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Insight, Innovation and Integration
Simulation study involving computational experiments dealing with Wnt signaling pathways abound in literature but often lack a
pedagogical perspective that might ease the understanding of beginner students and researchers in transition who intend to work
on modeling of the pathway. This paucity might happen due to restrictive policies which enforce an unwanted embargo on the
sharing of important scientific knowledge. The manuscript elucidates embedding of prior biological knowledge, integration of
heterogeneous information, transformation of biological hypothesis into computational framework and design of experiments in
a simple manner interleaved with aspects of Bayesian Network toolbox and Matlab code so as to help readers get a feel of a
project related to modeling of the pathway.
Abstract
A tutorial introduction to computational modeling of Wnt signaling pathway in a human colorectal cancer dataset using static
Bayesian network models is provided. This work endeavours to expound in detail the simulation study in Matlab along with the
code while explaining the concepts related to Bayesian networks. This is done in order to ease the understanding of beginner
students and researchers in transition to computational signaling biology, who intend to work in the field of modeling of signaling
pathways. The case study is based on the contents of the advance article by Sinha1 and takes the reader in a step by step process
of how • the collection and the transformation of the available biological information from literature is done, • the integration
of the heterogeneous data and prior biological knowledge in the network is achieved, • the simulation study is designed, • the
hypothesis regarding a biological phenomena is transformed into computational framework, and • results and inferences drawn
using d-connectivity/separability are reported. It is hoped that the walkthrough will aid biologists understand the design of the
computational experiments using causal models. The manuscript finally ends with a programming assignment to help the readers
get hands on experience of a perturbation project. Matlab code with dataset is made available under GNU GPL v3 license at
google code project on https://code.google.com/p/static-bn-for-wnt-signaling-pathway

1 A journey of thousand miles begins with a
single step

Simulation study involving computational experiments deal-
ing with signaling pathways abound in literature but often lack
a pedagogical perspective that might ease the understanding of
beginning students and researchers in transition who intend to
work on computational modeling of the pathways. Often, it is
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hard for beginners to comprehend a starting point of a project
and the amount of time spent is immense before a project takes
shape. This manuscript makes use of a synergistic approach to
elucidate various concepts in a simple manner along with the
exposition of design of experiments as well as the code so as to
help beginners get a feel of a project related to computational
modeling of a signaling pathway. Programming along with
the exposition in the manuscript could clear up issues faced
during the execution of the project.

This manuscript uses the contents of the advance article
Sinha1 as a basis to explain the workflow of a computational
simulation project involving Wnt signaling pathway in human
colorectal cancer. The aim of the article was to computa-
tionally test whether the activation of β-catenin and TCF4
based transcription complex always corresponds to the tumor-
ous state of the test sample or not. To achieve this the gene
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Fig. 1 A cartoon of wnt signaling pathway contributed by Verhaegh
et al. 2. Part (A) represents the destruction of β-catenin leading to
the inactivation of the wnt target gene. Part (B) represents activation
of wnt target gene.

expression data provided by Jiang et al.3 was used in the com-
putational experiments. Further, to refine the model, prior bi-
ological knowledge related to the intra/extracellular factors of
the pathway (available in literature) was integrated along with
epigenetic information.

Theory and programming code will be explained in an in-
terleaved manner to help the readers get a feel of the project
as well as come get an insight into the hurdles faced will exe-
cuting such a project. Material from Sinha1 will be presented
in grey colored boxes and used to explain the various aspects
of the Matlab code presented here. Code will be presented in
typewriter font and functions in the text will be presented
in sans serif.

2 Modeling and simulation

2.1 Data collection and estimation

An important component of this project is the Bayesian Net-
work Toolbox provided by Murphy et al.15 and made freely
available for download on https://code.google.
com/p/bnt/ as well as a Matlab license. Instructions for
installations are provided on the website. One can make a di-
rectory titled temp with a subdirectory named data and trans-
fer the geneExpression.mat file into data.

>> mkdir temp
>> cd temp
>> mkdir data
>>

The .mat file contains expression profiles from Jiang et al.3

for genes that play a role in Wnt signaling pathway at an in-

Canonical Wnt signaling pathway The canonical Wnt sig-
naling pathway is a transduction mechanism that contributes
to embryo development and controls homeostatic self re-
newal in several tissues (Clevers4). Somatic mutations in the
pathway are known to be associated with cancer in differ-
ent parts of the human body. Prominent among them is the
colorectal cancer case (Gregorieff and Clevers5). In a suc-
cinct overview, the Wnt signaling pathway works when the
Wnt ligand gets attached to the Frizzled(fzd)/LRP corecep-
tor complex. Fzd may interact with the Dishevelled (Dvl)
causing phosphorylation. It is also thought that Wnts cause
phosphorylation of the LRP via casein kinase 1 (CK1) and
kinase GSK3. These developments further lead to attrac-
tion of Axin which causes inhibition of the formation of the
degradation complex. The degradation complex constitutes
ofAxin, the β-catenin transportation complexAPC, CK1
and GSK3. When the pathway is active the dissolution of
the degradation complex leads to stabilization in the con-
centration of β-catenin in the cytoplasm. As β-catenin
enters into the nucleus it displaces the Groucho and binds
with transcription cell factor TCF thus instigating transcrip-
tion of Wnt target genes. Groucho acts as lock on TCF
and prevents the transcription of target genes which may in-
duce cancer. In cases when the Wnt ligands are not captured
by the coreceptor at the cell membrane, Axin helps in for-
mation of the degradation complex. The degradation com-
plex phosphorylates β-catenin which is then recognized by
Fbox/WD repeat protein β−TrCP . β−TrCP is a compo-
nent of ubiquitin ligase complex that helps in ubiquitination
of β-catenin thus marking it for degradation via the protea-
some. Cartoons depicting the phenomena of Wnt activation
are shown in figures 1(A) and 1(B), respectively.

Table 1 Canonical Wnt Pathway from Sinha 1

tra/extracellular level and are known to have inhibitory affect
on the Wnt pathway due to epigenetic factors. For each of
the 24 normal mucosa and 24 human colorectal tumor cases,
gene expression values were recorded for 14 genes belonging
to the family of SFRP , DKK, WIF1 and DACT . Also,
expression values of established Wnt pathway target genes
like LEF1, MYC, CD44 and CCND1 were recorded per
sample.

The directory temp also contains some of the .m files,
parts of contents of which will be explained in the order
of execution of the project. The main code begins with
a script titled twoHoldOutExp.m. This script contains the
function twoHoldOutExp which takes two arguments named
eviDence and model. eviDence implies the evidence re-
garding ’ge’ for gene evidence, ’me’ for methylation, ’ge+me’
for both gene and methylation, while model implies the net-
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Epigenetic Factors One of the widely studied epigenetic
factors is methylation (Costello and Plass6, Das and Sin-
gal7, Issa8). Its occurrence leads to decrease in the gene
expression which affects the working of Wnt signaling path-
ways. Such characteristic trends of gene silencing like that of
secreted frizzled-related proteins (SFRP ) family in nearly
all human colorectal tumor samples have been found at ex-
tracellular level (Suzuki et al.9). Similarly, methylation of
genes in the Dickkopf (DKKxNiehrs10, Sato et al.11), Dap-
per antagonist of catenin (DACTx Jiang et al.3) and Wnt
inhibitory factor-1 (WIF1 Taniguchi et al.12) family are
known to have significant effect on the Wnt pathway. Also,
histone modifications (a class of proteins that help in the
formation of chromatin which packs the DNA in a special
form Strahl and Allis13) can affect gene expression (Peter-
son et al.14). In the context of the Wnt signaling pathway
it has been found that DACT gene family show a pecu-
liar behavior in colorectal cancer (Jiang et al.3). DACT1
and DACT2 showed repression in tumor samples due to in-
creased methylation while DACT3 did not show obvious
changes to the interventions. It is indicated that DACT3
promoter is simultaneously modified by the both repressive
and activating (bivalent) histone modifications (Jiang et al.3).

