not. In
this case, the sample being tumorous or normal given the gene
expression evidence is based on a naive Bayes model (similar
to Verhaegh et al.2) which does not incorporate prior biologi-
cal knowledge. It is not the small dataset always that matters
but how the network is designed that matters. The status of a
sample being tumorous/normal might be better guided if prior
biological knowledge regarding the pathway was also incorpo-
rated and the dominant factor like the activation of transcrip-
tion complex along with estabilshed biomarkers was studied.
Sinha1 was an improvement over the model implemented in
Verhaegh et al.2 for this very reason.

2.5 Relative measurements

Relative measurements are generally more free from bias and
nuisance variation than absolute measurements. However,
there are two respects in which the author loses the advan-
tage of relative measurement. First, biological prior data used
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Table 1 Bayesian Networks from Sinha 1

Bayesian Networks In reverse engineering methods for control networks (Gardner and Faith4) there exist many methods that
help in the construction of the networks from the data sets as well as give the ability to infer causal relations between components
of the system. A widely known architecture among these methods is the Bayesian Network (BN). These networks can be used
for causal reasoning or diagnostic reasoning or both. It has been shown through reasoning and examples in Roehrig5 that the
probabilistic inference mechanism applied via Bayesian networks are analogous to the structural equation modeling in path
analysis problems. Initial works on BNs in Pearl6 and Pearl7 suggest that the networks only need a relatively small amount of
marginal probabilities for nodes that have no incoming arcs and a set of conditional probabilities for each node having one or
more incoming arcs. The nodes form the driving components of a network and the arcs define the interactive influences that
drive a particular process. Under these assumptions of influences the joint probability distribution of the whole network or a
part of it can be obtained via a special factorization that uses the concept of direct influence and through dependence rules that
define d-connectivity/separability as mentioned in Charniak8 and Needham et al.9. This is illustrated through a simple example
in Roehrig5.
The Bayesian networks work by estimating the posterior probability of the model given the data set. This estimation is usually
referred to as the Bayesian score of the model conditioned on the data set. Mathematically, let S represent the model given the
data D and ξ is the background knowledge. Then according to the Bayes Theorem (Bayes and Price10):

P(S|D, ξ) =
P(S ∩ D|ξ)
P(D|ξ)

=
P(S|ξ)× P(D|S, ξ)

P(D|ξ)

posterior =
prior × likelihood

constant
(1)

Thus the Bayesian score is computed by evaluating the posterior distribution P(S|D, ξ) which is proportional to the prior
distribution of the model P(S|ξ) and the likelihood of the data given the model P(D|S, ξ). It must be noted that the background
knowledge is assumed to be independent of the data. Next, since the evaluation of probabilities require multiplications a simpler
way is to take logarithmic scores which boils down to addition. Thus the estimation takes the form:

logP(S|D, ξ) = logP(S|ξ) + logP(D|S, ξ)−
logP(D|ξ)

= logP(S|ξ) + logP(D|S, ξ) +
constant (2)

Finally, the likelihood of the function can be evaluated by averaging over all possible local conditional distributions parameterized
by θi’s that depict the conditioning of parents. This is equated via:

P(D|S, ξ) =

∫
θ1

...

∫
θn

P(D, θi|S)dθi

=

∫
θ1

...

∫
θn

P(D|θiS)P(θi|S)dθi (3)

Work on biological systems that make use of Bayesian networks can also be found in (Friedman et al.11, Hartemink et al.12,
Sachs et al.13, Sachs et al.14 and Peer et al.15). Bayesian networks are good in generating network structures and testing a
targeted hypothesis which confine the experimenter to derive causal inferences (Brent and Lok16). But a major disadvantage
of the Bayesian networks is that they rely heavily on the conditional probability distributions which require good sampling of
datasets and are computationally intensive. On the other hand, these networks are quite robust to the existence of the unobserved
variables and accommodates noisy datasets. They also have the ability to combine heterogeneous data sets that incorporate
different modalities.
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Table 2 Bayesian Networks from Sinha 1 contd ...

Bayesian Networks In this work, simple static Bayesian Network models have been developed with an aim to show how
• incorporation of heterogeneous data can be done to increase prediction accuracy of test samples • prior biological
knowledge can be embedded to model biological phenomena behind the Wnt pathway in colorectal cancer • to test the
hypothesis regarding direct correspondence of active state of β-catenin based transcription complex and the state of the
test sample via segregation of nodes in the directed acyclic graphs of the proposed models and • inferences can be made
regarding the hidden biological relationships between a particular gene and the β-catenin transcription complex. This
work uses Matlab implemented BN toolbox from Murphy et al.17.

Table 3 Canonical Wnt Pathway from Sinha 1

Canonical Wnt signaling pathway The canonical Wnt signaling pathway is a transduction mechanism that contributes to em-
bryo development and controls homeostatic self renewal in several tissues (Clevers18). Somatic mutations in the pathway are
known to be associated with cancer in different parts of the human body. Prominent among them is the colorectal cancer case
(Gregorieff and Clevers19). In a succinct overview, the Wnt signaling pathway works when the Wnt ligand gets attached to
the Frizzled(fzd)/LRP coreceptor complex. Fzd may interact with the Dishevelled (Dvl) causing phosphorylation. It is also
thought that Wnts cause phosphorylation of the LRP via casein kinase 1 (CK1) and kinase GSK3. These developments fur-
ther lead to attraction of Axin which causes inhibition of the formation of the degradation complex. The degradation complex
constitutes of Axin, the β-catenin transportation complex APC, CK1 and GSK3. When the pathway is active the dissolution
of the degradation complex leads to stabilization in the concentration of β-catenin in the cytoplasm. As β-catenin enters into
the nucleus it displaces the Groucho and binds with transcription cell factor TCF thus instigating transcription of Wnt target
genes. Groucho acts as lock on TCF and prevents the transcription of target genes which may induce cancer. In cases when the
Wnt ligands are not captured by the coreceptor at the cell membrane, Axin helps in formation of the degradation complex. The
degradation complex phosphorylates β-catenin which is then recognized by Fbox/WD repeat protein β − TrCP . β − TrCP
is a component of ubiquitin ligase complex that helps in ubiquitination of β-catenin thus marking it for degradation via the
proteasome. Cartoons depicting the phenomena of Wnt activation are shown in figures 1(A) and 1(B), respectively.

Table 4 Epigenetic Factors from Sinha 1

Epigenetic Factors One of the widely studied epigenetic factors is methylation (Costello and Plass20, Das and Singal21, Issa22).
Its occurrence leads to decrease in the gene expression which affects the working of Wnt signaling pathways. Such characteristic
trends of gene silencing like that of secreted frizzled-related proteins (SFRP ) family in nearly all human colorectal tumor
samples have been found at extracellular level (Suzuki et al.23). Similarly, methylation of genes in the Dickkopf (DKKx
Niehrs24, Sato et al.25), Dapper antagonist of catenin (DACTx Jiang et al.3) and Wnt inhibitory factor-1 (WIF1 Taniguchi
et al.26) family are known to have significant effect on the Wnt pathway. Also, histone modifications (a class of proteins that help
in the formation of chromatin which packs the DNA in a special form Strahl and Allis27) can affect gene expression (Peterson
et al.28). In the context of the Wnt signaling pathway it has been found that DACT gene family show a peculiar behavior in
colorectal cancer (Jiang et al.3). DACT1 and DACT2 showed repression in tumor samples due to increased methylation while
DACT3 did not show obvious changes to the interventions. It is indicated that DACT3 promoter is simultaneously modified
by the both repressive and activating (bivalent) histone modifications (Jiang et al.3).
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Table 5 Bayesian Wnt pathway from Sinha 1

Bayesian Wnt pathway Three static models have been developed based on particular gene set measured for human colorectal
cancer cases (Jiang et al.3). Available epigenetic data for individual gene is also recorded. For sake of simplicity the models
are connoted asMPBK+EI (model with Prior Biological Knowledge (PBK) and Epigenetic Information (EI)),MPBK (model
with PBK only) and MNB+MPBK (model with Naive Bayes (NB) formulation and Minimal PBK). All models are simple
directed acyclic graphs (DAG) with nodes and edges. Figure 2 shows a detailed influence diagram of MPBK+EI between
the nodes and the edges. The nodes specify status of genes expression (DKK1, DKK2, DKK3-1, DKK3-2, DKK4,
DACT1, DACT2, DACT3, SFRP1, SFRP2, SFRP3, SFRP4, SFRP5, WIF1, MYC, CD44, CCND1 and LEF1),
methylation (MeDACT1, MeDACT2, MeSFRP1, MeSFRP2, MeSFRP4, MeSFRP5, MeDKK1, MeDKK4 and
MeWIF1), histone marks for DACT3 (H3K27me3 and H3K4me3), transcription complex TRCMPLX , samples Sample
and factors involved in formation of TRCMPLX like β-catenin, TCF4 and LEF1. Note that there were two recordings of
gene expression DKK3 and thus were distinguished by DKK3− 1 and DKK3− 2. Some causal relations are based on prior
biological knowledge and others are based on assumptions, elucidation of which follows in the next section.

Table 6 Network with PBK+EI from Sinha 1

Network With PBK And EI The NB model (Verhaegh et al.2) assumes that the activation (inactivation) of β-catenin based
transcription complex is equivalent to the fact that the sample is cancerous (normal). This assumption needs to be tested and in this
research work the two newly improvised models based on prior biological knowledge regarding the signaling pathway assume
that sample prediction may not always mean that the β-catenin based transcription complex is activated. These assumptions
are incorporated by inserting another node of Sample for which gene expression measurements were available. This is separate
from the TRCMPLX node that influences a particular set of known genes in the human colorectal cancer. For those genes
whose relation with the TRCMPLX is currently not known or biologically affirmed, indirect paths through the Sample node
to the TRCMPLX exist, technical aspect of which will be described shortly. Since all gene expressions have been measured
from a sample of subjects the expression of genes is conditional on the state of the Sample. Here both tumorous and normal
cases are present in equal amounts. The transcription factor TRCMPLX under investigation is known to operate with the help
of interaction between β-catenin with TCF4 and LEF1 (Waterman29, Kriegl et al.30). It is also known that the regions in
the TSS of MYC (Yochum31), CCND1 (Schmidt-Ott et al.32), CD44 (Kanwar et al.33), SFRP1 (Caldwell et al.34), WIF1
(Reguart et al.35), DKK1 (González-Sancho et al.36) and DKK4 (Pendas-Franco et al.37, Baehs et al.38) contain factors that
have affinity to β-catenin based TRCMPLX . Thus expression of these genes are shown to be influenced by TRCMPLX , in
figure 2.
Roles of DKK2 (Matsui et al.39) and DKK3 (Zitt et al.40, Veeck and Dahl41) have been observed in colorectal cancer but
their transcriptional relation with β-catenin based TRCMPLX is not known. Similarly, SFRP2 is known to be a target
of Pax2 transcription factor and yet it affects the β-catenin Wnt signaling pathway (Brophy et al.42). Similarly, SFRP4
(Feng Han et al.43, Huang et al.44) and SFRP5 (Suzuki et al.23) are known to have affect on the Wnt pathway but their role
with TRCMPLX is not well studied. SFRP3 is known to have a different structure and function with respect to the remaining
SFRPx gene family (Hoang et al.45). Also, the role ofDACT2 is found to be conflicting in the Wnt pathway (Kivimäe et al.46).
Thus for all these genes whose expression mostly have an extracellular affect on the pathway and information regarding their
influence on β-catenin based TRCMPLX node is not available, an indirect connection has been made through the Sample
node. This connection will be explained at the end of this section.
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Table 7 Network with PBK+EI continued from Sinha 1

Network With PBK And EI continued ... Lastly, it is known that concentration of DV L2 (a member of Disheveled family)
is inversely regulated by the expression of DACT3 (Jiang et al.3). High DV L2 concentration and suppression of DACT1
leads to increase in stabilization of β-catenin which is necessary for the Wnt pathway to be active (Jiang et al.3). But in a
recent development (Yuan et al.47) it has been found that expression of DACT1 positively regulates β-catenin. Both scenarios
need to be checked via inspection of the estimated probability values for β-catenin using the test data. Thus there exists
direct causal relations between parent nodes DACT1 and DV L2 and child node, β-catenin. Influence of methylation (yellow
hexagonal) nodes to their respective gene (green circular) nodes represent the affect of methylation on genes. Influence of
histone modifications in H3K27me3 and H3K4me3 (blue octagonal) nodes to DACT3 gene node represents the affect of
histone modification on DACT3. The β-catenin (blue square) node is influenced by concentration of DV L2 (depending on
the expression state of DACT3) and behavior of DACT1. The aforementioned established prior causal biological knowledge
is imposed in the BN model with the aim to computationally reveal unknown biological relationships. The influence diagram of
this model is shown in figure 2 with nodes on methylation and histone modification. Another modelMPBK (not shown here)
was developed excluding the epigenetic information (i.e removal of nodes depicting methylation and histone modification as
well as the influence arcs emerging from them) with the aim to check whether inclusion of epigenetic factors increases the cancer
prediction accuracy.
In order to understand indirect connections further it is imperative to know about d-connectivity/separability. In a BN model
this connection is established via the principle of d-connectivity which states that nodes are connected in a path when there exists
no node in the path that has more than one incoming influence edge or there exits nodes in path with more than one incoming
influence edge which are observed (i.e evidence regarding such nodes is available) (Charniak8). Conversely, via principle of
d-separation nodes are separated in a path when there exists nodes in the path that have more than one incoming influence edge
or there exists nodes in the path with at most one incoming influence edge which are observed (i.e evidence regarding such nodes
is available). Figure 4 represents three different cases of connectivity and separation between nodes A and C when the path
between them passes through node B. Connectivity or dependency exists between nodesA and C when • evidence is not present
regarding node B in the left graphs of I. and II. in figure 4 or • evidence is present regarding node B in the right graph of III. in
figure 4.
Conversely, separation or independence exits between nodes A and C when • evidence is present regarding node B in the right
graphs of I. and II. in figure 4 or • evidence is not present regarding node B in the left graph of III. in figure 4. It would be
interesting to know about the behaviour of TRCMPLX given the evidence of state of SFRP3. To reveal such information
paths must exist between these nodes. It can be seen that there are multiple paths between TRCMPLX and SFRP2 in the BN
model in figure 2. These paths are enumerated as follows:

1. SFRP3, Sample, SFRP1, TRCMPLX

2. SFRP3, Sample, DKK1, TRCMPLX

3. SFRP3, Sample, WIF1, TRCMPLX

4. SFRP3, Sample, CD44, TRCMPLX

5. SFRP3, Sample, DKK4, TRCMPLX

6. SFRP3, Sample, CCND1, TRCMPLX

7. SFRP3, Sample, MYC, TRCMPLX

8. SFRP3, Sample, LEF1, TRCMPLX

9. SFRP3, Sample, DACT3, DV L2, β-catenin, TRCMPLX

10. SFRP3, Sample, DACT1, β-catenin, TRCMPLX

Knowledge of evidence regarding nodes of SFRP1 (path 1), DKK1 (path 2), WIF1 (path 3), CD44 (path 4), DKK4 (path
5), CCND1 (path 6) and MYC (path 7) makes Sample and TRCMPLX dependent or d-connected. Further, no evidence
regarding state of Sample on these paths instigates dependency or connectivity between SFRP3 and TRCMPLX .
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Table 8 Network with PBK+EI continued from Sinha 1

Network With PBK And EI continued ... On the contrary, evidence regarding LEF1, DACT3 and DACT1 makes Sample
(and child nodes influenced by Sample) independent or d-separated from TRCMPLX through paths (8) to (10). Due to the
dependency in paths (1) to (7) and the given state of SFRP3 (i.e evidence regarding it being active or passive), the BN uses
these paths during inference to find how TRCMPLX might behave in normal and tumorous test cases. Thus, exploiting the
properties of d-connectivity/separability, imposing a biological structure via simple yet important prior causal knowledge and
incorporating epigenetic information, BN help in inferring many of the unknown relation of a certain gene expression and a
transcription complex.