Table 2 Epigenetic Factors from Sinha 1

work model that will be used for simulation. Sinha1 uses three
different models i.e ’t1’ orMPBK+EI that contains prior bi-
ological knowledge as well as epigenetic information, ’t2’ or
MPBK that contains only prior biological knowledge and fi-
nally, ’p1’ orMNB+MPBK that is a modified version of naive
bayes framework from Verhaegh et al.2. In Matlab, one can
type the following

>> twoHoldOutExp("ge", "t1")

The code begins with the extraction of data from the gene
expression matrix by reading the geneExpression.mat file
via the function readCustomFile in the readCustomFile.m
and generates the following variables as the output - (1)
uniqueGenes - name of genes gleaned from the file, (2)
expressionMatrix - 2D matrix containing the gene ex-
pression per sample data (3) noGenes - total number of genes
available (4) noSamples - total number of samples available
(5) groundTruthLabels - original labels available from
the files (6) transGroundTruthLabels - labels trans-
formed into numerals.

% Data Collection
%=====
% Extract data from the gene expression
% matrix
[uniqueGenes, expressionMatrix,...

noGenes,noSamples,groundTruthLabels,...
transGroundTruthLabels] = ...
readCustomFile(’data/geneExpression.mat’);

2.2 Assumed and estimated probabilities from literature

Next, the probability values for some of the nodes in the
network is loaded, depending on the type of the network.
Why these assumed and estimated probabilities have been ad-
dressed in the beginning of the computation experiment will
be explained later. Meanwhile, the estimation of probabilities
is achieved through the function called dataStorage in the
dataStorage.m. The function takes the name of the model as
an input argument and returns the name of the file called prob-
abilities.mat in the variable filename. The mat file contains
all the assumed and computed probabilities of nodes for which
data is available and is loaded into the workspace of the Mat-
lab for further use.

% Load probability values for some of
% the nodes in the network
fname = dataStorage(model);
load(fname);

MPBK+EI (model=’t1’) requires more estimations that
MPBK (model=’t2’) and MNB (model=p1) due to use of
epigenetic information. Depending on the type of model pa-
rameter fed to the function dataStorage the probabilities for
the following factors are estimated

1. Repressive Histone Mark H3K27me3 for DACT3 11
Loci from Jiang et al.3 were adopted. Via fold enrich-
ment, the affects of the H3K27me3 was found 500 bp
downstream of and near the DACT3 transcription start
site (TSS) in HT29 cells. These marks were recorded
via chromatin immuno-precipitation (ChiP) assays and
enriched at 11 different loci in the 3.5 kb to 3.5 kb re-
gion of the DACT3 TSS. Fold enrichment measurements
of H3K27me3 for normal FHs74Int and cancerous
SW480 were recorded and normalized. The final proba-
bilities are the average of the normalized values.

2. Active Histone Mark H3K4me3 for DACT3 Loci
from Jiang et al.3 were adopted. Via fold enrichment,
the affects of the H3Kme3 was found 500 bp down-
stream of and near the DACT3 transcription start site
(TSS) in HT29 cells. These marks were recorded via
chromatin immuno-precipitation (ChiP) assays and en-
riched at 11 different loci in the 3.5 kb to 3.5 kb re-
gion of the DACT3 TSS. Fold enrichment measure-
ments of H3K4me3 for normal FHs74Int and cancer-
ous SW480 were recorded and normalized. The final
probabilities are the average of the normalized values.
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3. Fractions for methylation of DKK1 and WIF1 gene
taken from Aguilera et al.16 via manual counting through
visual inspection of intensity levels from methylation
specific PCR (MSP) analysis of gene promoter region
and later normalized

4. Fractions for methylation and non-methylation status of
SFRP1, SFRP2, SFRP4 and SFRP5 (CpG islands
around the first exons) was recorded from 6 affected in-
dividuals each having both primary CRC tissues and nor-
mal colon mucosa from Suzuki et al.17 via manual count-
ing through visual inspection of intensity levels from
methylation specific PCR (MSP) analysis of gene pro-
moter region and later normalized.

5. Methylation of DACT1 (+52 to +375 BGS) and
DACT2 (+52 to +375 BGS) in promoter region for
Normal, HT29 and RKO cell lines from Jiang et al.3

was recorded via counting through visual inspection of
open or closed circles indicating methylation status esti-
mated from bisulfite sequencing analysis and later nor-
malized.

6. Concentration of DV L2 decreases with expression of
DACT3 and vice versa Jiang et al.3. Due to lack of
exact proportions the probability values were assumed.

7. Concentration of β-catenin given concentrations of
DV L2 and DACT1 varies and for static model it is
tough to assign probability values. High DV L2 concen-
tration or suppression (expression) of DACT1 leads to
increase in concentration of β-catenin (3, Yuan et al.18).
Wet lab experimental evaluations might reveal the factual
proportions.

8. Similarly, the concentrations of TRCMPLX (Clevers4,
Kriegl et al.19) and TCF4 (Verhaegh et al.2) have been
assumed based on their known roles in the Wnt pathway.
Actual proportions require further wet lab tests.

9. Finally, the probability of Sample being tumorous or
normal is a chance level as it contains equal amount of
cancerous and normal cases.

Note that all these probabilities have been recorded in table 1
of Sinha1 and their values stored in the probabilities.mat file.
Addressing the question of why these probabilities have been
estimated earlier, it can be seen that the extra/intracellular fac-
tors affecting the Wnt pathway in the data set provided by
Jiang et al.3 contains some genes whose expression is influ-
enced by epigenetic factors mentioned in table 2. Hence it
is important to tabulate and store prior probability values for
known biological factors that influence the pathway. Also, the
probability values of these nodes have been computed earlier
due to prior available information. Once estimated or assumed

based on biological knowledge, these probabilities needed not
be recomputed and are thus stored in proper format at the be-
ginning of the computational experiment.

2.3 Building the bayesian network model

Next comes the topology of the network using prior bi-
ological knowledge made available from results of wet
lab experiments documented in literature. This is
achieved using the function generateInteraction in the file
generateInteraction.m. The function takes in the set
of uniqueGenes and the type of model and generates a cell
of interaction for the Bayesian network as well as a cell
of unique set of Nodenames. interaction contains all
the prior established biological knowledge that caries causal
semantics in the form of arcs between parent and child nodes.
It should be noted that even though the model is not complete
due to its static nature, it has the ability to encode prior causal
relationships and has the potential for further refinement.

% Building the Bayesian Network model
%=====
% Generate directionality between
% parent and child nodes
[interaction, nodeNames] = ...
generateInteraction(uniqueGenes,...
model);

The interaction and nodeNames go as input argu-
ments to the function mk adj mat, which generates an ad-
jacency matrix for a directed acyclic graph (DAG) stored in
dag. Using functions biograph and input arguments dag and
nodeNames generates a structure gObj that can be used to
view the topology of the network. A crude representation of
MPBK+EI andMNB+MPBK shown in figures 2 and 3 was
generated using the function view.

% Generate dag for the interaction
% between nodeNames
dag = mk_adj_mat(interaction,...
nodeNames, 0);

% To visualise the graphs or bayesian
% network
gObj = biograph(dag,nodeNames)
gObj = view(gObj);

Once the adjacency matrix is ready, the initialization of the
Bayesian Network can be easily done. The total number of
nodes is stored in N and the size of the nodes are defined in
nodeSizes. In this project each node has a size of two as
they contain discrete values representing binary states. Here
the function ones defines a row vector with N columns. Thus
each node is set to a size of 2. The total number of discrete
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Fig. 2 Influence diagram of MPBK+EI contains partial prior biological knowledge and epigenetic information in the form of methylation
and histone modification. In this model the state of Sample is distinguished from state of TRCMPLX that constitutes the Wnt pathway.