Table 9 Network with NB+MPBK from Sinha 1

Network With Minimal PBK Lastly, a Naive Bayes modelMNB+MPBK with minimal biological knowledge based on Ver-
haegh et al.2 model was also developed with an aim to check if the assumed hypothesis that activation state of TRCMPLX is
same as sample being cancerous is correct. In this model all gene expressions are assumed to be transcribed via the β-catenin
based TRCMPLX and thus causal arcs exist from TRCMPLX to different gene nodes. The complex itself is influenced by
β-catenin and TCF4 only. Such models can be used for prediction purpose but are not useful in revealing hidden biological
relationships as no or minimal prior biological information is imposed on the Naive Bayes model. Figure 3 shows the Naive
Bayes model.

by the author are taken from multiple papers with distinct au-
thors and years of publication. Estimating biological parame-
ters from a combination of multiple unrelated sample sets, as
appears to be the case here, has a good potential to introduce
bias.

This it might be a problem, but these measurements also
provide crucial information that might be add insight into the
biological phenomena. It was because of these measurements
that some inferences regarding the genetic factors in the path-
way were established in Sinha1, which in turn might require
wet lab confirmations. Finally, getting elaborate dataset from
just one study is extremely rare. In the current project, the
author has not looked into the bias introduced because of the
measurements from different study as the aim was to develop
causal models based on biological information. Epigenetic in-
formation from different manuscripts are an added advantage
but the precision of the measurement is always an issue which
is bound to introduce bias.

Second, the author does not restrict comparisons of tumor
vs. normal samples to matched tissue samples from the same
donor in Sinha1. Instead, the author assesses all tumor + nor-
mal pairs. If one assumes a distribution of baseline WNT
gene activity across the population and a further distribution
of tissue health across cancer-patient donors, it would appear
likely that matching samples from different donors is likely to
obscure potential tumor-specific increments of WNT pathway
expression.

That is correct, but this obscure nature also makes the de-
sign of the experiment robust for handling the issue. In the two
hold out experiment matched pairs are included in the mixture
of all tumor and normal pairs. The biologically inspired model

should be able to capture the increments of pathway expres-
sion. Sinha1 reports the averaged inference results but indi-
vidual inference results per pair do exist for deeper study of
the point posed. The current manuscript does not incorporate
those results as there is already enough material to assimilate
for any beginner.

2.6 Design of experiments

A two hold-out experiment is conducted in order to reduce the
bias induced by unbalanced training data. From a machine
learning perspective, this bias is removed by selecting one
sample from normal and one sample from tumor for test and
the remaining samples to form the training data set. The pro-
cedure of selection is repeated for all possible combinations
of a normal sample and a tumor sample. WHAT HAPPENS IS
THAT THE TRAINING DATA REMAINS BALANCED AND EACH
PAIR OF TEST SAMPLE (ONE NORMAL AND ONE TUMOR)
GETS EVALUATED FOR PREDICTION OF THE LABEL. REP-
ETITIONS OF A NORMAL (TUMOR) SAMPLE ACROSS TEST
PAIRS GIVE EQUAL CHANCE FOR EACH OF THE TUMOR
(NORMAL) SAMPLE TO BE MATCHED AND TESTED.

2.7 Inference and statistical tests

The inference of the biological relations is done by feeding the
evidences and computing the conditional probability of the ef-
fect of a factor(s) given the evidence. Note that the Bayesian
network used in the BNT toolbox by Murphy et al.17 uses the
two pass junction tree algorithm. In the first pass the Bayesian
network engine is created and initialized with prior and esti-
mated probabilities for the nodes in the network. In the sec-
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ond pass, after feeding the evidence for some of the nodes,
the parameters for the network are recomputed. IT IS THESE
RECOMPUTED PARAMETERS THAT GIVE INSIGHT INTO THE
HIDDEN BIOLOGICAL RELATIONS, BASED ON THE DESIGN
OF THE NETWORK AS WELL AS THE USE OF PRINCIPLE OF
D-CONNECTIVITY/SEPARABILITY. Since the computed con-
ditional probabilities may change depending on the quality of
evidence per test sample that is fed to the network, statisti-
cal estimates are deduced and receiver operator curves (ROC)
along with respective their area under the curve (AUC) plotted.
These estimates give a glimpse of the quality of predictions.
Apart from this, since a distribution of predictions is gener-
ated via two-holdout experiment, Kolmogorov-Smirnov test is
employed to check the statistical significance between the dis-
tributions. The significance test helps in comparing the pre-
diction results for hypothesis testing in different models and
thus the point to the effectiveness of the models in biological
interpretations.

This non-parametric test will reject the null hypothesis
when distributions differ in shape. The author notes that his
more complex biologically inspired models give significant
KS test p-values when comparing predictions of the b-catenin
transcription factor complex state and the tumor/non-tumor
status of the samples. While the result is interesting, the KS
test adds little information on interpretation. Were the bio-
logical models incorrect? Were the predictions produced us-
ing faulty assumptions? Are false positives or false negatives
more frequent, and if so why?

Biological models are not incorrect. They might be lack-
ing in biological information. This does not mean that the
inferences are wrong and the assumptions are faulty. The
differences in the distribution is due to the prior biological
knowledge that has been incorporated in the models. So in-
directly, the KS test points to the significance of adding the
biological data. While using the Naive Bayes model (from
Verhaegh et al.2), it was found that the prediction accuracy
was almost 100%. But apropos issue raised in regarding the
biomarker prediction earlier, the accuracy value drops due to
the model complexity and correct biological inferences can be
made. From Bayesian perspective, the numerical value repre-
sents a degree of belief in an event and 100% prediction accu-
racy might not capture the biological phenomena as well as the
influence of the biomarker properly, due Naive Bayes model
with minimal prior biological knowledge in Verhaegh et al.2

and Sinha1. Thus KS test gives an indirect indication regard-
ing the significance of the using prior biological knowledge in
comparison to negligible knowledge in designing the model.

The author has not studied the frequency of the false pos-
itive/negatives in Sinha1. But intuitively, the reported false
positives and the negative might be frequent because it is not
necessary that the transcription complex is always switched
on (off) in the tumor (normal) cases. Am not sure about the

reasons for this but one reason might be that the sample be-
ing tumorous is not just by the canonical WNT pathway but
also due to non-canonical factors that the current model has
not taken into account.

2.8 Matlab and Bayesian network toolbox

The choice of Matlab was made purely because of its ability
to handle various types of data structures which can be used
for fast prototype building. Also, the BNT toolbox apart
from being freely available, provides most of the functions
necessary to deal with the design of the Bayesian Network
models of different types (both static and dynamic). There
are many packages freely available in R that could be used
for development of these projects, but lack the level of details
that the BNT toolbox provides. The down side of the BNT
toolbox is that one needs a Matlab license which might be
extremely costly. Student versions are available, but the
author is not aware if these versions are sufficient to run
the BNT toolbox. Finally, the BNT toolbox can be down-
loaded from https://code.google.com/p/bnt/.
Instructions for installations as well as how to use the
package is available in the website. The material from
Sinha1 has been made available in The Google drive
https://drive.google.com/folderview?id=
0B7Kkv8wlhPU-T05wTTNodWNydjA&usp=sharing.
These contain the individual files contents of which are used
in this manuscript. The drive and its contents can be accessed
via the urls mentioned earlier in the abstract. TO EASE THE
UNDERSTANDING OF THE KNOW-HOW-IT-WORKS OF BNT
TOOLBOX, THE DRIVE CONTAINS TWO FILES NAMELY
sprinkler rain script.m AND sprinkler rain.mat. The former
contains code from BNT toolbox in a procedural manner and
the latter contains the saved results after running the script.
These can be used for quick understanding of a toy example.

An important point of observation - While executing the
code, if the chunks of code are not easy to follow, please use
the Matlab facility of debugging by setting up BREAKPOINTS
and using a range of functions starting with prefix DB. Note
that the breakpoints appear as solid red dots on the left had
side of the Matlab editor when being used. When the code is
running, solid green arrows stop at these break points and lets
the user analyse the query of interest. More help is available
on internet as well as via the matlab HELP command.

2.9 Author’s admission

It would be unfair to say that it is easy for the beginners to
directly design and implement the models as well as produce
results. Personally, the author faced the same problem and
the initial model from Verhaegh et al.2 was of help as it gave
a primitive prototype lacking in prior biological knowledge,
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to be reimplemented. Before starting the project and com-
ing from a computer science background, it took almost 15
months to grasp the concepts of the biology of the pathway
as well as the know-how-it-works of the computational tools
used to frame the biological knowledge. The former involved
taking a theoretical course in molecular biology of the cell
as well as literature survey related to the signaling pathway.
The latter involved trying out example code of the BNT tool-
box and reimplementing the primitive model along with the
experimental design in Sinha48. Followed by three to four
months of code implementation and drafting Sinha1, it has
almost taken two years to work on such a project. In the au-
thor’s limited opinion, experienced researchers and scientists
who have already published work involving such computa-
tional simulation of signaling pathways should provide ped-
agogical walkthroughs of their selected papers. This would
help many beginner students as well as researchers from in-
terdisciplinary fields in getting started on interesting research
topics that might aid in future research.

Finally, the amount of detail that is involved in this project
is large, even while using a small dataset. AT A BEGINNER’S
LEVEL, IT MIGHT TAKE TIME TO IMBIBE THE CONCEPTS
FROM INTERDISCIPLINARY FIELDS THAT ARE PRESENTED
HERE. THUS THIS PAPER SHOULD BE READ ALONG WITH
SINHA 1 AS BOTH COMPLEMENT EACH OTHER. Modifying
and repairing the code can be nice exercise but the author
has refrained from doing so as the goal is not to teach pro-
gramming but to show how to use computational tools to ad-
dress the issue of inferring aspects of biological phenomena
in a signaling pathway. IT IS IMPORTANT TO NOTE THAT
TO RETAIN THE BIOLOGICAL INTERPRETATION WHILE THE
CODE IS RUNNING, SOME VARIABLE WERE HARDCODED AS
MEASUREMENTS OF GENE EXPRESSIONS, HISTONE MODI-
FICATIONS AND METHYLATION ARE COMPLETELY DIFFER-
ENT AND IT WAS TOUGH TO FOLLOW A GENERALIZED EF-
FICIENT CODE WHILE IN ACTION. In this endeavour, this
work is a small step in explaining the synergy of computa-
tional causal models and signaling pathway biology. The read-
ers should feel free to use and improve the code as per their
scientific and research interest.

3 Modeling and simulation

3.1 Data collection and estimation

An important component of this project is the Bayesian Net-
work Toolbox provided by Murphy et al.17 and made freely
available for download on https://code.google.
com/p/bnt/ as well as a Matlab license. Instructions for
installations are provided on the mentioned website. One can
make a directory titled temp with a subdirectory named data
and transfer the geneExpression.mat file into data.

>> mkdir temp
>> cd temp
>> mkdir data
>>

This .mat file contains expression profiles from Jiang et al.3

for genes that play a role in Wnt signaling pathway at an in-
tra/extracellular level and are known to have inhibitory affect
on the Wnt pathway due to epigenetic factors. For each of
the 24 normal mucosa and 24 human colorectal tumor cases,
gene expression values were recorded for 14 genes belonging
to the family of SFRP , DKK, WIF1 and DACT . Also,
expression values of established Wnt pathway target genes
like LEF1, MYC, CD44 and CCND1 were recorded per
sample.

The directory temp also contains some of the .m files, parts
of contents of which will be explained in the order of execu-
tion of the project. THE MAIN CODE BEGINS WITH A SCRIPT
TITLED twoHoldOutExp.m (Note that the original unrefined
file is under the name twoHoldOutExp-original.m). This script
contains the function twoHoldOutExp which takes two argu-
ments named eviDence and model. eviDence implies
the evidence regarding ’ge’ for gene evidence, ’me’ for methy-
lation, ’ge+me’ for both gene and methylation, while model
implies the network model that will be used for simulation.
Sinha1 uses three different models i.e ’t1’ orMPBK+EI that
contains prior biological knowledge as well as epigenetic in-
formation, ’t2’ orMPBK that contains only prior biological
knowledge and finally, ’p1’ orMNB+MPBK that is a modi-
fied version of naive bayes framework from Verhaegh et al.2.
On Matlab command prompt, one can type the following

>> twoHoldOutExp(’ge’, ’t1’)

The code begins with the extraction of data from the gene
expression matrix by reading the geneExpression.mat file
via the function readCustomFile in the readCustomFile.m
and generates the following variables as the output - (1)
uniqueGenes - name of genes gleaned from the file, (2)
expressionMatrix - 2D matrix containing the gene ex-
pression per sample data (3) noGenes - total number of genes
available (4) noSamples - total number of samples avail-
able (5) groundTruthLabels - original labels available
from the files and (6) transGroundTruthLabels - la-
bels transformed into numerals.

% Data Collection
%=====
% Extract data from the gene expression
% matrix
[uniqueGenes, expressionMatrix,...
noGenes,noSamples,groundTruthLabels,...
transGroundTruthLabels] = ...
readCustomFile(’data/geneExpression.mat’);
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3.2 Assumed and estimated probabilities from literature

Next, the probability values for some of the nodes in the net-
work is loaded, depending on the type of the network. WHY
THESE ASSUMED AND ESTIMATED PROBABILITIES HAVE
BEEN ADDRESSED IN THE BEGINNING OF THE COMPUTA-
TION EXPERIMENT IS AS FOLLOWS. It can be seen that the
extra/intracellular factors affecting the Wnt pathway in the
data set provided by Jiang et al.3 contains some genes whose
expression is influenced by epigenetic factors mentioned in ta-
ble 4. Hence it is important to tabulate and store prior proba-
bility values for known epigenetic biological factors that influ-
ence the pathway. Other than the priors for epigenetic nodes,
priors for some of the nodes that are a major component of
the pathway but do not have data for prior approximation,
are assumed based on expert knowledge. Once estimated or
assumed based on biological knowledge, these probabilities
needed not be recomputed and are thus stored in proper for-
mat at the beginning of the computational experiment.

THE ESTIMATION OF PRIOR PROBABILITIES IS
ACHIEVED THROUGH THE FUNCTION CALLED dataS-
torage IN THE dataStorage.m. THE FUNCTION TAKES
THE NAME OF THE model AS AN INPUT ARGUMENT AND
RETURNS THE NAME OF THE FILE CALLED probabilities.mat
IN THE VARIABLE filename. The mat file contains all
the assumed and computed probabilities of nodes for which
data is available and is loaded into the WORKSPACE of the
Matlab for further use. The workspace is an area which stores
all the current variables with their assinged instances such
that the variables can be manipulated either interactively via
command prompt or from different functions.

% Load probability values for some of
% the nodes in the network
fname = dataStorage(model);
load(fname);

MPBK+EI (model=’t1’) requires more prior estimations than
MPBK (model=’t2’) and MNB (model=p1) due to use of
epigenetic information. Depending on the type of model pa-
rameter fed to the function dataStorage, the probabilities for
the following factors are estimated -

1. REPRESSIVE Histone Mark H3K27me3 for DACT3
11 Loci from Jiang et al.3 were adopted. Via fold enrich-
ment, the effects of the H3K27me3 were found 500 bp
downstream of and near the DACT3 transcription start
site (TSS) in HT29 cells. These marks were recorded
via chromatin immuno-precipitation (ChiP) assays and
enriched at 11 different loci in the 3.5 kb to 3.5 kb re-
gion of the DACT3 TSS. Fold enrichment measurements
of H3K27me3 for normal FHs74Int and cancerous
SW480 were recorded and normalized. The final proba-

bilities are the average of these normalized values of en-
richment measurements.

2. ACTIVE Histone Mark H3K4me3 for DACT3 Loci
from Jiang et al.3 were adopted. Via fold enrichment,
the effects of the H3Kme3 were found 500 bp down-
stream of and near the DACT3 transcription start site
(TSS) in HT29 cells. These marks were recorded via
chromatin immuno-precipitation (ChiP) assays and en-
riched at 11 different loci in the 3.5 kb to 3.5 kb re-
gion of the DACT3 TSS. Fold enrichment measure-
ments of H3K4me3 for normal FHs74Int and cancer-
ous SW480 were recorded and normalized. The final
probabilities are the average of these normalized values
of enrichment measurements.

3. Fractions for methylation of DKK1 and WIF1 gene
taken from Aguilera et al.49 via manual counting through
visual inspection of intensity levels from methylation
specific PCR (MSP) analysis of gene promoter region
and later normalized. These normalized values form the
probability estimates for methylation.

4. Fractions for methylation and non-methylation status of
SFRP1, SFRP2, SFRP4 and SFRP5 (CpG islands
around the first exons) was recorded from 6 affected in-
dividuals each having both primary CRC tissues and nor-
mal colon mucosa from Suzuki et al.50 via manual count-
ing through visual inspection of intensity levels from
methylation specific PCR (MSP) analysis of gene pro-
moter region and later normalized. These normalized
values form the probability estimates for methylation.

5. Methylation of DACT1 (+52 to +375 BGS) and
DACT2 (+52 to +375 BGS) in promoter region for
Normal, HT29 and RKO cell lines from Jiang et al.3

was recorded via counting through visual inspection of
open or closed circles indicating methylation status esti-
mated from bisulfite sequencing analysis and later nor-
malized. The averaged values of these normalizations
form the probability estimates for methylation.

6. Concentration of DV L2 decreases with expression of
DACT3 and vice versa Jiang et al.3. Due to lack of
exact proportions the probability values were assumed.

7. Concentration of β-catenin given concentrations of
DV L2 and DACT1 varies and for static model it is
tough to assign probability values. High DV L2 con-
centration or suppression (expression) of DACT1 leads
to increase in concentration of β-catenin (Jiang et al.3,
Yuan et al.47). Wet lab experimental evaluations might
reveal the factual proportions.
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Conditional Probability Table for Nodes
node parents cpt values rep. node states

Sample - [0.50 0.50]T [n t]
TCF4 - [0.10 0.90]T [ia a]
DV L2 DACT3 [0.01 0.99; 0.99 0.01]T [lc hc]

β-catenin DACT1, [0.99 0.99 0.99 0.01; [lc hc]
DV L2 0.01 0.01 0.01 0.99]T

TRCMPLX TCF4, LEF1, [0.99*ones(1,7) 0.01; [ia a]
β-catenin 0.01*ones(1,7) 0.99]T

MeDACT1 - [0.8370 0.1630]T [nm m]
MeDACT2 - [0.3376 0.6624]T [nm m]
MeWIF1 - [0.1667 0.8333]T [nm m]
MeSFRP1 - [0.6316 0.3684]T [nm m]
MeSFRP2 - [0.6316 0.3684]T [nm m]
MeSFRP4 - [0.8572 0.1428]T [nm m]
MeSFRP5 - [0.7500 0.2500]T [nm m]
H3K27me3 - [0.2391 0.7609]T [ia a]
H3K4me3 - [0.3661 0.6339]T [ia a]

Table 10 Conditional probability tables for nodes (excluding gene
expression) of MPBK+EI . Notations in the table mean the
following ’-’ implies no parents exist for the particular node; ’n’ -
normal, ’t’ - tumorous, ’ia’ - inactive, ’a’ - active, ’lc’ - low
concentration, ’hc’ - high concentration, ’nm’ - non-methylated, ’m’
- methylation.

8. Similarly, the concentrations of TRCMPLX
(Clevers18, Kriegl et al.30) and TCF4 (Verhaegh
et al.2) have been assumed based on their known roles
in the Wnt pathway. Actual proportions as probabilities
require further wet lab tests.

9. Finally, the probability of Sample being tumorous or
normal is a chance level as it contains equal amount of
cancerous and normal cases.

NOTE THAT ALL THESE PROBABILITIES HAVE BEEN
RECORDED IN TABLE 1 OF SINHA 1 , REPRODUCED HERE IN
TABLE 10 AND THEIR VALUES STORED IN THE probabili-
ties.mat FILE.

3.3 Building the bayesian network model

Next comes the topology of the network using prior biologi-
cal knowledge made available from results of wet lab experi-
ments documented in literature. THIS NETWORK TOPOLOGY
IS ACHIEVED USING THE FUNCTION generateInteraction IN
THE FILE generateInteraction.m. THE FUNCTION
TAKES IN THE SET OF uniqueGenes AND THE TYPE OF
model AND GENERATES A CELL OF interaction FOR
THE BAYESIAN NETWORK AS WELL AS A CELL OF UNIQUE
SET OF NAMES OF NODES I.E Nodenames. A CELL is
like a matrix but with elements that might be of different

types. The indexing of a cell is similar to that of a matrix
except for the use of parenthesis instead of square brackets.
interaction CONTAINS ALL THE PRIOR ESTABLISHED
BIOLOGICAL KNOWLEDGE THAT CARIES CAUSAL SEMAN-
TICS IN THE FORM OF ARCS BETWEEN PARENT AND CHILD
NODES. It should be noted that even though the model is not
complete due to its static nature, it has the ability to encode
prior causal relationships and has the potential for further re-
finement. Note that a model not being complete does not con-
clude that the results will be wrong.

% Building the Bayesian Network model
%=====
% Generate directionality between
% parent and child nodes
[interaction, nodeNames] = ...
generateInteraction(uniqueGenes,...
model);

THE interaction AND nodeNames GO AS INPUT AR-
GUMENTS TO THE FUNCTION mk adj mat, WHICH GENER-
ATES AN ADJACENCY MATRIX FOR A DIRECTED ACYCLIC
GRAPH (DAG) STORED IN dag. Using functions bio-
graph and input arguments dag and nodeNames gener-
ates a structure gObj that can be used to view the topology
of the network. A crude representation of MPBK+EI and
MNB+MPBK shown in figures 2 and 3 was generated using
the function view.

% Generate dag for the interaction
% between nodeNames
dag = mk_adj_mat(interaction, nodeNames, 0);

% To visualise the graphs or bayesian
% network
gObj = biograph(dag,nodeNames)
gObj = view(gObj);

Once the adjacency matrix is ready, the initialization of the
Bayesian Network can be easily done. The total number of
nodes is stored in N and the size of the nodes are defined in
nodeSizes. IN THIS PROJECT EACH NODE HAS A SIZE OF
TWO AS THEY CONTAIN DISCRETE VALUES REPRESENTING
BINARY STATES. Here the function ones defines a row vector
with N columns. Thus each node is set to a size of 2. The to-
tal number of discrete nodes is defined in discreteNodes.
FINALLY, THE BAYESIAN NETWORK IS CREATED USING
THE FUNCTION mk bnet FROM THE BNT THAT TAKES THE
FOLLOWING AS INPUT ARGUMENTS (1) dag - the adjacency
matrix (2) nodeSizes - defines the size of the nodes and
(3) discreteNodes - the vector of nodes with their indices
marked to be discrete in the Bayesian Network and dumps the
network in the variable bnet. bnet is of type STRUCTURE
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which contains fields, each of which can of different types like
vector, character, array, matrix, cell or structure. The contents
of a field of a structure variable (say bnet), with proper indi-
cies, if necessary can be accessed using the ’bnet.fieldname’
as well be seen later.

% BN initialization
N = length(nodeNames); % # of nodes

% Define node sizes. NOTE - nodes are
% assumed to contain discrete values
nodeSizes = 2*ones(1, N);

% Discrete nodes
discreteNodes = 1:N;

% Create BN
bnet = mk_bnet(dag, nodeSizes,’names’,...
nodeNames, ’discrete’, discreteNodes);

3.4 Hold out expriment

After the framework of the Bayesian Network has been con-
structed and initialized, the hold out experiment is conducted.
THE PURPOSE OF CONDUCTING THE EXPERIMENT IS TO
GENERATE RESULTS ON DIFFERENT TEST DATA WHILE
TRAINING THE BAYESIAN NETWORK WITH DIFFERENT
SETS OF TRAINING DATA, A MULTIPLE NUMBER OF TIME.
From Sinha1, the design of the experiment is a simple 2-
holdout experiment where one sample from the normal and
one sample from the tumorous are paired to form a test dataset.
Excluding the pair formed in an iteration of 2-hold out exper-
iment the remaining samples are considered for training of a
BN model. Thus in a data set of 24 normal and 24 tumorous
cases, a training set will contain 46 samples and a test set will
contain 2 samples (one of normal and one of tumor). This
procedure is repeated for every normal sample which is com-
bined with each of the tumorous sample to form a series of
test dataset. In total there will be 576 pairs of test data and
576 instances of training data. Note that for each test sample
in a pair, the expression value for a gene is discretized using
threshold computed for that particular gene from the training
set. Computation of threshold will be elucidated later. This
computation is repeated for all genes per test sample. BASED
ON THE AVAILABLE EVIDENCES FROM THE STATE OF EX-
PRESSION OF ALL GENES, THAT CONSTITUTE THE TEST
DATA, INFERENCE REGARDING THE STATE OF THE BOTH
β-catenin TRANSCRIPTION COMPLEX AND THE TEST SAM-
PLE IS MADE. These inferences reveal • hidden biological
relationship between the expressions of the set of genes under
consideration and the β-catenin transcription complex and •
information regarding the activation state of the β-catenin
transcription complex and the state of the test sample, as a

penultimate step to the proposed hypothesis testing. Two sam-
ple Kolmogorov-Smirnov (KS) test was employed to measure
the statistical significance of the distribution of predictions of
the states of the previously mentioned two factors.

Apart from testing the statistical significance between the
states of factors, it was found that the prediction results for the
factors, obtained from models including and excluding epige-
netic information, were also significantly different. The re-
ceiver operator curve (ROC) graphs and their respective area
under the curve (AUC) values indicate how the predictions on
the test data behaved under different models. Ideally, high val-
ues of AUC and steepness in ROC curve indicate good quality
results.

THE HOLD OUT EXPERIMENT BEGINS WITH THE COM-
PUTATION OF THE TOTAL NUMBER OF POSITIVE AND NEG-
ATIVE LABELS PRESENT IN THE WHOLE DATA SET AS
WELL AS THE SEARCH OF THE INDICIES OF THE LA-
BELS. For this the values in the variable noSamples
and transGroundTruthLabels computed from func-
tion readCustomFile is used. noPos (noNeg) and
posLabelIdx (negLabelIdx) store the number of pos-
itive (negative) labels and their indicies, respectively.