Fig. 3 Influence diagram of MNB+MPBK is a Naive Bayes model that contains minimal prior biological knowledge. In this model the state
of TRCMPLX is assumed to be indicate whether the sample is cancerous or not.

nodes is defined in discreteNodes. Finally, the Bayesian
Network is created using the function mk bnet from the BNT
that takes the following as input arguments (1) dag - the adja-
cency matrix (2) nodeSizes - defines the size of the nodes
and (3) discreteNodes - the vector of nodes with their
indices marked to be discrete in the Bayesian Network and
dumps the network in the variable bnet.

% BN initialization
N = length(nodeNames); % # of nodes

% Define node sizes. NOTE - nodes are
% assumed to contain discrete values
nodeSizes = 2*ones(1, N);

% Discrete nodes
discreteNodes = 1:N;

% Create BN
bnet = mk_bnet(dag, nodeSizes,...
’names’, nodeNames, ’discrete’,...
discreteNodes);

Section 4 of Sinha1 has been reproduced for completeness in
tables 3, 4, 5, 6 and 7.

2.4 Hold out expriment

After the framework of the Bayesian Network has been con-
structed and initialized, the hold out experiment is conducted.
The purpose of conducting the experiment is to generate re-
sults on different test data while training the Bayesian Net-
work with different sets of training data, a multiple number
of time. From Sinha1, the design of the experiment is a sim-
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Fig. 4 Cases for d-connectivity and d-separation. Black (Gray)
circles mean evidence is available (not available) regarding a
particular node.

Bayesian Wnt pathway Three static models have been
developed based on particular gene set measured for hu-
man colorectal cancer cases (Jiang et al.3). Available epi-
genetic data for individual gene is also recorded. For
sake of simplicity the models are connoted as MPBK+EI

(model with Prior Biological Knowledge (PBK) and Epi-
genetic Information (EI)), MPBK (model with PBK only)
and MNB+MPBK (model with Naive Bayes (NB) for-
mulation and Minimal PBK). All models are simple di-
rected acyclic graphs (DAG) with nodes and edges. Fig-
ure 2 shows a detailed influence diagram of MPBK+EI

between the nodes and the edges. The nodes specify
status of genes expression (DKK1, DKK2, DKK3-1,
DKK3-2,DKK4,DACT1,DACT2,DACT3, SFRP1,
SFRP2, SFRP3, SFRP4, SFRP5, WIF1, MYC,
CD44, CCND1 and LEF1), methylation (MeDACT1,
MeDACT2, MeSFRP1, MeSFRP2, MeSFRP4,
MeSFRP5, MeDKK1, MeDKK4 and MeWIF1), his-
tone marks for DACT3 (H3K27me3 and H3K4me3), tran-
scription complex TRCMPLX , samples Sample and fac-
tors involved in formation of TRCMPLX like β-catenin,
TCF4 and LEF1. Note that there were two recordings
of gene expression DKK3 and thus were distinguished by
DKK3−1 andDKK3−2. Some causal relations are based
on prior biological knowledge and others are based on as-
sumptions, elucidation of which follows in the next section.

Table 3 Bayesian Wnt pathway from Sinha 1

Network With PBK And EI The NB model (Verhaegh
et al.2) assumes that the activation (inactivation) of β-
catenin based transcription complex is equivalent to the
fact that the sample is cancerous (normal). This assump-
tion needs to be tested and in this research work the two
newly improvised models based on prior biological knowl-
edge regarding the signaling pathway assume that sample
prediction may not always mean that the β-catenin based
transcription complex is activated. These assumptions are
incorporated by inserting another node of Sample for which
gene expression measurements were available. This is sep-
arate from the TRCMPLX node that influences a partic-
ular set of known genes in the human colorectal cancer.
For those genes whose relation with the TRCMPLX is
currently not known or biologically affirmed, indirect paths
through the Sample node to the TRCMPLX exist, tech-
nical aspect of which will be described shortly. Since all
gene expressions have been measured from a sample of sub-
jects the expression of genes is conditional on the state of the
Sample. Here both tumorous and normal cases are present
in equal amounts. The transcription factor TRCMPLX un-
der investigation is known to operate with the help of in-
teraction between β-catenin with TCF4 and LEF1 (Wa-
terman20, Kriegl et al.19). It is also known that the re-
gions in the TSS of MYC (Yochum21), CCND1 (Schmidt-
Ott et al.22), CD44 (Kanwar et al.23), SFRP1 (Caldwell
et al.24), WIF1 (Reguart et al.25), DKK1 (González-
Sancho et al.26) and DKK4 (Pendas-Franco et al.27, Baehs
et al.28) contain factors that have affinity to β-catenin based
TRCMPLX . Thus expression of these genes are shown to
be influenced by TRCMPLX , in figure 2.
Roles of DKK2 (Matsui et al.29) and DKK3 (Zitt et al.30,
Veeck and Dahl31) have been observed in colorectal can-
cer but their transcriptional relation with β-catenin based
TRCMPLX is not known. Similarly, SFRP2 is known to
be a target of Pax2 transcription factor and yet it affects the
β-catenin Wnt signaling pathway (Brophy et al.32). Sim-
ilarly, SFRP4 (Feng Han et al.33, Huang et al.34) and
SFRP5 (Suzuki et al.9) are known to have affect on the Wnt
pathway but their role with TRCMPLX is not well studied.
SFRP3 is known to have a different structure and function
with respect to the remaining SFRPx gene family (Hoang
et al.35). Also, the role of DACT2 is found to be conflict-
ing in the Wnt pathway (Kivimäe et al.36). Thus for all these
genes whose expression mostly have an extracellular affect
on the pathway and information regarding their influence on
β-catenin based TRCMPLX node is not available, an in-
direct connection has been made through the Sample node.
This connection will be explained at the end of this section.

Table 4 Network with PBK+EI from Sinha 1
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Network With PBK And EI continued ... Lastly, it is
known that concentration ofDV L2 (a member of Disheveled
family) is inversely regulated by the expression of DACT3
(Jiang et al.3). High DV L2 concentration and suppression
of DACT1 leads to increase in stabilization of β-catenin
which is necessary for the Wnt pathway to be active (Jiang
et al.3). But in a recent development (Yuan et al.18) it has
been found that expression of DACT1 positively regulates
β-catenin. Both scenarios need to be checked via inspec-
tion of the estimated probability values for β-catenin using
the test data. Thus there exists direct causal relations be-
tween parent nodes DACT1 and DV L2 and child node, β-
catenin. Influence of methylation (yellow hexagonal) nodes
to their respective gene (green circular) nodes represent the
affect of methylation on genes. Influence of histone mod-
ifications in H3K27me3 and H3K4me3 (blue octagonal)
nodes to DACT3 gene node represents the affect of histone
modification onDACT3. The β-catenin (blue square) node
is influenced by concentration of DV L2 (depending on the
expression state of DACT3) and behavior of DACT1. The
aforementioned established prior causal biological knowl-
edge is imposed in the BN model with the aim to computa-
tionally reveal unknown biological relationships. The influ-
ence diagram of this model is shown in figure 2 with nodes
on methylation and histone modification. Another model
MPBK (not shown here) was developed excluding the epi-
genetic information (i.e removal of nodes depicting methy-
lation and histone modification as well as the influence arcs
emerging from them) with the aim to check whether inclu-
sion of epigenetic factors increases the cancer prediction ac-
curacy. In order to understand indirect connections further it
is imperative to know about d-connectivity/separability. In
a BN model this connection is established via the principle
of d-connectivity which states that nodes are connected in a
path when there exists no node in the path that has more than
one incoming influence edge or there exits nodes in path with
more than one incoming influence edge which are observed
(i.e evidence regarding such nodes is available) (Charniak37).
Conversely, via principle of d-separation nodes are sepa-
rated in a path when there exists nodes in the path that have
more than one incoming influence edge or there exists nodes
in the path with at most one incoming influence edge which
are observed (i.e evidence regarding such nodes is available).
Figure 4 represents three different cases of connectivity and
separation between nodes A and C when the path between
them passes through node B. Connectivity or dependency
exists between nodesA and C when • evidence is not present
regarding node B in the left graphs of I. and II. in figure 4 or
• evidence is present regarding node B in the right graph of
III. in figure 4.

Table 5 Network with PBK+EI continued from Sinha 1

Network With PBK And EI continued ... Conversely, sep-
aration or independence exits between nodes A and C when
• evidence is present regarding node B in the right graphs of
I. and II. in figure 4 or • evidence is not present regarding
node B in the left graph of III. in figure 4. It would be inter-
esting to know about the behaviour of TRCMPLX given
the evidence of state of SFRP3. To reveal such informa-
tion paths must exist between these nodes. It can be seen that
there are multiple paths between TRCMPLX and SFRP2
in the BN model in figure 2. These paths are enumerated as
follows:

1. SFRP3, Sample, SFRP1, TRCMPLX

2. SFRP3, Sample, DKK1, TRCMPLX

3. SFRP3, Sample, WIF1, TRCMPLX

4. SFRP3, Sample, CD44, TRCMPLX

5. SFRP3, Sample, DKK4, TRCMPLX

6. SFRP3, Sample, CCND1, TRCMPLX

7. SFRP3, Sample, MYC, TRCMPLX

8. SFRP3, Sample, LEF1, TRCMPLX

9. SFRP3, Sample, DACT3, DV L2, β-catenin,
TRCMPLX

10. SFRP3, Sample, DACT1, β-catenin,
TRCMPLX

Knowledge of evidence regarding nodes of SFRP1 (path 1),
DKK1 (path 2), WIF1 (path 3), CD44 (path 4), DKK4
(path 5), CCND1 (path 6) and MYC (path 7) makes
Sample and TRCMPLX dependent or d-connected. Fur-
ther, no evidence regarding state of Sample on these paths
instigates dependency or connectivity between SFRP3 and
TRCMPLX . On the contrary, evidence regarding LEF1,
DACT3 and DACT1 makes Sample (and child nodes
influenced by Sample) independent or d-separated from
TRCMPLX through paths (8) to (10). Due to the depen-
dency in paths (1) to (7) and the given state of SFRP3 (i.e
evidence regarding it being active or passive), the BN uses
these paths during inference to find how TRCMPLX might
behave in normal and tumorous test cases. Thus, exploiting
the properties of d-connectivity/separability, imposing a bio-
logical structure via simple yet important prior causal knowl-
edge and incorporating epigenetic information, BN help in
inferring many of the unknown relation of a certain gene ex-
pression and a transcription complex.

Table 6 Network with PBK+EI continued from Sinha 1
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Network With Minimal PBK Lastly, a Naive Bayes model
MNB+MPBK with minimal biological knowledge based on
Verhaegh et al.2 model was also developed with an aim
to check if the assumed hypothesis that activation state of
TRCMPLX is same as sample being cancerous is cor-
rect. In this model all gene expressions are assumed to be
transcribed via the β-catenin based TRCMPLX and thus
causal arcs exist from TRCMPLX to different gene nodes.
The complex itself is influenced by β-catenin and TCF4
only. Such models can be used for prediction purpose but
are not useful in revealing hidden biological relationships as
no or minimal prior biological information is imposed on the
Naive Bayes model. Figure 3 shows the Naive Bayes model.

Table 7 Network with NB+MPBK from Sinha 1

ple 2-holdout experiment where one sample from the normal
and one sample from the tumorous are paired to form a test
dataset. Excluding the pair formed in an iteration of 2-hold
out experiment the remaining samples are considered for train-
ing of a BN model. Thus in a data set of 24 normal and 24
tumorous cases, a training set will contain 46 samples and
a test set will contain 2 samples (one of normal and one of
tumor). This procedure is repeated for every normal sam-
ple which is combined with each of the tumorous sample to
form a series of test dataset. In total there will be 576 pairs
of test data and 576 instances of training data. Note that for
each test sample in a pair, the expression value for a gene is
discretized using threshold computed for that particular gene
from the training set. Computation of threshold will be elu-
cidated later. This computation is repeated for all genes per
test sample. Based on the available evidences from the state
of expression of all genes, that constitute the test data, infer-
ence regarding the state of the both β-catenin transcription
complex and the test sample is made. These inferences reveal
• hidden biological relationship between the expressions of
the set of genes under consideration and the β-catenin tran-
scription complex and • information regarding the activation
state of the β-catenin transcription complex and the state of
the test sample, as a penultimate step to the proposed hypoth-
esis testing. Two sample Kolmogorov-Smirnov (KS) test was
employed to measure the statistical significance of the distri-
bution of predictions of the states of the previously mentioned
two factors.

Apart from testing the statistical significance between the
states of factors, it was found that the prediction results for the
factors, obtained from models including and excluding epige-
netic information, were also significantly different. The re-
ceiver operator curve (ROC) graphs and their respective area
under the curve (AUC) values indicate how the predictions on
the test data behaved under different models. Ideally, high val-

ues of AUC and steepness in ROC curve indicate good quality
results.

The hold out experiment begins with the computation
of the total number of positive and negative labels present
in the whole data set as well as the search of the in-
dicies of the labels. For this the values in the variable
noSamples and transGroundTruthLabels computed
from function readCustomFile is used. noPos (noNeg) and
posLabelIdx (negLabelIdx) store the number of posi-
tive (negative) labels and their indicies, respectively.

% Hold out expriment
%=====
% Compute no. of positive and negative
% labels and find indicies of both
noPos = 0;
posLabelIdx = [];
noNeg = 0;
negLabelIdx = [];
for i = 1:noSamples

if transGroundTruthLabels(i) > 0
noPos = noPos + 1;
posLabelIdx = [posLabelIdx, i];

else
noNeg = noNeg + 1;
negLabelIdx = [negLabelIdx, i];

end
end

For storing results as well as the number of times the exper-
iment will run, variables runCnt and Runs are initialized.
The condition in the if statement is not useful now and will be
described later.

runCnt = 0;
Runs = struct([]);
if ˜isempty(strfind(eviDence, ’me’))

RunsOnObservedMethylation = ...
struct([]);

end

For each and every positive (cancerous) and negative (nor-
mal) labels, the number of times the experiments runs is incre-
mented in the count variable runCnt. Next the indicies for
test data is separated by using the ith positive and the jth neg-
ative label and its indicies is stored in testDataIdx. The
test data itself is then separated from expressionMatrix
using the testDataIdx and stored in dataForTesting.
The corresponding ground truth labels of the test data
are extracted from transGroundTruthLabels using
testDataIdx and stored in labelForTesting.

for i = 1:noPos
for j = 1:noNeg
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% Count for number of runs
runCnt = runCnt + 1;

% Build test dataset (only 2
% examples per test set)
testDataIdx = [negLabelIdx(j),...

posLabelIdx(i)];
dataForTesting = expressionMatrix(:,...

testDataIdx);
labelForTesting = ...
transGroundTruthLabels(:,...
testDataIdx);

After the storage of the test data and its respective indicies,
trainingDataIdx is used to store the indicies of training
data by eliminating the indicies of the test data. This is
done using temporary variables tmpPosLabelIdx and
tmpNegLabelIdx. trainingDataIdx is used to
store the training data in variable dataForTraining
using expressionMatrix and the indicies of train-
ing data in variable labelForTraining using
transGroundTruthLabels.

% Remove test dataset from the whole
% dataset and build train dataset
tmpPosLabelIdx = posLabelIdx;
tmpNegLabelIdx = negLabelIdx;
tmpPosLabelIdx(i) = [];
tmpNegLabelIdx(j) = [];
trainDataIdx = [tmpNegLabelIdx,...

tmpPosLabelIdx];
dataForTraining = ...

expressionMatrix(:,trainDataIdx);
labelForTraining = ...
transGroundTruthLabels(:,...
trainDataIdx);

2.4.1 Defining and estimating probabilities and condi-
tional probabilities tables for nodes in bnet: Till now, the
probabilities as well as conditional probability tables (cpt) for
some of the nodes have been stored in the probabilities.mat
file and loaded in the workspace. But the cpt for all the nodes
in the bnet remain uninitialized. The next procedure is to ini-
tialize the tables using assumed values for some of the known
nodes while estimating the entries of cpt for other nodes using
training data.