% Hold out expriment
%=====
% Compute no. of positive and negative
% labels and find indicies of both
noPos = 0;
posLabelIdx = [];
noNeg = 0;
negLabelIdx = [];
for i = 1:noSamples

if transGroundTruthLabels(i) > 0
noPos = noPos + 1;
posLabelIdx = [posLabelIdx, i];

else
noNeg = noNeg + 1;
negLabelIdx = [negLabelIdx, i];

end
end

For storing results as well as the number of times the exper-
iment will run, variables runCnt and Runs are initialized.
Runs is of the type structure. The condition in the if state-
ment is not useful now and will be described later.

runCnt = 0;
Runs = struct([]);
if ˜isempty(strfind(eviDence, ’me’))

RunsOnObservedMethylation = struct([]);
end

For each and every positive (cancerous) and negative (nor-
mal) labels, the number of times the experiments runs is incre-
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mented in the count variable runCnt. Next the indicies for
test data is separated by using the ith positive and the jth neg-
ative label and its indicies is stored in testDataIdx. The
test data itself is then separated from expressionMatrix
using the testDataIdx and stored in dataForTesting.
The corresponding ground truth labels of the test data
are extracted from transGroundTruthLabels using
testDataIdx and stored in labelForTesting.

for i = 1:noPos
for j = 1:noNeg
% Count for number of runs
runCnt = runCnt + 1;

% Build test dataset (only 2
% examples per test set)
testDataIdx = [negLabelIdx(j),...

posLabelIdx(i)];
dataForTesting = expressionMatrix(:,...

testDataIdx);
labelForTesting = ...
transGroundTruthLabels(:, testDataIdx);

After the storage of the test data and its respective indicies,
trainingDataIdx is used to store the indicies of training
data by eliminating the indicies of the test data. This is
done using temporary variables tmpPosLabelIdx and
tmpNegLabelIdx. trainingDataIdx is used to
store the training data in variable dataForTraining
using expressionMatrix and the indicies of train-
ing data in variable labelForTraining using
transGroundTruthLabels.

% Remove test dataset from the whole
% dataset and build train dataset
tmpPosLabelIdx = posLabelIdx;
tmpNegLabelIdx = negLabelIdx;
tmpPosLabelIdx(i) = [];
tmpNegLabelIdx(j) = [];
trainDataIdx = [tmpNegLabelIdx,...

tmpPosLabelIdx];
dataForTraining = expressionMatrix(:,...

trainDataIdx);
labelForTraining = ...
transGroundTruthLabels(:, trainDataIdx);

3.4.1 Defining and estimating probabilities and condi-
tional probabilities tables for nodes in bnetTill now, the
probabilities as well as conditional probability tables (cpt) for
some of the nodes have been stored in the probabilities.mat
file and loaded in the workspace. But the cpt for all the nodes
in the bnet remain uninitialized. The NEXT PROCEDURE
is to initialize the tables using assumed values for some of

the known nodes while estimating the entries of cpt for other
nodes (i.e of nodes representing genes) using training data.

To this end it is important to define a variable by the
name cpdStorage of the format structure. Starting with
all the nodes that have no parents and whose probabil-
ities and cpt have been loaded in the workspace (saved
in probabilities.mat), the for loop iterates through all the
nodes in the network defined by N, stores the index of
the kth node in nodeidx using function bnet.names
with input argument nodeNames{k} and assigns values
to cpt depending on the type of model. If MPBK+EI

(model=’t1’) is used and the kth entry in nodeNames
matches with TCF4 then the cpt value in PrTCF4 is
assigned to cpt. The parent node of this node is assigned a
value 0 and stored in cpdStorage(k).parentnode{1}.
The name TCF4 or nodeNames{k} is assigned to
cpdStorage(k).node. The cpt values in cpt is as-
signed to cpdStorage(k).cpt. Finally, the conditional
probability density cpt for the node with name TCF4
is stored in bnet.CPD using function tabular CPD, the
Bayesian Network bnet, the node index nodeidx and
cpt. Similarly, values in PrMeDKK1, avgPrMeDACT1,
avgPrMeDACT2, avgPrH3K27me3, avgPrH3K4me3,
PrMeSFRP1, PrMeSFRP2, PrMeSFRP4, PrMeSFRP5,
PrMeWIF1 and PrSample initialize the cpt values for
nodes MeDACT1, MeDACT2, H3k27me3, H3k4me3,
MeSFRP1, MeSFRP2, MeSFRP4, MeSFRP5,
MeWIF1 and Sample, respectively. It might not be
necessary to hard code the variables and more efficient code
could be written. Currently, the selection of the hardcoded
variables is for ease in reading the code from a biological
point of view for person with computer science background.
But surely, this programming style is bound to change when
large and diverse datasets are employed.

Similar initializations happen for models MPBK

(model=’t2’) and MNB+MPBK (model=’p1’). It should be
noted that inMPBK (MNB+MPBK) the only nodes without
parents are TCF4 and Sample (TCF4 and BETACAT ).
To accomodate for these models, the necessary elseif
statements have been embedded in the for loop below.

% Define P and CPD for the nodes of the
% bnet
cpdStorage = struct([]);
% Store probabilities for nodes with no
% parents
for k = 1:N
nodeidx = bnet.names(nodeNames{k});
if isempty(bnet.parents{nodeidx})
% tables for non-gene measurements
if ˜isempty(strfind(model, ’t1’))
if strcmp(nodeNames{k},’TCF4’)
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cpt = PrTCF4;
elseif strcmp(nodeNames{k}, ’MeDKK1’)
cpt = PrMeDKK1;

elseif strcmp(nodeNames{k}, ’MeDACT1’)
cpt = avgPrMeDACT1;

elseif strcmp(nodeNames{k}, ’MeDACT2’)
cpt = avgPrMeDACT2;

elseif strcmp(nodeNames{k}, ’H3k27me3’)
cpt = avgPrH3K27me3;

elseif strcmp(nodeNames{k}, ’H3k4me3’)
cpt = avgPrH3K4me3;

elseif strcmp(nodeNames{k}, ’MeSFRP1’)
cpt = PrMeSFRP1;

elseif strcmp(nodeNames{k}, ’MeSFRP2’)
cpt = PrMeSFRP2;

elseif strcmp(nodeNames{k}, ’MeSFRP4’)
cpt = PrMeSFRP4;

elseif strcmp(nodeNames{k}, ’MeSFRP5’)
cpt = PrMeSFRP5;

elseif strcmp(nodeNames{k}, ’MeWIF1’)
cpt = PrMeWIF1;

elseif strcmp(nodeNames{k}, ’Sample’)
cpt = PrSample;

end
elseif ˜isempty(strfind(model, ’t2’))
if strcmp(nodeNames{k},’TCF4’)
cpt = PrTCF4;

elseif strcmp(nodeNames{k}, ’Sample’)
cpt = PrSample;

end
elseif ˜isempty(strfind(model, ’p1’))
if strcmp(nodeNames{k}, ’TCF4’)
cpt = PrTCF4;

elseif strcmp(nodeNames{k}, ’BETACAT’)
cpt = PrBETACAT;

end
end
cpdStorage(k).parentnode{1} = 0;
cpdStorage(k).node = nodeNames{k};
cpdStorage(k).cpt = cpt;
bnet.CPD{nodeidx} = tabular_CPD(...
bnet, nodeidx, ’CPT’, cpt);

end
end

In the SAME for loop above, the NEXT STEP is to initial-
ize probability as well as the cpt values for nodes with par-
ents. TWO CASES EXIST IN THE CURRENT SCENARIO, I.E
NODES THAT (1) REPRESENT GENES AND (2) DO NOT REP-
RESENT GENES. To accomodate for gene/non-gene node clas-
sification a logical variable GENE is introduced. Also, be-
fore entering the SECOND for loop described below, a vari-

able gene cpd of the format structure is defined for storage
of the to be computed cpt values for all genes in the data set.
parentidx stores the index of the parents of the child node
under consideration using the child’s index in nodeidx via
bnet.parents{nodeidx}. The total number of parents a
child node has, is contained in noParents.

Initially GENE is assigned a value of 0 indicating that the
node under consideration is not a gene node. If this is the
case, the ˜GENE in the if condition of the for loop below gets
executed. In this case, depending on the type of the model cpt
values of a particular node is initialized. ForMPBK+EI and
MPBK (model=’t1’ and model=’t2’), the cpt values for nodes
BETACAT , DV L2 and TRCMPLX is stored using val-
ues in PrBETACAT, PrDVL2 and PrTRCMPLX. As before,
using function tabular CPD and values in nodeidx, bnet
and cpt as input arguments, the respective cpt is initialized
in bnet.CPD{nodeidx}. Similar computations are done
for MNB+PBK i.e model ’p1’ for node TRCMPLX. Finally,
the indicies of the parents of the kth child node is stored in
cpdStorage(k).parentnode{m}.

On the other hand, if the name of the node in the kth

index of nodeNames matches the name in the lth in-
dex of uniqueGenes, a parent variable of format cell
is defined within the SECOND NESTED for loop below.
The names of the parents are stored in this variable us-
ing nodeNames{parentidx(n)}. Next, the cpt val-
ues of these parent nodes are separately stored using a cell
parent cpd and a count cnt. Finally, the cpd values for the
lth gene is determined using the function generateGenecpd
in the script generateGenecpd.m that takes the following in-
put arguments (1) vecTraining - gene expression of from
training data (2) labelTraining - labels for training data
(3) nodeName - name of the gene involved (4) parent -
name of parents of the child node or the gene under con-
sideration (5) parent cpd - parent cpd values (6) model
- kind of model and finally returns the output as a structure
gene cpd containing cpd for the particular gene under con-
sideration given its parents as well as a threshold value in the
form of median. In the code below, the values of the follow-
ing variables go as input arguments for the function generate-
Genecpd, in order (1) dataForTraining(l,:) - train-
ing data for the lth unique gene, (2) labelForTraining
- labels for training data, (3) uniqueGenes{l}, (4)
parent, (5) parent cpd, (6) model. The output of
the function is stored in the structure variable x. The
threshold at which the probabilities were computed for
the lth gene is stored in gene cpd(l).vecmedian us-
ing x.vecmedian and the probabilities themselves are
stored in gene cpd(l).T using x.T. These probabili-
ties are reshaped into a row vector and stored in cpt.
As mentioned before, using function tabular CPD and val-
ues in nodeidx, bnet and cpt as input arguments,
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the respective cpt is initialized in bnet.CPD{nodeidx}.
Finally, required values of cpt, name of lth gene or
kth node and indicies of its parent nodes are stored
in cpdStorage(k).cpt, cpdStorage(k).node and
cpdStorage(k).parentnode{m}, respectively.

IT SHOULD BE NOTED THAT THE EXPOSITION OF THE
GENERATION OF PROBABILITY VALUES FOR THE DIFFER-
ENT GENES VIA THE FUNCTION generateGenecpd NEEDS A
SEPARATE TREATMENT AND WILL BE ADDRESSED LATER.
To maintain the continuity of the workflow of the program, the
next step is addressed after the code below.

% Store probabilities for nodes with
% parents
gene_cpd = struct([]);
for k = 1:N
nodeidx = bnet.names(nodeNames{k});
if ˜isempty(bnet.parents{nodeidx})
parentidx = bnet.parents{nodeidx};
noParents = length(parentidx);
GENE = 0;
for l = 1:noGenes
if strcmp(nodeNames{k}, uniqueGenes{l})
% Find cpt of gene parent
parent = {};
for n = 1:noParents
parent{n} = nodeNames{parentidx(n)};
end
% Assign cpd to parent
cnt = 0;
parent_cpd = {};
for m = 1:length(cpdStorage)
for n = 1:noParents
if strcmp(parent{n},...
cpdStorage(m).node)
cnt = cnt + 1;
parent_cpd{cnt} = cpdStorage(m).cpt;

end
end
end
x = generateGenecpd(...
dataForTraining(l,:),...
labelForTraining, uniqueGenes{l},...
parent, parent_cpd, model);
gene_cpd(l).vecmedian = x.vecmedian;
gene_cpd(l).T = x.T;
[r, c] = size(gene_cpd(l).T);
cpt = reshape(gene_cpd(l).T,1,r*c);
GENE = 1;
break;

end
end

% tables for non-gene measurements
if ˜GENE
if ˜isempty(strfind(model,’t1’))
if strcmp(nodeNames{k},’BETACAT’)
cpt = PrBETACAT;
elseif strcmp(nodeNames{k},’DVL2’)
cpt = PrDVL2;
elseif strcmp(nodeNames{k},’TRCMPLX’)
cpt = PrTRCMPLX;
end

elseif ˜isempty(strfind(model,’t2’))
if strcmp(nodeNames{k},’BETACAT’)
cpt = PrBETACAT;
elseif strcmp(nodeNames{k},’DVL2’)
cpt = PrDVL2;
elseif strcmp(nodeNames{k},’TRCMPLX’)
cpt = PrTRCMPLX;
end

elseif ˜isempty(strfind(model,’p1’))
if strcmp(nodeNames{k},’TRCMPLX’)
cpt = PrTRCMPLX;
end

end
end
% record the parent index
for m = 1:noParents
cpdStorage(k).parentnode{m} = ...
parentidx(m);

end
cpdStorage(k).node = nodeNames{k};
cpdStorage(k).cpt = cpt;
bnet.CPD{nodeidx} = ...
tabular_CPD(bnet,nodeidx,’CPT’,cpt);

end
end

3.4.2 Evidence building and inferenceThe values esti-
mated in gene cpd as well as cpdStorage are stored for
each and every run of the hold out experiment. Also, the di-
mensions of the testing data is stored.

% Function to store estimated
% parameters
Runs(runCnt).geneCpd = gene_cpd;
Runs(runCnt).cpdStorage = cpdStorage;

% Function to predict on test data
% using trained BN
[r, c] = size(dataForTesting);

NEXT, depending on the type of the evidence provided in
eviDence, inferences can be made. Below, a section of
code for evidence gene expression, which gets executed when
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the case ’ge’ matches with the parameter eviDence of the
switch command, is explained. The issue that was to be in-
vestigated was whether the β-catenin based TRCMPLX is
always switched on (off) or not when the Sample is cancer-
ous (normal). In order to analyze this biological issue from a
computational perspective, it would be necessary to observe
the behaviour of the predicted states of both TRCMPLX
as well as Sample, given all the available evidence. For
this purpose, variable tempTRCMPLXgivenAllge is de-
fined as a vector for each model separately, while variable
tempSAMPLE is defined as a vector for biologically inspired
models i.e MPBK+EI and MPBK separately. This is due
to the assumption that the state of TRCMPLX is the same
as the state of the test sample under consideration in the
MNB+MPBK (a modification of Verhaegh et al.2).

In the section of the code below, for each of the test dataset
an evidence variable of the format cell is defined. The
evidence is of the size of equivalent to the number of node
N in the network. Only those indicies in the cell will be filled
for which information is available from the test data. Since
the function twoHoldOutExp started with ’ge’ as an argument
for type of evidence, evidence will be constructed from
information available via gene expression from the test data.
Thus for the mth gene, if the gene expression in the test data
(i.e dataForTesting(m,k)) is lower than the threshold
generated using the median of expressions for this gene in
the training data (i.e gene cpd(m).vecmedian), then the
evidence for this gene is considered as inactive or repressed,
i.e evidence{bnet.names(uniqueGenes(m))}
= 1, else the evidence for this gene
is considered active or expressed i.e
evidence{bnet.names(uniqueGenes(m))} =
2. Iterating through all the genes, the evidence is
initialized with the available information for the kth test data.

Once the probability values have been initialized ei-
ther by computation or assumption, then for the kth test
data, a Bayesian network engine is generated and stored in
bnetEngine via the junction tree algorithm implemented
in function jtree inf engine that uses the input ar-
gument as the newly initialized network stored in bnet.
THE bnetEngine IS THEN FED WITH THE VALUES IN
evidence TO GENERATE A NEW ENGINE THAT CONTAINS
THE UPDATED PROBABILITY VALUES FOR NODES WITHOUT
EVIDENCE IN THE NETWORK. This is done using the func-
tion enter evidence. According to BNT provided by Murphy
et al.17, in the case of the jtree engine, enter evidence imple-
ments a two-pass message-passing scheme. The first return ar-
gument (engine) contains the modified engine, which incor-
porates the evidence. The second return argument (loglik)
contains the log-likelihood of the evidence. It is the first re-
turned argument or the modified engine that will be of use
further. IT IS IMPORTANT TO NOTE THAT FOR EVERY ITER-

ATION THAT POINTS TO A NEW TEST DATA IN THE for LOOP,
A NEW BAYESIAN NETWORK ENGINE IS GENERATED AND
STORED IN bnetEngine. IF THIS IS NOT DONE, THEN THE
PHENOMENA OF explaining away CAN OCCUR ON FEED-
ING NEW EVIDENCE TO AN ALREADY MODIFIED ENGINE
WHICH INCORPORATED THE EVIDENCE FROM THE PREVI-
OUS TEST DATA. IN explaining away THE ENTRENCE OF
NEW EVIDENCE MIGHT OUT WEIGH THE EFFECT OF AN EX-
ISTING INFLUENCING FACTOR OR EVIDENCE THUS MAK-
ING THE OLD EVIDENCE REDUNDANT. This simulation is
not related to such study of explaining away.

FINALLY, THE BELIEF THAT THE TRCMPLX IS
SWITCHED ON GIVEN THE GENE EXPRESSION EVIDENCE
I.E Pr(TRCMPLX = 2|ge as evidence) IS COMPUTED
BY ESTIMATING THE MARGINAL PROBABILITY VALUES US-
ING THE FUNCTION marginal nodes WHICH TAKES THE EN-
GINE STORED IN engine AND THE NAME OF THE NODE
USING bnet.names(’TRCMPLX’). The marginal proba-
bilities are stored in margTRCMPLX. The final probability of
TRCMPLX being switched on given all gene expression
evidences is stored in tempTRCMPLXgivenAllge using
margTRCMPLX.T(2). SIMILARLY, FOR BIOLOGICALLY
INSPIRED MODELS THE BELIEF THAT THE TEST Sample
IS CANCEROUS GIVEN THE GENE EXPRESSION EVIDENCE
I.E Pr(Sample = 2|ge as evidence) IS COMPUTED US-
ING FUNCTION marginal nodes THAT TAKES THE ENGINE
STORED IN engine AND THE NAME OF THE NODE USING
bnet.names(’Sample’). The marginal probabilities are
stored in margSAMPLE. The final probability of Sample be-
ing cancerous given all gene expression evidences is stored in
tempSAMPLE using margSAMPLE.T(2).

switch eviDence
case ’ge’
disp([’Testing Example ’,...
num2str(runCnt), ’ - Based on all ge’]);

tempTRCMPLXgivenAllge = [];
if ˜isempty(strfind(model, ’t’))
tempSAMPLE = [];

end
% Build evidence for inference
for k = 1:c
evidence = cell(1,N);
for m = 1:noGenes
if dataForTesting(m,k) <= ...
gene_cpd(m).vecmedian
evidence{bnet.names(uniqueGenes(m))} = 1;

else
evidence{bnet.names(uniqueGenes(m))} = 2;

end
end

% Build Bayesian engine
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bnetEngine = jtree_inf_engine(bnet);
[engine, loglik] = ...
enter_evidence(bnetEngine,evidence);

% Pr(TRCMPLX = 2|ge as evidence)
margTRCMPLX = marginal_nodes(...
engine,bnet.names(’TRCMPLX’));

tempTRCMPLXgivenAllge = ...
[tempTRCMPLXgivenAllge, margTRCMPLX.T(2)];

if ˜isempty(strfind(model, ’t’))
% Pr(Sample = 2|ge as evidence)
margSAMPLE = marginal_nodes(...
engine,bnet.names(’Sample’));
tempSAMPLE = [tempSAMPLE,...
margSAMPLE.T(2)];

end
end

Finally, for the particular count of the run of the experiment,
tempTRCMPLXgivenAllge and tempSAMPLE are stored
in the structure Runs using different variables associated with
Runs. THIS ITERATION KEEPS HAPPENING UNTIL THE
TWO HOLD OUT EXPERIMENT IS EXHAUSTED. The case
when eviDence is ’me’ or evidence for methylation will be
discussed later as a programming project.

% Function to store prediction values
Runs(runCnt).condPrTRCMPLXgivenAllge...
= tempTRCMPLXgivenAllge;
if ˜isempty(strfind(model,’t’))
Runs(runCnt).condPrSAMPLE =...
tempSAMPLE;
end
Runs(runCnt).conditionalPrNODEgivenIndividualge...
= tempNODEgivenIndividualge;
Runs(runCnt).geneEvidence = geneEvidence;

case ’me’
% Project discussed later

end
end

end

3.5 Storing results, plotting graphs and saving files

The FINAL SECTION OF THE CODE deals with storing of the
results, plotting of graphs and saving the results in the files.
Since the current explanation is for gene expression evidence,
the code pertaining to ’ge’ is explained. Readers might want
to develop the code for evidence regarding methylation as a
programming project.

To store results as well as the conditional probabilities for
TRCMPLX and SAMPLE given all the gene expression

evidence, a cell variable Results, a counter cntResult
and vector variables condPrTRCMPLXgivenAllge,
condPrSAMPLE and labels are defined as well as
initialized. Next, the prediction values and original labels
are stored while iterating through the total number of runs
of the experiment. This is done using the for loop and the
variable runCnt. For the ith run, predicted conditional
probabilities of TRCMPLX and Sample from each run
is stored in condPrTRCMPLXgivenAllge(i,:) and
condPrSAMPLE(i,:), depending on the model used.
Finally, the ground truth labels of the test data are stored in
a matrix were the ith row is initialized with labels(i,:)
= [-1, +1];. Here, labels it a matrix and −1 (+1)
represent normal (cancerous) cases. Next, the variables
condPrTRCMPLXgivenAllge and condPrSAMPLE are
reshaped into vectors for further processing.

The plotting of the ROC curves and the estima-
tion of their respective AUCs is achieved using func-
tion perfcurve that takes labels, either of the vectors
condPrTRCMPLXgivenAllge or condPrSAMPLE de-
pending on the type of model selected. THE FUNC-
TION CHURNS OUT USEFUL INFORMATION IN THE FORM
OF THE FALSE POSITIVE RATE IN X, the true posi-
tive rate in Y AND THE ESTIMATED AUC FOR ROC
OF condPrTRCMPLXgivenAllge (condPrSAMPLE) IN
AUCTRCMPLXgivenAllge (AUCSAMPLE). The plot func-
tion is used to draw the graphs along with the depiction
of legends using function legend. Finally, the two sample
Kolmogorov-Smirnov test between the predictions of states
of TRCMPLX and Sample is performed using the kstest2
function. THIS FUNCTION TAKES THE TWO VECTORS
condPrTRCMPLXgivenAllge AND condPrSAMPLE AS
ARGUMENTS, COMPARES THE DISTRIBUTION OF THE PRE-
DICTIONS AND RETURNS THE STATE OF SIGNIFICANCE BE-
TWEEN THE TWO DISTRIBUTIONS IN h01. If the value of
h01 is 1, then statistical significance exists else it does not ex-
ist. Sinha1 shows that the statistical difference exists between
predictions of TRCMPLX and Sample when the nodes for
the same are segregated in the biologically inspired causal
models, which is not the case with the naive Bayes model.

Lastly, the computed variables are stored in a .mat file using
the function save. Options for using the save function can be
obtained from the help command in Matlab.

if strcmp(eviDence, ’ge’)
% Store results
Results = {};
cntResult = 0;
% Estimation of performance levels
condPrTRCMPLXgivenAllge = [];
geneEvidence = {};
if ˜isempty(strfind(model, ’t’))
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condPrSAMPLE = [];
end
labels = [];

% Store prediction values and
% original labels
for i = 1:runCnt
condPrTRCMPLXgivenAllge(i,:) =...
Runs(i).condPrTRCMPLXgivenAllge;

geneEvidence{i} = Runs(i).geneEvidence;
if ˜isempty(strfind(model,’t’))
condPrSAMPLE(i,:) = Runs(i).condPrSAMPLE;

end
labels(i,:) = [-1, +1];
end

% Reshape the vectors
[r,c] = size(labels);
labels = reshape(labels,r*c,1);
condPrTRCMPLXgivenAllge =...
reshape(condPrTRCMPLXgivenAllge, r*c,1);
if ˜isempty(strfind(model,’t’))
condPrSAMPLE = reshape(condPrSAMPLE,r*c,1);
end

% Plot the ROC curve and compute AUC
[X,Y,T,AUCTRCMPLXgivenAllge] =...
perfcurve(labels, condPrTRCMPLXgivenAllge,1);
plot(X,Y,’r’);
xlabel(’False positive rate’);
ylabel(’True positive rate’);
if ˜isempty(strfind(model,’t’))
hold on;
[X,Y,T,AUCSAMPLE] =...
perfcurve(labels,condPrSAMPLE,1);

plot(X,Y,’b’);
legend(’TRCMPLX - On’,’SAMPLE - T’);
hold off;

% Perform ks-test the significance
% between models/evidences/predictions
[h01,p,ksstat] =...
kstest2(condPrTRCMPLXgivenAllge,...
condPrSAMPLE);

end

if ˜isempty(strfind(model,’t1’))
save(’Results.mat’,’Runs’,...
’condPrTRCMPLXgivenAllge’,...
’geneEvidence’,’condPrSAMPLE’,...
’AUCTRCMPLXgivenAllge’,’AUCSAMPLE’,
’h01’);

elseif ˜isempty(strfind(model,’t2’))
save(’Results.mat’,’Runs’,...
’condPrTRCMPLXgivenAllge’,...
’geneEvidence’,’condPrSAMPLE’,...
’AUCTRCMPLXgivenAllge’,’AUCSAMPLE’,
’h01’);

elseif ˜isempty(strfind(model, ’p1’))
save(’Results.mat’,’Runs’,...
’condPrTRCMPLXgivenAllge’,...
’geneEvidence’,...
’AUCTRCMPLXgivenAllge’);

end
else
end

The ROC graphs and their respective AUC values found in the
figures of Sinha1 are plotted by making variation in the as-
sumed probability values of PrTRCMPLX in the function gen-
erateGenecpd. The details of the generateGenecpd are dis-
cussed in the next sections.

THE VARIATION IN THE ASSUMED PROBABILITY VALUES
OF THE TRCMPLX THAT AFFECT THE BEHAVIOUR OF
THE GENE NODES IS TERMED AS ETGN IN Sinha1. SINCE
THE ENTIRE CODE RUNS ONLY ONCE, IT HAS TO BE RUN
FOR DIFFERENT INSTANCES OF INPUT ARGUMENTS, SEPA-
RATELY. Once the results have been saved in Results.mat file,
one can rename the file based on the model and the evidence
arguments used in function twoHoldOutExp. Thus, if the code
is run for model ’t1’ and ETGN of 90%, then the user needs to
rename the Results.mat that stores the results, with an appro-
riate file name like Results-T1-GE-pforTRCMPLX-90per.mat.
Once the results for all permuations of instances for a vec-
tor of input arguments in twoHoldOutExp has been obtained,
the script geneTRCMPLXstats using the generated .mat re-
sult files can be executed to generate the tables which shows
how TRCMPLX behaves as the evidences of genes vary in
both normal and tumorous cases. Tables 5 and 6 in Sinha1

are generated using this script. How interpretations of the re-
sults are made, can be studied in more depth in the results sec-
tion of Sinha1. HOWEVER, succinctly, the script geneTRCM-
PLXstats generates mean/average estimates of the conditional
probability that the transcription complex will be switched on
or off in normal or tumor test samples, given the different gene
evidences. By majority, if a gene expression is found to be re-
pressed (active) in normal or tumor case, then the predicted
belief represented by the probability of the transcription com-
plex conditional on repression (activation) is chosen as the in-
ferred biological phenomena. Figures 6 and 7 of Sinha1 depict
the summarized pictorial representation of the predicted infer-
ences shown in tables 5 and 6 of Sinha1.

Note that to generate the ROC graphs and their respec-
tive AUC values for different models with varying effect
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of TRCMPLX on different genes (ETGN in Sinha1),
the results in variables X and Y (of twoHoldOutExp) are
stored in different variables and clumped together in a
mat file titled aucANDpredictions sample TRCMPLX.mat.
This has to be done manually for each model and every
setting of ETGN. For example, using model t1 and ETGN
of 60%, the false positive rate in X is stored as xT1 60
and the true positive rate in Y is stored as yT1 60, in the
above mentioned .mat file. Finally, the script in the m file
titled plotAUC is used to manipulate the aforementioned
transformed variables and generate the ROC curves in
figure 5 of the results section of Sinha1. The Google drive
https://drive.google.com/folderview?id=
0B7Kkv8wlhPU-T05wTTNodWNydjA&usp=sharing,
contains the results under the compressed directory with name
Results-2013. Inference interpretations of the results can be
studied in more depth from Sinha1.

Finally, a full section is dedicated to the computation of the
probabilities for nodes with parents which has been imple-
mented in function generateGenecpd. THE COMPUTATION
OF GENE NODES HAPPENS WITHIN THE HOLD OUT EXPER-
IMENT AND BEFORE THE NEW COMPUTATION OF CPTS
CONDITIONAL ON THE EVIDENCE PROVIDED. SINCE THE
DETAILS OF COMPUTATION OF CPTS FOR GENE NODES IS
DENSE, IT HAS BEEN TREATED SEPARATELY AFTER THE
EXPLANATION OF THE CODE OF HOLD OUT EXPERIMENT.