To this end it is important to define a variable by the
name cpdStorage of the format structure. Starting with
all the nodes that have no parents and whose probabil-
ities and cpt have been loaded in the workspace (saved
in probabilities.mat), the for loop iterates through all the
nodes in the network defined by N, stores the index of
the kth node in nodeidx using function bnet.names

with input argument nodeNames{k} and assigns values
to cpt depending on the type of model. If MPBK+EI

(model=’t1’) is used and the kth entry in nodeNames
matches with TCF4 then the cpt value in PrTCF4 is
assigned to cpt. The parent node of this node is assigned a
value 0 and stored in cpdStorage(k).parentnode{1}.
The name TCF4 or nodeNames{k} is assigned to
cpdStorage(k).node. The cpt values in cpt is as-
signed to cpdStorage(k).cpt. Finally, the conditional
probability density cpt for the node with name TCF4
is stored in bnet.CPD using function tabular CPD, the
Bayesian Network bnet, the node index nodeidx and
cpt. Similarly, values in PrMeDKK1, avgPrMeDACT1,
avgPrMeDACT2, avgPrH3K27me3, avgPrH3K4me3,
PrMeSFRP1, PrMeSFRP2, PrMeSFRP4, PrMeSFRP5,
PrMeWIF1 and PrSample initialize the cpt values for
nodes MeDACT1, MeDACT2, H3k27me3, H3k4me3,
MeSFRP1, MeSFRP2, MeSFRP4, MeSFRP5,
MeWIF1 and Sample, respectively.

Similar initializations happen for models MPBK

(model=’t2’) and MNB+MPBK (model=’p1’). It should be
noted that inMPBK (MNB+MPBK) the only nodes without
parents are TCF4 and Sample (TCF4 and BETACAT ).
To accomodate for these models, the necessary elseif
statements have been embedded in the for loop below.

% Define P and CPD for the nodes of the
% bnet
cpdStorage = struct([]);
% Store probabilities for nodes with no
% parents
for k = 1:N
nodeidx = bnet.names(nodeNames{k});
if isempty(bnet.parents{nodeidx})
% tables for non-gene measurements
if ˜isempty(strfind(model,’t1’))
if strcmp(nodeNames{k},’TCF4’)
cpt = PrTCF4;

elseif strcmp(nodeNames{k},...
’MeDKK1’)
cpt = PrMeDKK1;

elseif strcmp(nodeNames{k},...
’MeDACT1’)
cpt = avgPrMeDACT1;

elseif strcmp(nodeNames{k},...
’MeDACT2’)
cpt = avgPrMeDACT2;

elseif strcmp(nodeNames{k},...
’H3k27me3’)
cpt = avgPrH3K27me3;

elseif strcmp(nodeNames{k},...
’H3k4me3’)

1–25 | 9

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2014. ; https://doi.org/10.1101/011064doi: bioRxiv preprint 

https://doi.org/10.1101/011064
http://creativecommons.org/licenses/by-nc/4.0/


cpt = avgPrH3K4me3;
elseif strcmp(nodeNames{k},...
’MeSFRP1’)
cpt = PrMeSFRP1;

elseif strcmp(nodeNames{k},...
’MeSFRP2’)
cpt = PrMeSFRP2;

elseif strcmp(nodeNames{k},...
’MeSFRP4’)
cpt = PrMeSFRP4;

elseif strcmp(nodeNames{k},...
’MeSFRP5’)
cpt = PrMeSFRP5;

elseif strcmp(nodeNames{k},...
’MeWIF1’)
cpt = PrMeWIF1;

elseif strcmp(nodeNames{k},...
’Sample’)
cpt = PrSample;

end
elseif ˜isempty(strfind(model,...
’t2’))
if strcmp(nodeNames{k},’TCF4’)
cpt = PrTCF4;

elseif strcmp(nodeNames{k},...
’Sample’)
cpt = PrSample;

end
elseif ˜isempty(strfind(model,...
’p1’))
if strcmp(nodeNames{k},’TCF4’)
cpt = PrTCF4;

elseif strcmp(nodeNames{k},...
’BETACAT’)
cpt = PrBETACAT;

end
end
cpdStorage(k).parentnode{1} = 0;
cpdStorage(k).node = nodeNames{k};
cpdStorage(k).cpt = cpt;
bnet.CPD{nodeidx} = tabular_CPD(...
bnet, nodeidx, ’CPT’, cpt);

end
end

In the same for loop above, the next step is to initialize prob-
ability as well as the cpt values for nodes with parents. Two
cases exist in the current scenario, i.e nodes that (1) repre-
sent genes and (2) do not represent genes. To accomodate
for gene/non-gene node classification a logical variable GENE
is introduced. Also, before entering the second for loop de-
scribed below, a variable gene cpd of the format structure

is defined for storage of the to be computed cpt values for
all genes in the data set. parentidx stores the index of
the parents of the child node under consideration using the
child’s index in nodeidx via bnet.parents{nodeidx}.
The total number of parents a child node has is contained in
noParents.

Initially GENE is assigned a value of 0 indicating that the
node under consideration is not a gene node. If this is the
case, the ˜GENE in the if condition of the for loop below gets
executed. In this case, depending on the type of the model cpt
values of a particular node is initialized. ForMPBK+EI and
MPBK (model=’t1’ and model=’t2’), the cpt values for nodes
BETACAT , DV L2 and TRCMPLX is stored using val-
ues in PrBETACAT, PrDVL2 and PrTRCMPLX. As before,
using function tabular CPD and values in nodeidx, bnet
and cpt as input arguments, the respective cpt is initialized
in bnet.CPD{nodeidx}. Similar computations are done
for MNB+PBK i.e model ’p1’ for node TRCMPLX. Finally,
the indicies of the parents of the kth child node is stored in
cpdStorage(k).parentnode{m}.

On the other hand, if the name of the node in the
kth index of nodeNames matches the name in the lth

index of uniqueGenes, a parent variable of format
cell is defined within the second nested for loop below.
The names of the parents are stored in this variable us-
ing nodeNames{parentidx(n)}. Next, the cpt val-
ues of these parent nodes are separately stored using a cell
parent cpd and a count cnt. Finally, the cpd values for the
lth gene is determined using the function generateGenecpd
in the script generateGenecpd.m that takes the following in-
put arguments (1) vecTraining - gene expression of from
training data (2) labelTraining - labels for training data
(3) nodeName - name of the gene involved (4) parent -
name of parents of the child node or the gene under con-
sideration (5) parent cpd - parent cpd values (6) model
- kind of model and finally returns the output as a structure
gene cpd containing cpd for the particular gene under con-
sideration given its parents as well as a threshold value in the
form of median. In the code below, the values of the following
variables go as input arguments for the function generate-
Genecpd, in order (1) dataForTraining(l,:) - train-
ing data for the lth unique gene, (2) labelForTraining
- labels for training data, (3) uniqueGenes{l}, (4)
parent, (5) parent cpd, (6) model. The output of
the function is stored in the structure variable x. The
threshold at which the probabilities were computed for
the lth gene is stored in gene cpd(l).vecmedian us-
ing x.vecmedian and the probabilities themselves are
stored in gene cpd(l).T using x.T. These probabili-
ties are reshaped into a row vector and stored in cpt.
As mentioned before, using function tabular CPD and val-
ues in nodeidx, bnet and cpt as input arguments,
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the respective cpt is initialized in bnet.CPD{nodeidx}.
Finally, required values of cpt, name of lth gene or
kth node and indicies of its parent nodes are stored
in cpdStorage(k).cpt, cpdStorage(k).node and
cpdStorage(k).parentnode{m}, respectively.

It should be noted that the exposition of the generation of
probability values for the different genes via the function gen-
erateGenecpd needs a separate treatment and will be ad-
dressed later. To maintain the continuity of the workflow of
the program, the next step is addressed after the code below.

% Store probabilities for nodes with
% parents
gene_cpd = struct([]);
for k = 1:N
nodeidx = bnet.names(nodeNames{k});
if ˜isempty(bnet.parents{nodeidx})
parentidx = bnet.parents{nodeidx};
noParents = length(parentidx);
GENE = 0;
for l = 1:noGenes
if strcmp(nodeNames{k},...
uniqueGenes{l})
% Find cpt of gene parent
parent = {};
for n = 1:noParents
parent{n} = ...
nodeNames{parentidx(n)};

end
% Assign cpd to parent
cnt = 0;
parent_cpd = {};
for m = 1:length(cpdStorage)
for n = 1:noParents
if strcmp(parent{n},...
cpdStorage(m).node)
cnt = cnt + 1;
parent_cpd{cnt} = ...
cpdStorage(m).cpt;

end
end
end
x = generateGenecpd(...
dataForTraining(l,:),...
labelForTraining,...
uniqueGenes{l}, parent,...
parent_cpd, model);
gene_cpd(l).vecmedian = ...
x.vecmedian;
gene_cpd(l).T = x.T;
[r, c] = size(gene_cpd(l).T);
cpt = reshape(gene_cpd(l).T,1,r*c);

GENE = 1;
break;

end
end
% tables for non-gene measurements
if ˜GENE
if ˜isempty(strfind(model,’t1’))
if strcmp(nodeNames{k},’BETACAT’)
cpt = PrBETACAT;
elseif strcmp(nodeNames{k},’DVL2’)
cpt = PrDVL2;
elseif strcmp(nodeNames{k},’TRCMPLX’)
cpt = PrTRCMPLX;
end

elseif ˜isempty(strfind(model,’t2’))
if strcmp(nodeNames{k},’BETACAT’)
cpt = PrBETACAT;
elseif strcmp(nodeNames{k},’DVL2’)
cpt = PrDVL2;
elseif strcmp(nodeNames{k},’TRCMPLX’)
cpt = PrTRCMPLX;
end

elseif ˜isempty(strfind(model,’p1’))
if strcmp(nodeNames{k},’TRCMPLX’)
cpt = PrTRCMPLX;
end

end
end
% record the parent index
for m = 1:noParents
cpdStorage(k).parentnode{m} = ...
parentidx(m);

end
cpdStorage(k).node = nodeNames{k};
cpdStorage(k).cpt = cpt;
bnet.CPD{nodeidx} = ...
tabular_CPD(bnet,nodeidx,’CPT’,cpt);

end
end

2.4.2 Evidence building and inferenceThe values esti-
mated in gene cpd as well as cpdStorage are stored for
each and every run of the hold out experiment. Also, the di-
mensions of the testing data is stored.

% Function to store estimated
% parameters
Runs(runCnt).geneCpd = gene_cpd;
Runs(runCnt).cpdStorage = cpdStorage;

% Function to predict on test data
% using trained BN
[r, c] = size(dataForTesting);
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Next, depending on the type of the evidence provided in
eviDence, inferences can be made. Below, a section of
code for evidence gene expression, which gets executed when
the case ’ge’ matches with the parameter eviDence of the
switch command, is explained. The issue that was to be in-
vestigated was whether the β-catenin based TRCMPLX is
always switched on (off) or not when the Sample is cancer-
ous (normal). In order to analyze this biological issue from a
computational perspective, it would be necessary to observe
the behaviour of the predicted states of both TRCMPLX
as well as Sample, given all the available evidence. For
this purpose, variable tempTRCMPLXgivenAllge is de-
fined as a vector for each model separately, while variable
tempSAMPLE is defined as a vector for biologically inspired
models i.e MPBK+EI and MPBK separately. This is so
due to the assumption that the state of TRCMPLX is the
same as the state of the test sample under consideration in the
MNB+MPBK (a modification of Verhaegh et al.2).

In the section of the code below, for each of the test dataset
an evidence variable of the format cell is defined. The
evidence is of the size of equivalent to the number of node
N in the network. Only those indicies in the cell will be filled
for which information is available from the test data. Since the
function twoHoldOutExp started with ’ge’ as an argument
for type of evidence, evidence will be constructed from
information available via gene expression from the test data.
Thus for the mth gene, if the gene expression in the test data
(i.e dataForTesting(m,k)) is lower than the threshold
generated using the median of expressions for this gene in
the training data (i.e gene cpd(m).vecmedian), then the
evidence for this gene is considered as inactive or repressed,
i.e evidence{bnet.names(uniqueGenes(m))}
= 1, else the evidence for this gene
is considered active or expressed i.e
evidence{bnet.names(uniqueGenes(m))} =
2. Iterating through all the genes, the evidence is
initialized with the available information for the kth test data.

Once the probability values have been initialized ei-
ther by computation or assumption, then for the kth test
data, a Bayesian network engine is generated and stored in
bnetEngine via the junction tree algorithm implemented
in function jtree inf engine that uses the input argu-
ment as the newly initialized network stored in bnet. The
bnetEngine is then fed with the values in evidence to
generate a new engine that contains the updated probabil-
ity values for nodes without evidence in the network. This
is done using the function enter evidence. According to
BNT provided by Murphy et al.15, in the case of the jtree
engine, enter evidence implements a two-pass message-
passing scheme. The first return argument (engine) contains
the modified engine, which incorporates the evidence. The
second return argument (loglik) contains the log-likelihood

of the evidence. It is the first returned argument or the modi-
fied engine that will be of use further. It is important to note
that for every iteration that points to a new test data in the for
loop, a new Bayesian network engine is generated and stored
in bnetEngine. If this is not done, then the phenomena of
explaining away can occur on feeding new evidence to an al-
ready modified engine which incorporated the evidence from
the previous test data. In explaining away the entrence of new
evidence might out weigh the effect of an existing influencing
factor or evidence thus making the old evidence redundant.
This simulation is not related to such study of explaining away.

Finally, the belief that the TRCMPLX is switched on
given the gene expression evidence i.e Pr(TRCMPLX =
2|ge as evidence) is computed by estimating the marginal
probability values using the function marginal nodes which
takes the engine stored in engine and the name of the node
using bnet.names(’TRCMPLX’). The marginal probabil-
ities are stored in margTRCMPLX. The final probability of
TRCMPLX being switched on given all gene expression
evidences is stored in tempTRCMPLXgivenAllge using
margTRCMPLX.T(2). Similarly, for biologically inspired
models the belief that the test Sample is cancerous given the
gene expression evidence i.e Pr(Sample = 2|ge as evidence)
is computed using function marginal nodes that takes the
engine stored in engine and the name of the node using
bnet.names(’Sample’). The marginal probabilities are
stored in margSAMPLE. The final probability of Sample be-
ing cancerous given all gene expression evidences is stored in
tempSAMPLE using margSAMPLE.T(2).

switch eviDence
case ’ge’
disp([’Testing Example ’,...
num2str(runCnt),...
’ - Based on all ge’]);

tempTRCMPLXgivenAllge = [];
if ˜isempty(strfind(model, ’t’))
tempSAMPLE = [];

end
% Build evidence for inference
for k = 1:c
evidence = cell(1,N);
for m = 1:noGenes
if dataForTesting(m,k) <= ...
gene_cpd(m).vecmedian
evidence{bnet.names(...
uniqueGenes(m))} = 1;

else
evidence{bnet.names...
(uniqueGenes(m))} = 2;

end
end
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% Build Bayesian engine
bnetEngine = jtree_inf_engine(bnet);
[engine, loglik] = ...
enter_evidence(bnetEngine,evidence);

% Pr(TRCMPLX = 2|ge as evidence)
margTRCMPLX = marginal_nodes(...
engine,bnet.names(’TRCMPLX’));

tempTRCMPLXgivenAllge = ...
[tempTRCMPLXgivenAllge,...
margTRCMPLX.T(2)];

if ˜isempty(strfind(model, ’t’))
% Pr(Sample = 2|ge as evidence)
margSAMPLE = marginal_nodes(...
engine,bnet.names(’Sample’));
tempSAMPLE = [tempSAMPLE,...
margSAMPLE.T(2)];

end
end

Finally, for the particular count of the run of the experiment,
tempTRCMPLXgivenAllge and tempSAMPLE are stored
in the structure Runs using different variables associated with
Runs. This iteration keeps happening until the two hold out
experiment is exhausted. The case when eviDence is ’me’
or evidence for methylation will be discussed later as a pro-
gramming project.