3.6 Generating probabilities for gene nodes with parents

Here, the code for the function generateGenecpd is ex-
plained. As a recapitulation, the function generateGenecpd
in the script generateGenecpd.m takes the following input ar-
guments (1) vecTraining - gene expression of from train-
ing data (2) labelTraining - labels for training data (3)
nodeName - name of the gene involved (4) parent - name
of parents of the child node or the gene under consideration
(5) parent cpd - parent cpd values (6) model - kind of
model and finally returns the output as a structure gene cpd
containing cpd for the particular gene under consideration
given its parents as well as a threshold value in the form
of median. In the code below, the values of the following
variables go as input arguments for the function generate-
Genecpd, in order (1) dataForTraining(l,:) - training
data for the lth unique gene, (2) labelForTraining - la-
bels for training data, (3) uniqueGenes{l}, (4) parent,
(5) parent cpd, (6) model. The output of the function
is stored in the structure variable x. The threshold at which
the probabilities were computed for the lth gene is stored in
gene cpd(l).vecmedian using x.vecmedian and the
probabilities themselves are stored in gene cpd(l).T us-
ing x.T.

The code begins with the storing of the dimension of a gene

Conditional Probability Table for Nodes
node parents cpt values rep.
LEF1 Sample [0.84 0.16; 0.16 0.84]T

MYC Sample, [0.94 0.89 0.78 0.31;
TRCMPLX 0.06 0.11 0.22 0.69]T

CCND1 Sample, [0.95 0.89 0.81 0.28;
TRCMPLX 0.06 0.11 0.18 0.72] T

CD44 Sample, [0.93 0.90 0.67 0.42;
TRCMPLX 0.07 0.10 0.33 0.58]T

DKK1 Sample, [0.95 0.93 0.07 0.05 0.77 0.60 0.40 0.23;
MeDKK1, 0.05 0.07 0.93 0.95 0.23 0.40 0.60 0.76]T

TRCMPLX
DKK2 Sample [0.40 0.60; 0.60 0.40]T

DKK3-1 Sample [0.36 0.64; 0.64 0.36]T

DKK3-2 Sample [0.56 0.44; 0.44 0.56]T

DKK4 Sample, [0.94 0.88 0.82 0.28;
TRCMPLX 0.06 0.11 0.18 0.72]T

DACT1 Sample, [0.56 0.74 0.26 0.44;
MeDACT1 0.44 0.26 0.74 0.56]T

DACT2 Sample, [0.60 0.71 0.29 0.40;
MeDACT2 0.40 0.29 0.71 0.60]T

DACT3 Sample, [0.88 0.88 0.12 0.88 0.88 0.88 0.12 0.88;
H3K27me3, 0.12 0.12 0.88 0.12 0.12 0.12 0.88 0.12]T

H3K4me3
SFRP1 Sample, [0.88 0.98 0.02 0.12 0.20 0.96 0.04 0.80;

MeSFRP1, 0.12 0.02 0.98 0.88 0.80 0.04 0.96 0.20]T

TRCMPLX
SFRP2 Sample, [0.31 0.88 0.11 0.69;

MeSFRP2 0.69 0.11 0.89 0.31]T

SFRP3 Sample [0.20 0.80; 0.80 0.20]T

SFRP4 Sample, [0.71 0.60 0.40 0.29;
MeSFRP4 0.29 0.40 0.60 0.71]T

SFRP5 Sample, [0.31 0.89 0.11 0.69;
MeSFRP5 0.69 0.11 0.89 0.31]T

WIF1 Sample, [0.96 0.91 0.09 0.04 0.85 0.47 0.56 0.15;
MeWIF1, 0.04 0.09 0.91 0.96 0.15 0.53 0.47 0.85]T

TRCMPLX

Table 11 Conditional probability tables for gene nodes of
MPBK+EI . The state of the gene nodes remains [ia a] i.e. ’ia’ -
inactive or ’a’ - active [ia a]. Note that these values are from one
iteration of the 2-hold out experiment.

expression vector in vecTraining in r and c and recording
the length of the vector containing the labels for the training
data (in labelTraining) in lencond. Finally, the much
reported threshold is estimated here using the median of the
training data and stored in vecmedian.

% Rows is the gene expression and...
% columns are conditions (normal or
% cancerous)
[r, c] = size(vecTraining);
lencond = length(labelTraining);
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% Take median as the threshold
vecmedian = median(vecTraining);

In Sinha1, the effect of TRCMPLX on the gene expres-
sion has been analysed as it is not known to what degree the
TRCMPLX plays a role in the Wnt signaling pathway. To
investigate this Sinha1 incorporated a parameter p that en-
codes the effect of TRCMPLX on the expression of the
gene which is influenced by it. Thus while iterating through
the list of parents if one encounters TRCMPLX as a parent,
then p is initialized to a certain value. In Sinha1, the effect of
TRCMPLX being active (1 − p) is incremented in steps of
0.1 from {0.5 to 0.9} and respective ROC graphs are plotted
using the same.

% Defining affect of TRCMPLX on
% gene expression
noParents = length(parent);
for i = 1:noParents
if ˜isempty(strfind(model,’t’))
if strfind(parent{i},’TRCMPLX’)
p = 0.5;

end
end

end

It is important to note that the computation of gene probabil-
ities differ from model to model and a detailed description of
each computation is given for each gene for all three mod-
els, before explaining the computation for another gene. Also,
from Sinha1, theoretically, for a gene gi ∀i genes, let there be
ntr different instances of expression values from the sample
training data. Let each of the ntr gene expression values be
discretized to 0 and 1 based on their evaluation with respect
to the median threshold. The 1’s represent the total number of
expression where the gene is active and 0’s represent the total
number of expression where the gene is inactive. In case of
normal and tumorous samples, the proportions of 1’s and 0’s
may be different. The median of the expression values is em-
ployed as a threshold to decide the frequency of gi being active
or inactive given the state of the parent node(s). This median
is also used along with the labels of the training data to decide
the status of different parent factors affecting the gene under
consideration.

If one observes the network in figures 2 and 3 one finds that
there are nodes that have one, two or three parent nodes. Com-
putation of conditional probability tables for these child nodes
which represent gene expression for both tumor and normal
samples in the different models (i.e ’t1’ forMPBK+EI , ’t2’
forMPBK and ’p1’ forMNB+MPBK) require intuitive anal-
ysis of the expression data. Estimation of the cpts for three
gene nodes i.e DKK1, DKK2 and DACT3, each having
different parents depending on the type of the model has been

Table 12 Conditional probability table for DKK1 in MPBK+EI

(model-t1). h - probability of event being high; l - probability of
event being low. Serial numbers in brackets represent the ordering
of numbers in vectorial format.

CPT for DKK1 inMPBK+EI (model-t1)
Sample Methylation TRCMPLX Pr(DKK1=Off) Pr(DKK1=On)
Normal No Off h (1) l (9)
Tumor No Off h/l (2) l/h (10)
Normal Yes Off h (3) l (11)
Tumor Yes Off h (4) l (12)
Normal No On h (5) l (13)
Tumor No On h/l (6) l/h (14)
Normal Yes On h (7) l (15)
Tumor Yes On h (8) l (16)

explained below. Nodes that have similar corresponding be-
havior are enlisted but the estimation is not derived.

3.6.1 DKK1 in MPBK+EI (t1)Since there are three
parents for DKK1, namely MeDKK1, Sample and
TRCMPLX , the cpt values for the table is segregated
based on the status of methylation and quality of samples.
A 2 × 2 cross table for methylation and sample gener-
ates frequency estimates that can help derive probability val-
ues. The entries of the cross table depict the following
cases (a) methylated in normal (represented by vector mINn)
(b) un-methylated in normal (represented by vector umINn)
(c) methylated in tumorous (represented by vector mINt)
and (d) un-methylated in tumorous (represented by vector
umINt), cases. For every jth entry in the vecTraining,
if the label (labelTraining(j)) is normal (≤0) and
the DKK1 gene expression (vecTraining(j)) is less
than the estimated median (≤vecmedian) then value in
vecTraining(j) is appended to mINn. Here, ex-
pression level lower than median indicates probable re-
pression due to methylation in normal case. If the
label (labelTraining(j)) is normal (≤0) and the
DKK1 gene expression (vecTraining(j)) is greater
than the estimated median (≥vecmedian) then value
in vecTraining(j) is appended to umINn. Here,
expression level greater than median indicates probable
activation due to un-methylation in normal case. If
the label (labelTraining(j)) is tumorous (≥0) and
the DKK1 gene expression (vecTraining(j)) is less
than the estimated median (≤vecmedian) then value in
vecTraining(j) is appended to mINt. Here, expres-
sion level lower than median indicates probable repression
due to methylation in tumorous case. And finally, If the
label (labelTraining(j)) is tumorous (≥0) and the
DKK1 gene expression (vecTraining(j)) is greater
than the estimated median (≥vecmedian) then value in
vecTraining(j) is appended to umINt. Here, expression
level greater than median indicates probable activation due to
un-methylation in tumorous case.
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Sample Methylation TRCMPLX Pr(DKK1=Off) Pr(DKK1=On)

Normal No Off (A-a*p + 1)/(A + 2) (a*p + 1)/(A + 2)

Tumor No Off (B-b*p + 1) /(B + 2) (b*p + 1)/(B + 2)

Normal Yes Off (c*p + 1)/(C + 2) (C-c*p)/(C + 2)

Tumor Yes Off (d*p + 1)/(D + 2) (D-d*p + 1)/(D + 2)

Normal No On (A-a*(1-p) + 1)/(A + 2) (a*(1-p) + 1)/(A + 2)

Tumor No On (B-b*(1-p) + 1)/(B + 2) (b*(1-p) + 1)/(B + 2)

Normal Yes On (c*(1-p) + 1)/(C + 2) (C-c*(1-p) + 1)/(C + 2)

Tumor Yes On (d*(1-p) + 1)/(D + 2) (D-d*(1-p) + 1)/(D + 2)

MeDKK1 TRCMPLX
Sample

DKK1

Conditional probability table for node 
D K K 1 w i t h p a r e n t s S a m p l e , 
Methylation and TRCMPLX (model = t1)

Fig. 5 Conditional probability table for node DKK1 in MPBK+EI .

% Segregate values based on status
% of methylation and samples
mINn = [];
umINn = [];
mINt = [];
umINt = [];
for j = 1:lencond
if labelTraining(j) < 0 && ...
vecTraining(j) < vecmedian
mINn = [mINn, vecTraining(j)];

elseif labelTraining(j) < 0 && ...
vecTraining(j) >= vecmedian
umINn = [umINn, vecTraining(j)];

elseif labelTraining(j) > 0 && ...
vecTraining(j) < vecmedian
mINt = [mINt, vecTraining(j)];

else
umINt = [umINt, vecTraining(j)];

end
end

Also, since the actual probability values for the activation
of the TRCMPLX is not known the conditional probabil-
ities are multiplied with a probability value of p when the
TRCMPLX is off and with probability value 1 − p when
the TRCMPLX is on. Before estimating the values for cpt
of DKK1, it is important to see how (1) the probability ta-
ble would look like and (2) the probability table is stored in
BNT (Murphy et al.17). Table 12 represents the conditions
of sample as well as the methylation along with transcription

complex and the probable beliefs of events (DKK1 being
on/off). With three parents and binary state, the total num-
ber of conditions is 23. To estimate the values of the prob-
able beliefs of an event, the following computation is done.
(Case - TRCMPLX is Off) The Pr(DKK1 - On|Sample
- Normal,Me - UM) being low, is the fraction of number of
1’s in the normal sample (a×p) and the sum of total num-
ber of normal samples and number of 1’s in the tumorous
samples, i.e the non-methylated gene expression values in tu-
morous samples (A). Similarly, Pr(DKK1 - On|Sample -
Tumor,Me - UM) being low, is the fraction of number of 1’s
in the tumorous sample (b×p) and the sum of total number
of tumorous samples and number of 1’s in the normal sam-
ples, i.e the non-methylated gene expression values in normal
samples (B). Again, Pr(DKK1 - Off|Sample - Normal,Me -
M) being high, is the fraction of number of 0’s in the normal
sample (c×p) and the sum of total number of normal samples
and number of 0’s in the tumorous samples, i.e the methy-
lated gene expression values in tumorous samples (C). Finally,
Pr(DKK1 - Off|Sample - Tumor,Me - M) being high, is the
fraction of number of 0’s in the tumorous sample (d×p) and
the sum of total number of tumorous samples and number of
0’s in the normal samples, i.e the methylated gene expression
values in normal samples (D).

(Case - TRCMPLX is On) Next, the Pr(DKK1 -
On|Sample - Normal,Me - UM) being low, is the fraction
of number of 1’s in the normal sample (a×(1 − p)) and the
sum of total number of normal samples and number of 1’s
in the tumorous samples, i.e the non-methylated gene expres-
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sion values in tumorous samples (A). Similarly, Pr(DKK1 -
On|Sample - Tumor,Me - UM) being low, is the fraction of
number of 1’s in the tumorous sample (b×(1−p)) and the sum
of total number of tumorous samples and number of 1’s in the
normal samples, i.e the non-methylated gene expression val-
ues in normal samples (B). Again, Pr(DKK1 - Off|Sample -
Normal,Me - M) being high, is the fraction of number of 0’s
in the normal sample (c×(1−p)) and the sum of total number
of normal samples and number of 0’s in the tumorous samples,
i.e the methylated gene expression values in tumorous samples
(C). Finally, Pr(DKK1 - Off|Sample - Tumor,Me - M) being
high, is the fraction of number of 0’s in the tumorous sample
(d×(1−p)) and the sum of total number of tumorous samples
and number of 0’s in the normal samples, i.e the methylated
gene expression values in normal samples (D). Complemen-
tary conditional probability values for DKK1 being inactive
can easily be computed from the above estimated values.

% Generate frequencies for conditional
% probability values

% pr(DKK1 - On|Sample - Normal,Me - UM)
% # of On’s in Normal
a = length(umINn);
% total # of On’s in Normal and
% Unmethylation
A = length(umINn) + length(mINn)...
+ length(umINt);

% pr(DKK1 - On|Sample - Tumor,Me - UM)
% # of On’s in Tumor
b = length(umINt);
% total # of On’s in Normal and
% Unmethylation
B = length(umINt) + length(umINn)...
+ length(mINt);

% pr(DKK1 - Off|Sample - Normal,Me - M)
% # of Off’s in Normal
c = length(mINn);
% total # of Off’s in Normal and...
% Methylation
C = length(mINn) + length(umINn)...
+ length(mINt);

% pr(DKK1 - Off|Sample - Tumor,Me - M)
% # of Off’s in Normal
d = length(mINt);
% total # of Off’s in Normal and
% Methylation
D = length(mINt) + length(umINt)...
+ length(mINn);

These values are stored in variable T and the estimation is
shown in the following section of the code. After the val-
ues in T has been established, a constant 1 is added as pseudo
count to convert the distribution to a probability distribution
via Dirichlet process. THIS IS DONE TO REMOVE ANY DE-
TERMINISTIC 0/1 VALUES APPEARING IN THE PROBABIL-
ITY TABLES. If 0/1 appears in the probability tables then one
has deterministic evidence regarding an event and the building
of the Bayesian engine collapses. These counts also represent
the unobserved that might not have been recorded due to small
sample size. The DIRICHLET PROCESS is a generalization of
the Dirichlet distribution which is parameterized by a vector of
positive reals. The pseudo-counts here form the positive val-
ues. What this basically means is that the probability density
function returns the belief that the probabilities of some rival
events given that each event has been observed non-negative
number of times. These distributions are often used as prior
distributions in Bayesian statistics.

Finally, the frequencies/probabilities in T are normalized
in order to obtain the final conditional probability values for
DKK1. Estimation of cpts for genes SFRP1, WIF1 and
DKK4 which have methylation, TRCMPLX and Sample
as parents require same computations as above. Figure
5 shows the pictorial representation of one of the cpt in
MPBK+EI .

% Multiply probability of TRCMPLX in
% on/off state to add the 3rd
% dimension in deciding the conditional
% probability tables.

% Conditional probability table for
% DKK1 given its parents
T = [A-a*p, a*p;...
B-b*p, b*p;...
c*p, C-c*p;...
d*p, D-d*p;...
A-a*(1-p), a*(1-p);...
B-b*(1-p), b*(1-p);...
c*(1-p), C-c*(1-p);...
d*(1-p), D-d*(1-p)];

[r,c] = size(T);

% Convert the table to probability
% distribution via Dirichlet process
T = T + 1;
for i = 1:r
T(i,:) = T(i,:)./sum(T(i,:));

end

3.6.2 DKK1 in MPBK (t2)There are two parents for
DKK1, namely TRCMPLX and Sample. The conditional
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Fig. 6 Conditional probability table for node DKK1 in MPBK .

Table 13 Conditional probability table for DKK1 in MPBK

(model-t2). h - probability of event being high; l - probability of
event being low. Serial numbers in brackets represent the ordering
of numbers in vectorial format.

CPT for DKK1 inMPBK (model-t2)
Sample TRCMPLX Pr(DKK1=Off) Pr(DKK1=On)
Normal Off h (1) l (5)

Tumorous Off l (2) h (6)
Normal On h (3) l (7)

Tumorous On l (4) h (8)

probability value for a gene being active or inactive is esti-
mated based on the state of the Sample. Again, since the ac-
tual probability values for the activation of the TRCMPLX
is not known the conditional probabilities are multiplied with
a probability value of pwhen the TRCMPLX is off and with
probability value 1− p when the TRCMPLX is on.

The analysis of quality of sample generates frequency
estimates that can help derive probability values. These
frequencies depict the following cases (a) gene repressed
in normal (represented by vector offINn) (b) gene ex-
pressed in normal (represented by vector onINn) (c) gene
repressed in tumorous (represented by vector offINt)
and (d) gene expressed in tumorous (represented by vector
onINt), cases. For every jth entry in the vecTraining,
if the label (labelTraining(j)) is normal (≤0)
and the DKK1 gene expression (vecTraining(j))
is less than the estimated median (≤vecmedian) then
value in vecTraining(j) is appended to offINn.
Here, expression level lower than median indicates prob-
able gene repression in normal case. If the la-
bel (labelTraining(j)) is normal (≤0) and the
DKK1 gene expression (vecTraining(j)) is greater

than the estimated median (≥vecmedian) then value in
vecTraining(j) is appended to onINn. Here, expres-
sion level greater than median indicates probable gene acti-
vation in normal case. If the label (labelTraining(j))
is tumorous (≥0) and the DKK1 gene expression
(vecTraining(j)) is less than the estimated median
(≤vecmedian) then value in vecTraining(j) is ap-
pended to offINt. Here, expression level lower than me-
dian indicates probable gene repression in tumour case. And
finally, If the label (labelTraining(j)) is tumorous (≥0)
and the DKK1 gene expression (vecTraining(j)) is
greater than the estimated median (≥vecmedian) then value
in vecTraining(j) is appended to onINt. Here, expres-
sion level greater than median indicates probable gene activa-
tion in tumorous case.

% Segregate values based on
% status of TRCMPLX
onINn = [];
offINn = [];
onINt = [];
offINt = [];
for j = 1:lencond
if labelTraining(j) < 0 &&...
vecTraining(j) < vecmedian
offINn = [offINn, vecTraining(j)];
elseif labelTraining(j) < 0 &&...
vecTraining(j) >= vecmedian
onINn = [onINn, vecTraining(j)];
elseif labelTraining(j) > 0 &&...
vecTraining(j) < vecmedian
offINt = [offINt, vecTraining(j)];
else
onINt = [onINt, vecTraining(j)];
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end
end

Again, before estimating the values for cpt of DKK1, it is
important to see how (1) the probability table would look
like and (2) the probability table is stored in BNT (Murphy
et al.17). Table 13 represents the conditions of Sample as well
as TRCMPLX and the probable beliefs of events (DKK1
being on/off). With two parents and binary state, the total
number of conditions is 22. To estimate the values of the prob-
able beliefs of an event, the following computation is done.
The probability of gene expression being active given Sample
is normal and TRCMPLX is off i.e Pr(DKK1 = Active
|Sample = Normal, TRCMPLX = Off), is the fraction of
number of 1’s in the normal sample (a×p) and the sum of to-
tal number of normal samples (A). Similarly, the probability of
gene expression being active given Sample is tumorous and
TRCMPLX is off i.e Pr(DKK1 = active |Sample = tumor-
ous, TRCMPLX = Off), is the fraction of number of 1’s in
the tumorous sample (b×p) and the sum of total number of tu-
morous samples (B). Again, the probability of gene expression
being inactive given Sample is normal and TRCMPLX is
on i.e Pr(DKK1 = inactive |Sample = normal, TRCMPLX
= On), is the fraction of number of 0’s in the normal sample
(A-a×(1 − p)) and the sum of total number of normal sam-
ples (A). Lastly, the probability of gene expression being in-
active given Sample is tumorous and TRCMPLX is on i.e
Pr(DKK1 = inactive |Sample = tumorous, TRCMPLX =
On), is the fraction of number of 0’s in the tumorous sample
(B-b×(1−p)) and the sum of total number of tumorous sam-
ples (b). Complementary conditional probability values for
DKK1 being inactive can easily be computed from the above
estimated values.

% Generate frequencies for conditional
% probability values
% pr(DKK1 - On|Sample - N,TRCMPLX - Off)
% # of On’s when Sample is N
a = length(onINn);
% total # of TRCMPLX is Off
A = length(onINn) + length(offINn);

% pr(DKK1 - On|Sample - T,TRCMPLX - Off)
% # of On’s when Sample is T
b = length(onINt);
% total # of TRCMPLX is On
B = length(onINn) + length(offINt);

% Conditional probability table
% for DKK1 given its parents
T = [A-a*p, a*p;...
B-b*p, b*p;...
A-a*(1-p), a*(1-p);...

Table 14 Conditional probability table for DKK1 in
MNB+MPBK (model-p1). h - probability of event being high; l -
probability of event being low. Serial numbers in brackets represent
the ordering of numbers in vectorial format.

CPT for DKK1 inMNB+PBK (model-p1)
TRCMPLX Pr(DKK1=Off) Pr(DKK1=On)

Off h (1) l (3)
On h (2) l (4)

B-b*(1-p), b*(1-p)];
[r,c] = size(T);

After the values in T has been established, a constant 1 is
added as pseudo count to convert the distribution to a prob-
ability distribution via Dirichlet process. Finally, the frequen-
cies in T are normalized in order to obtain the final con-
ditional probability values for DKK1. Estimation of cpts
for genes SFRP1, CCND1, CD44, WIF1, MYC and
DKK4 which has TRCMPLX and Sample as parents re-
quire same computations as above. Figure 6 shows the picto-
rial representation of one of the cpt inMPBK .

% Convert the table to probability
% distribution via Dirichlet process
T = T + 1;
for i = 1:r
T(i,:) = T(i,:)./sum(T(i,:));

end

3.6.3 DKK1 in MNB+MPBK (p1)Following the Naive
Bayes model presented by Verhaegh et al.2 and making slight
modifications to it, Sinha1 generated MNB+MPBK . In this
all genes have a single parent, namely TRCMPLX and it is
assumed that the predicted state of TRCMPLX is exactly
the same as the quality of the test sample. Thus the initial
probability values for TRCMPLX are assumed to be fixed
and no variation is made on it. The conditional probability
value for a gene being active or inactive is estimated based on
the state of the TRCMPLX .

The segregation of the probability values depends on the
following conditions (a) gene is active and TRCMPLX is
on (represented by vector onINTrOn) (b) gene is inactive and
TRCMPLX is off (represented by vector offINTrOn) (c)
gene is active and TRCMPLX is off (represented by vector
onINTrOff) and (d) gene is inactive (represented by vector
offINTrOff). For every jth entry in the vecTraining,
if the label (labelTraining(j)) is ≤0 (TRCMPLX is
off) and the DKK1 gene expression (vecTraining(j))
is less than the estimated median (≤vecmedian) then value
in vecTraining(j) is appended to offINTrOff. If
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Fig. 7 Conditional probability table for node DKK1 in MNB+MPBK .

the label (labelTraining(j)) is ≤0 (TRCMPLX is
off) and the DKK1 gene expression (vecTraining(j))
is greater than the estimated median (≥vecmedian) then
value in vecTraining(j) is appended to onINTrOff.
If the label (labelTraining(j)) is ≥0 (TRCMPLX is
on) and the DKK1 gene expression (vecTraining(j))
is less than the estimated median (≤vecmedian) then
value in vecTraining(j) is appended to offINTrOn.
And finally, if the label (labelTraining(j)) is ≥0
(TRCMPLX is on) and the DKK1 gene expression
(vecTraining(j)) is greater than the estimated median
(≥vecmedian) then value in vecTraining(j) is ap-
pended to onINTrOn.

% Segregate values based on
% status of TRCMPLX
onINTrOn = [];
offINTrOn = [];
onINTrOff = [];
offINTrOff = [];
for j = 1:lencond
if labelTraining(j) < 0 &&...
vecTraining(j) < vecmedian
offINTrOff = [offINTrOff,...
vecTraining(j)];
elseif labelTraining(j) < 0 &&...
vecTraining(j) >= vecmedian
onINTrOff = [onINTrOff,...
vecTraining(j)];
elseif labelTraining(j) > 0 &&...
vecTraining(j) < vecmedian
offINTrOn = [offINTrOn,...
vecTraining(j)];
else
onINTrOn = [onINTrOn,...
vecTraining(j)];

end

Lets again see how (1) the probability table would look like
and (2) the probability table is stored in BNT (Murphy et al.17)
before estimating the values for cpt of DKK1. Table 14 rep-
resents the conditions of TRCMPLX and the probable be-
liefs of events (DKK1 being on/off). With a single parent
and binary state, the total number of conditions is 21. To esti-
mate the values of the probable beliefs of an event, the follow-
ing computation is done. The probability of gene expression
being active given TRCMPLX is off i.e Pr(DKK1 = Ac-
tive |TRCMPLX = Off), is the fraction of number of 1’s in
the normal sample (a) and the sum of total number of nor-
mal samples (A). Similarly, the probability of gene expression
being inactive given TRCMPLX is off i.e Pr(DKK1 = ac-
tive |TRCMPLX = On), is the fraction of number of 1’s in
the tumorous sample (b) and the sum of total number of tu-
morous samples (B). Complementary conditional probability
values forDKK1 being inactive can easily be computed from
the above estimated values. Figure 6 shows the pictorial rep-
resentation of one of the cpt inMPBK .

% Generate frequencies for
% conditional probability values
% pr(DKK1 - On | TRCMPLX - Off)
% # of On’s when TRCMPLX is Off
a = length(onINTrOff);
% total # of TRCMPLX is Off
A = length(onINTrOff) + length(offINTrOff);

% pr(DKK1 - On | TRCMPLX - On)
% # of On’s when TRCMPLX is On
b = length(onINTrOn);
% total # of TRCMPLX is On
B = length(onINTrOn) + length(offINTrOn);

% Conditional probability table
% for DKK1 given its parents
T = [A-a, a;...
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Table 15 Conditional probability table for DKK2 in
MNB+MPBK (model-t1). h - probability of event being high; l -
probability of event being low. Serial numbers in brackets represent
the ordering of numbers in vectorial format.

CPT for DKK2 inMNB+PBK (model-t1)
Sample Pr(DKK2=Off) Pr(DKK2=On)
Normal l/h (1) h/l (3)
Tumor h/l (2) l/h (4)

B-b, b];
[r,c] = size(T);

After the values in T has been established, a constant 1 is
added as pseudo count to convert the distribution to a probabil-
ity distribution via Dirichlet process. Finally, the frequencies
in T are normalized in order to obtain the final conditional
probability values for DKK1. Figure 7 shows the pictorial
representation of one of the cpt inMNB+MPBK .

% Convert the table to probability
% distribution via Dirichlet process
T = T + 1;
for i = 1:r
T(i,:) = T(i,:)./sum(T(i,:));

end

3.6.4 DKK2 in MPBK+EI (t1)Sample is the single
parent of DKK2. The conditional probability value for a
gene being active or inactive is estimated based on the state
of the Sample. The analysis of quality of sample gener-
ates frequency estimates that can help derive probability val-
ues. These frequencies depict the following cases (a) gene
repressed in normal (represented by vector offINn) (b)
gene expressed in normal (represented by vector onINn) (c)
gene repressed in tumorous (represented by vector offINt)
and (d) gene expressed in tumorous (represented by vector
onINt), cases. For every jth entry in the vecTraining,
if the label(labelTraining(j)) is normal (≤0) and
the DKK2 gene expression (vecTraining(j)) is
less than the estimated median (≤vecmedian) then
value in vecTraining(j) is appended to offINn.
Here, expression level lower than median indicates prob-
able gene repression in normal case. If the la-
bel (labelTraining(j)) is normal (≤0) and the
DKK2 gene expression (vecTraining(j)) is greater
than the estimated median (≥vecmedian) then value in
vecTraining(j) is appended to onINn. Here, expres-
sion level greater than median indicates probable gene acti-
vation in normal case. If the label (labelTraining(j))
is tumorous (≥0) and the DKK2 gene expression

(vecTraining(j)) is less than the estimated median
(≤vecmedian) then value in vecTraining(j) is ap-
pended to offINt. Here, expression level lower than me-
dian indicates probable gene repression in tumour case. And
finally, If the label (labelTraining(j)) is tumorous (≥0)
and the DKK2 gene expression (vecTraining(j)) is
greater than the estimated median (≥vecmedian) then value
in vecTraining(j) is appended to onINt. Here, expres-
sion level greater than median indicates probable gene activa-
tion in tumorous case.