% Function to store prediction values
Runs(runCnt).condPrTRCMPLXgivenAllge...
= tempTRCMPLXgivenAllge;
if ˜isempty(strfind(model,’t’))
Runs(runCnt).condPrSAMPLE =...
tempSAMPLE;
end

case ’me’
% Project discussed later

end
end

end

2.5 Storing results, plotting graphs and saving files

The final section of the code deals with storing of the results,
plotting of graphs and saving the results in the files. Since the
current explanation is for gene expression evidence, the code
pertaining to ’ge’ is explained. Readers might want to develop
the code for evidence regarding methylation as a programming
project.

To store results as well as the conditional probabilities for
TRCMPLX and SAMPLE given all the gene expression
evidence, a cell variable Results, a counter cntResult

and vector variables condPrTRCMPLXgivenAllge,
condPrSAMPLE and labels are defined as well as
initialized. Next, the prediction values and original labels
are stored while iterating through the total number of runs
of the experiment. This is done using the for loop and the
variable runCnt. For the ith run, predicted conditional
probabilities of TRCMPLX and Sample from each run
is stored in condPrTRCMPLXgivenAllge(i,:) and
condPrSAMPLE(i,:), depending on the model used.
Finally, the ground truth labels of the test data are stored in
a matrix were the ith row is initialized with labels(i,:)
= [-1, +1];. Here, labels it a matrix and −1 (+1)
represent normal (cancerous) cases. Next, the variables
condPrTRCMPLXgivenAllge and condPrSAMPLE are
reshaped into vectors for further processing.

The plotting of the ROC curves and the estima-
tion of their respective AUCs is achieved using func-
tion perfcurve that takes labels, either of the vectors
condPrTRCMPLXgivenAllge or condPrSAMPLE de-
pending on the type of model selected. The function churns
out useful information in the form of the false positive rate in
X, the true positive rate in Y and the estimated AUC for ROC
of condPrTRCMPLXgivenAllge (condPrSAMPLE) in
AUCTRCMPLXgivenAllge (AUCSAMPLE). The plot func-
tion is used to draw the graphs along with the depiction
of legends using function legend. Finally, the two sam-
ple Kolmogorov-Smirnov test between the predictions of
states of TRCMPLX and Sample is performed using
the kstest2 function. This function takes the two vectors
condPrTRCMPLXgivenAllge and condPrSAMPLE as
arguments, compares the distribution of the predictions and
returns the state of significance between the two distributions
in h01. If the value of h01 is 1, then statistical significance
exists else it does not exist. Sinha1 shows that the statisti-
cal difference exists between predictions of TRCMPLX and
Sample when the nodes for the same are segregated in the bi-
ologically inspired causal models, which is not the case with
the naive Bayes model.

Lastly, the computed variables are stored in a .mat file using
the function save. Options for using the save function can be
obtained from the help command in Matlab.

if strcmp(eviDence, ’ge’)
% Store results
Results = {};
cntResult = 0;
% Estimation of performance levels
condPrTRCMPLXgivenAllge = [];
geneEvidence = {};
if ˜isempty(strfind(model, ’t’))
condPrSAMPLE = [];
end
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labels = [];

% Store prediction values and
% original labels
for i = 1:runCnt
condPrTRCMPLXgivenAllge(i,:) =...
Runs(i).condPrTRCMPLXgivenAllge;

geneEvidence{i} = Runs(i).geneEvidence;
if ˜isempty(strfind(model,’t’))
condPrSAMPLE(i,:) =...
Runs(i).condPrSAMPLE;

end
labels(i,:) = [-1, +1];

end

% Reshape the vectors
[r,c] = size(labels);
labels = reshape(labels,r*c,1);
condPrTRCMPLXgivenAllge =...
reshape(condPrTRCMPLXgivenAllge,...
r*c,1);

if ˜isempty(strfind(model,’t’))
condPrSAMPLE =...
reshape(condPrSAMPLE,r*c,1);

end

% Plot the ROC curve and compute AUC
[X,Y,T,AUCTRCMPLXgivenAllge] =...
perfcurve(labels,...
condPrTRCMPLXgivenAllge,1);

plot(X,Y,’r’);
xlabel(’False positive rate’);
ylabel(’True positive rate’);
if ˜isempty(strfind(model,’t’))
hold on;
[X,Y,T,AUCSAMPLE] =...
perfcurve(labels,condPrSAMPLE,1);
plot(X,Y,’b’);
legend(’TRCMPLX - On’,’SAMPLE - T’);
hold off;

% Perform ks-test the significance
% between models/evidences/predictions
[h01,p,ksstat] =...
kstest2(condPrTRCMPLXgivenAllge,...
condPrSAMPLE);
end

if ˜isempty(strfind(model,’t1’))
save(’Results.mat’,’Runs’,...
’condPrTRCMPLXgivenAllge’,...
’geneEvidence’,’condPrSAMPLE’,...

’AUCTRCMPLXgivenAllge’,’AUCSAMPLE’,
’h01’);

elseif ˜isempty(strfind(model,’t2’))
save(’Results.mat’,’Runs’,...
’condPrTRCMPLXgivenAllge’,...
’geneEvidence’,’condPrSAMPLE’,...
’AUCTRCMPLXgivenAllge’,’AUCSAMPLE’,
’h01’);

elseif ˜isempty(strfind(model, ’p1’))
save(’Results.mat’,’Runs’,...
’condPrTRCMPLXgivenAllge’,...
’geneEvidence’,...
’AUCTRCMPLXgivenAllge’);

end
else
end

The ROC graphs and their respective AUC values found in
the figures of Sinha1 are plotted by making variation in the as-
sumed probability values of PrTRCMPLX in the function gen-
erateGenecpd that will be discussed later. Interpretations of
the results can be studied in more depth from Sinha1.

Finally, a full section is dedicated to the computation of
the probabilities for nodes with parents which has been im-
plemented in function generateGenecpd.

2.6 Generating probabilities for gene nodes with parents

Here, the code for the function generateGenecpd is ex-
plained. As a recapitulation, the function generateGenecpd
in the script generateGenecpd.m takes the following input ar-
guments (1) vecTraining - gene expression of from train-
ing data (2) labelTraining - labels for training data (3)
nodeName - name of the gene involved (4) parent - name
of parents of the child node or the gene under consideration
(5) parent cpd - parent cpd values (6) model - kind of
model and finally returns the output as a structure gene cpd
containing cpd for the particular gene under consideration
given its parents as well as a threshold value in the form
of median. In the code below, the values of the following
variables go as input arguments for the function generate-
Genecpd, in order (1) dataForTraining(l,:) - train-
ing data for the lth unique gene, (2) labelForTraining -
labels for training data, (3) uniqueGenes{l}, (4) parent,
(5) parent cpd, (6) model. The output of the function
is stored in the structure variable x. The threshold at which
the probabilities were computed for the lth gene is stored in
gene cpd(l).vecmedian using x.vecmedian and the
probabilities themselves are stored in gene cpd(l).T us-
ing x.T.

The code begins with the storing of the dimension of a gene
expression vector in vecTraining in r and c and recording
the length of the vector containing the labels for the training
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data (in labelTraining) in lencond. Finally, the much
reported threshold is estimated here using the median of the
training data and stored in vecmedian.