% Segregate values based on
% different types of samples
onINn = [];
offINn = [];
onINt = [];
offINt = [];
for j = 1:lencond
if labelTraining(j) < 0 &&...
vecTraining(j) < vecmedian
offINn = [offINn, vecTraining(j)];
elseif labelTraining(j) < 0 &&...
vecTraining(j) >= vecmedian
onINn = [onINn, vecTraining(j)];
elseif labelTraining(j) > 0 &&...
vecTraining(j) < vecmedian
offINt = [offINt, vecTraining(j)];
else
onINt = [onINt, vecTraining(j)];
end

end

Lets again see how (1) the probability table would look like
and (2) the probability table is stored in BNT (Murphy et al.17)
before estimating the values for cpt of DKK2. Table 15 rep-
resents the conditions of Sample and the probable beliefs of
events (DKK2 being on/off). With a single parent and binary
state, the total number of conditions is 21. To estimate the val-
ues of the probable beliefs of an event, the following compu-
tation is done. The probability of gene expression being active
given Sample is normal i.e Pr(DKK2 = Active |Sample =
Normal), is the fraction of number of 1’s in the normal sample
(a) and the sum of total number of normal samples (A). Sim-
ilarly, the probability of gene expression being active given
Sample is tumorous i.e Pr(DKK2 = active |Sample = Tu-
morous), is the fraction of number of 1’s in the tumorous sam-
ple (b) and the sum of total number of tumorous samples (B).
Complementary conditional probability values forDKK2 be-
ing inactive can easily be computed from the above estimated
values.

% Generate frequencies for
% conditional probability values
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Fig. 8 Conditional probability table for node DKK2 in MPBK+EI and MPBK .

% pr(DKK2 - On | Sample - Normal)
% # of On’s in Normal
a = length(onINn);
% total # of samples in Normal
A = length(onINn) + length(offINn);

% pr(DKK2 - On | Sample - Tumor)
% # of On’s in Normal
b = length(onINt);
% total # of samples in Tumor
B = length(onINt) + length(offINt);

After the values in T has been established, a constant 1 is
added as pseudo count to convert the distribution to a probabil-
ity distribution via Dirichlet process. Finally, the frequencies
in T are normalized in order to obtain the final conditional
probability values for DKK2. Estimation of cpts for genes
DKK3 − 1, DKK3 − 2, SFRP3 and LEF1 which have
Sample as parent require same computations as above.

% Conditional probability table for
% DKK2 given its parents
T = [A-a, a;...
B-b, b];

[r,c] = size(T);

% Convert the table to probability
% distribution via Dirichlet process
T = T + 1;
for i = 1:r
T(i,:) = T(i,:)./sum(T(i,:));

end

3.6.5 DKK2 inMPBK+EI (t2)When epigenetic factors
are removed fromMPBK+EI and the model transformed into
MPBK i.e model=’t2’, then the estimation of cpt values for
DKK2 remain the same as in model=’t1’. Same computa-
tions apply for genes DKK3 − 1, DKK3 − 2, SFRP2,

Table 16 Conditional probability table for DACT3 in MPBK

(model-t1). h - probability of event being high; l - probability of
event being low. 1 - low; 2 - high.Serial numbers in brackets
represent the ordering of numbers in vectorial format.

CPT for DACT3 inMPBK+EI (model-t1)
H3K27me3 H3K4me3 Sample Pr(DACT3=Off) Pr(DACT3=On)

1 1 Normal h (1) l (9)
2 1 Normal h (2) l (10)
1 2 Normal l (3) h (11)
2 2 Normal h (4) l (12)
1 1 Tumor h (5) l (13)
2 1 Tumor h (6) l (14)
1 2 Tumor l (7) h (15)
2 2 Tumor h (8) l (16)

SFRP3, SFRP4, SFRP5, LEF1, DACT1, DACT2 and
DACT3, in model=’t2’.

Figure 6 shows the pictorial representation of one of the cpt
inMPBK+EI andMPBK .

3.6.6 DACT3 in MPBK+EI (t1)The conditional prob-
ability value for a gene being active or inactive is esti-
mated from generated frequency estimates that can help
derive probability values. These frequencies depict the
following cases (a) gene repressed in normal (represented
by vector offINn) (b) gene expressed in normal (rep-
resented by vector onINn) (c) gene repressed in tu-
morous (represented by vector offINt) and (d) gene
expressed in tumorous (represented by vector onINt),
cases. For every jth entry in the vecTraining,
if the label(labelTraining(j)) is normal (≤0) and
the DACT3 gene expression (vecTraining(j)) is
less than the estimated median (≤vecmedian) then
value in vecTraining(j) is appended to offINn.
Here, expression level lower than median indicates prob-
able gene repression in normal case. If the la-
bel (labelTraining(j)) is normal (≤0) and the
DACT3 gene expression (vecTraining(j)) is greater
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H3K27me3 H3K4me3 Sample Pr(DACT3=Off) Pr(DACT3=On)

low low Off (A - a + 1)/(A + 2) (a + 1)/(A + 2)

high low Off (A - a + 1) /(A + 2) (a + 1)/(A + 2)

low high Off (a + 1)/(A + 2) (A - a)/(A + 2)

high high Off (A - a + 1)/(A + 2) (a + 1)/(A + 2)

low low On (b + 1)/(B + 2) (B - b + 1)/(B + 2)

high low On (b + 1)/(B + 2) (B - b + 1)/(B + 2)

low high On (B - b + 1)/(B + 2) (b + 1)/(B + 2)

high high On (b + 1)/(B + 2) (B - b + 1)/(B + 2)

H3K27me3

Sample

DACT3

Conditional probability table for node 
DACT3 w it h p a re nt s S amp le , 
H3K27me3 and H3K4me3 (model = t1)

H3K4me3

Fig. 9 Conditional probability table for node DACT3 in MPBK+EI .

than the estimated median (≥vecmedian) then value in
vecTraining(j) is appended to onINn. Here, expres-
sion level greater than median indicates probable gene acti-
vation in normal case. If the label (labelTraining(j))
is tumorous (≥0) and the DACT3 gene expression
(vecTraining(j)) is less than the estimated median
(≤vecmedian) then value in vecTraining(j) is ap-
pended to offINt. Here, expression level lower than me-
dian indicates probable gene repression in tumour case. And
finally, If the label (labelTraining(j)) is tumorous (≥0)
and the DACT3 gene expression (vecTraining(j)) is
greater than the estimated median (≥vecmedian) then value
in vecTraining(j) is appended to onINt. Here, expres-
sion level greater than median indicates probable gene activa-
tion in tumorous case.

% Segregate values based on status
% of histone repressive and active
% marks
onINn = [];
offINn = [];
onINt = [];
offINt = [];

for j = 1:lencond
if labelTraining(j) < 0 &&...
vecTraining(j) < vecmedian
offINn = [offINn, vecTraining(j)];

elseif labelTraining(j) < 0 &&...
vecTraining(j) >= vecmedian

onINn = [onINn, vecTraining(j)];
elseif labelTraining(j) > 0 &&...
vecTraining(j) < vecmedian
onINt = [onINt, vecTraining(j)];

else
offINt = [offINt, vecTraining(j)];

end
end

Lets again see how (1) the probability table would look
like and (2) the probability table is stored in BNT (Murphy
et al.17), before estimating the values for cpt of DACT3.
Table 16 represents the conditions of Sample, H3K4me3
and H3K4me3 the probable beliefs of events (DACT3 be-
ing on/off). Finally, from biological data presented in Jiang
et al.3 the conditional probability values for theDACT3 gene
being active based on the histone modification and the avail-
able samples suggest that DACT3 expression is high in nor-
mal samples when the histone repressive mark H3K27me3
is reduced and activating mark H3K4me3 are present in
high abundance. Thus, the probability i.e Pr(DACT3 =
active|HK327me3 = low,H3K4me3 = high, Sample =
normal) is the fraction of the number of 1’s in the normal
samples (a) and the total number of normal samples (A). For
all other conditions of H3K27me3 and H3K4me3 when
the Sample is normal the probability of DACT3 being ac-
tive is (A-a), i.e flip or complementray of Pr(DACT3 =
active|HK327me3 = low,H3K4me3 = high, Sample =
normal). This is because in all other conditions of the hi-
stone marks the probability of DACT3 being active will
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be reverse of what it is when H3K27me3 is reduced and
H3K4me3 is present in abundance. Similarly, in case of
tumorous samples, the probability of DACT3 being active
will occur when H3K27me3 is reduced and H3K4me3 is
high abundance (a rare phenomena). Thus the probability i.e
Pr(DACT3 = active|HK327me3 = low,H3K4me3 =
high, Sample = tumorous) is the fraction of the number of
1’s in the tumorous sample (b) and the total number of tu-
morous samples (B). For all other conditions of H3K27me3
andH3K4me3 when the Sample is tumorous the probability
of DACT3 being active is (B-b), i.e flip or complementray
of Pr(DACT3 = active|HK327me3 = low,H3K4me3 =
high, Sample = tumorous). . The reason for flip is the same
as described above.

% Generate frequencies for
% conditional probability values
% pr(DACT3 - On | H3K27me3 - 1,
% H3K4me3 - 2, Sample - Normal)
% # of On’s in Normal
a = length(onINn);
% total # of On’s in Normal
A = length(offINn) + length(onINn);

% pr(DACT3 - On | H3K27me3 - 1,
% H3K4me3 - 2, Sample - Tumor)
% # of On’s in Tumor
b = length(onINt);
% total # of On’s in Tumor
B = length(offINt) + length(onINt);

% In rest of the cases where
% (H3K27me3 - 1 and H3K4me3 - 2) is not
% present, the probabilities reverse.

After the values in T has been established, a constant 1 is
added as pseudo count to convert the distribution to a prob-
ability distribution via Dirichlet process. Finally, the frequen-
cies in T are normalized in order to obtain the final conditional
probability values for DACT3. Figure 9 shows the pictorial
representation of one of the cpt inMPBK+EI .

% Conditional probability table
% for DACT3 given its parents
T = [a, A-a;...
a, A-a;...
A-a, a;...
a, A-a;...
b, B-b;...
b, B-b;...
B-b, b;...
b, B-b];

[r,c] = size(T);

% Convert the table to probability
% distribution via Dirichlet process
T = T + 1;
for i = 1:r
T(i,:) = T(i,:)./sum(T(i,:));

end

Finally, for every gene, after the computation of the prob-
ability values in their respective cpt, the function generate-
Genecpd returns the following arguments as output.

gene_cpd = struct();
gene_cpd.vecmedian = vecmedian;
gene_cpd.T = T;

Tables 10 and 11 from Sinha1 show the assumed and com-
puted estimates for all the nodes that represent non-genetic
and genetic factors in the modeled pathway driven by the
dataset. It might be that the probability values deviate from
the mathematics formuations as these formulations donot cap-
ture all the intricacies of the biological phenomena. For ex-
ample, the cross talk that happens between the histone modi-
fiers varies the expression ofDACT3. But these time varying
dynamics cannot be captured in the model as the model repre-
sents a static time snapshot of the phenomena. More detailed
explanation of this phenomena is available in Jiang et al.3.
The cpd forDACT3 in table 11 states that whenH3K27me3
is low and H3K4me3 is high, irrespective of the state of the
sample, the belief represented by the conditional probability
that DACT3 is repressed or off is high (and vice versa). Fig-
ure 9 shows the mathematical representation of the same. Sim-
ilar interpretations can found for other cases.

4 A programming project for practice

To get a feel of the project, interested readers might want to
implement the following steps when the evidence eviDence
is ’me’. The code needs to be embedded as a case in the switch
part of the twoHoldOutExp function. The idea is to perturb
the methylation nodes with binary values and find if one can
converge to the correct prediction of state of TRCMPLX as
well as the Sample. These binary values are stored in a vector
and represents a permutation of the methylation states of the
methylation node in MPBK+EI . Varying the values of the
vector can help study how perturbations affect the prediction
of the network and the predictions. The steps are given below
-

1. Define variables for storing predictions of TRCMPLX
(tempTRCMPLX) and Sample (tempSample).
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2. Find the total number of methylation cases in
MPBK+EI and store the number in a variable
noMethylation.

3. Generate binary values for noMethylation nodes.
Define a cell (binaryStatesOfMethylation) that
can store vectors of binary values where every permu-
tation represents a set of methylation states. The total
number of permutations should be 2noMethylation (stored
in noMethylationConfig). One might want to use
quantizer and num2bin functions from matlab.

4. Next, generate methylation evidences. Define a 2D ma-
trix variable methylationEvidence that stores the
methylation evidences. One might want to use the mat-
lab function str2num. Finally, add a value of 1 to methy-
lationEvidence as the BNT takes in ’1’ and ’2’ as states
representing binary values.

5. Build evidence for inference for every test example. The
steps following might be necessary

• For every methylation configuration and for every
methylation node build evidence.
• Build a new bayesian network in bnetEngine

using jtree inf engine and store the mod-
ified engine (in engine) using the function
enter evidence.
• Finally, compute the Pr(TRCMPLX = 2|ge as ev-

idence) and Pr(Sample = 2|ge as evidence) using
the function marginal nodes.

6. Store predicted results on observed methylation in struc-
ture Runs indexed with runCnt.

After the section of new code is filled in, run the code and
check the results.

5 Conclusion

A pedagogical walkthrough of a computational modeling and
simulation project is presented using parts of programming
code interleaved with theory. The purpose behind this endeav-
our is to acclimatize and ease the understanding of beginner
students and researchers in transition, who intend to work on
computational signaling biology projects. To this end, static
Bayesian network models for the Wnt signaling pathway has
been selected for elucidation. This is done due to lack or
paucity of manuscripts explaining the computational experi-
ments from tutorial perspective due to restrictive policies.
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