% Rows is the gene expression and...
% columns are conditions (normal or
% cancerous)
[r, c] = size(vecTraining);
lencond = length(labelTraining);

% Take median as the threshold
vecmedian = median(vecTraining);

In Sinha1, the effect of TRCMPLX on the gene expres-
sion has been analysed as it is not known to what degree the
TRCMPLX plays a role in the Wnt signaling pathway. To
investigate this Sinha1 incorporated a parameter p that en-
codes the effect of TRCMPLX on the expression of the
gene which is influenced by it. Thus while iterating through
the list of parents if one encounters TRCMPLX as a parent,
then p is initialized to a certain value. In Sinha1, the effect of
TRCMPLX being active (1 − p) is incremented in steps of
0.1 from {0.5 to 0.9} and respective ROC graphs are plotted
using the same.

% Defining affect of TRCMPLX on
% gene expression
noParents = length(parent);
for i = 1:noParents
if ˜isempty(strfind(model,’t’))
if strfind(parent{i},’TRCMPLX’)
p = 0.5;

end
end

end

It is important to note that the computation of gene probabil-
ities differ from model to model and a detailed description of
each computation is given for each gene for all three mod-
els, before explaining the computation for another gene. Also,
from Sinha1, theoretically, for a gene gi ∀i genes, let there be
ntr different instances of expression values from the sample
training data. Let each of the ntr gene expression values be
discretized to 0 and 1 based on their evaluation with respect
to the median threshold. The 1’s represent the total number of
expression where the gene is active and 0’s represent the total
number of expression where the gene is inactive. In case of
normal and tumorous samples, the proportions of 1’s and 0’s
may be different. The median of the expression values is em-
ployed as a threshold to decide the frequency of gi being active
or inactive given the state of the parent node(s). This median
is also used along with the labels of the training data to decide
the status of different parent factors affecting the gene under
consideration.

2.6.1 DKK1: (model=’t1’) Since there are three parents
forDKK1, namelyMeDKK1, Sample and TRCMPLX ,
the cpt values for the table is segregated based on the
status of methylation and quality of samples. A 2 ×
2 cross table for methylation and sample generates fre-
quency estimates that can help derive probability values.
The entries of the cross table depict the following cases
(a) methylated in normal (represented by vector mINn) (b)
un-methylated in normal (represented by vector umINn)
(c) methylated in tumorous (represented by vector mINt)
and (d) un-methylated in tumorous (represented by vector
umINt), cases. For every jth entry in the vecTraining,
if the label (labelTraining(j)) is normal (≤0) and
the DKK1 gene expression (vecTraining(j)) is less
than the estimated median (≤vecmedian) then value in
vecTraining(j) is appended to mINn. Here, ex-
pression level lower than median indicates probable re-
pression due to methylation in normal case. If the
label (labelTraining(j)) is normal (≤0) and the
DKK1 gene expression (vecTraining(j)) is greater
than the estimated median (≥vecmedian) then value
in vecTraining(j) is appended to umINn. Here,
expression level greater than median indicates probable
activation due to un-methylation in normal case. If
the label (labelTraining(j)) is tumorous (≥0) and
the DKK1 gene expression (vecTraining(j)) is less
than the estimated median (≤vecmedian) then value in
vecTraining(j) is appended to mINt. Here, expres-
sion level lower than median indicates probable repression
due to methylation in tumorous case. And finally, If the
label (labelTraining(j)) is tumorous (≥0) and the
DKK1 gene expression (vecTraining(j)) is greater
than the estimated median (≥vecmedian) then value in
vecTraining(j) is appended to umINt. Here, expression
level greater than median indicates probable activation due to
un-methylation in tumorous case.

% Segregate values based on status
% of methylation and samples
mINn = [];
umINn = [];
mINt = [];
umINt = [];
for j = 1:lencond
if labelTraining(j) < 0 && ...
vecTraining(j) < vecmedian
mINn = [mINn, vecTraining(j)];

elseif labelTraining(j) < 0 && ...
vecTraining(j) >= vecmedian
umINn = [umINn, vecTraining(j)];

elseif labelTraining(j) > 0 && ...
vecTraining(j) < vecmedian
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mINt = [mINt, vecTraining(j)];
else
umINt = [umINt, vecTraining(j)];
end

end

Before estimating the values for cpt ofDKK1, it is important
to see how (1) the probability table would look like and (2) the
probability table is stored in BNT (Murphy et al.15). Table 8
represents the conditions of sample as well as the methylation
along with transcription complex and the probable beliefs of
events (DKK1 being on/off). With three parents and binary
state, the total number of conditions is 23. To estimate the val-
ues of the probable beliefs of an event, the following compu-
tation is done. (Case - TRCMPLX is Off) The Pr(DKK1 -
On|Sample - Normal,Me - UM) being low, is the fraction of
number of 1’s in the normal sample (a×p) and the sum of to-
tal number of normal samples and number of 1’s in the tumor-
ous samples, i.e the non-methylated gene expression values in
tumorous samples (A). Similarly, Pr(DKK1 - On|Sample -
Tumor,Me - UM) being low, is the fraction of number of 1’s
in the tumorous sample (b×p) and the sum of total number
of tumorous samples and number of 1’s in the normal sam-
ples, i.e the non-methylated gene expression values in normal
samples (B). Again, Pr(DKK1 - Off|Sample - Normal,Me -
M) being high, is the fraction of number of 0’s in the normal
sample (c×p) and the sum of total number of normal samples
and number of 0’s in the tumorous samples, i.e the methy-
lated gene expression values in tumorous samples (C). Finally,
Pr(DKK1 - Off|Sample - Tumor,Me - M) being high, is the
fraction of number of 0’s in the tumorous sample (d×p) and
the sum of total number of tumorous samples and number of
0’s in the normal samples, i.e the methylated gene expression
values in normal samples (D).

(Case - TRCMPLX is On) Next, the Pr(DKK1 -
On|Sample - Normal,Me - UM) being low, is the fraction
of number of 1’s in the normal sample (a×(1 − p)) and the
sum of total number of normal samples and number of 1’s
in the tumorous samples, i.e the non-methylated gene expres-
sion values in tumorous samples (A). Similarly, Pr(DKK1 -
On|Sample - Tumor,Me - UM) being low, is the fraction of
number of 1’s in the tumorous sample (b×(1−p)) and the sum
of total number of tumorous samples and number of 1’s in the
normal samples, i.e the non-methylated gene expression val-
ues in normal samples (B). Again, Pr(DKK1 - Off|Sample -
Normal,Me - M) being high, is the fraction of number of 0’s
in the normal sample (c×(1−p)) and the sum of total number
of normal samples and number of 0’s in the tumorous samples,
i.e the methylated gene expression values in tumorous samples
(C). Finally, Pr(DKK1 - Off|Sample - Tumor,Me - M) being
high, is the fraction of number of 0’s in the tumorous sample
(d×(1−p)) and the sum of total number of tumorous samples

and number of 0’s in the normal samples, i.e the methylated
gene expression values in normal samples (D). Complemen-
tary conditional probability values for DKK1 being inactive
can easily be computed from the above estimated values.

% Generate frequencies for conditional
% probability values

% pr(DKK1 - On|Sample - Normal,Me - UM)
% # of On’s in Normal
a = length(umINn);
% total # of On’s in Normal and
% Unmethylation
A = length(umINn) + length(mINn)...
+ length(umINt);

% pr(DKK1 - On|Sample - Tumor,Me - UM)
% # of On’s in Tumor
b = length(umINt);
% total # of On’s in Normal and
% Unmethylation
B = length(umINt) + length(umINn)...
+ length(mINt);

% pr(DKK1 - Off|Sample - Normal,Me - M)
% # of Off’s in Normal
c = length(mINn);
% total # of Off’s in Normal and...
% Methylation
C = length(mINn) + length(umINn)...
+ length(mINt);

% pr(DKK1 - Off|Sample - Tumor,Me - M)
% # of Off’s in Normal
d = length(mINt);
% total # of Off’s in Normal and
% Methylation
D = length(mINt) + length(umINt)...
+ length(mINn);

These values are stored in variable T and the estimation is
shown in the following section of the code. After the val-
ues in T has been established, a constant 1 is added as pseudo
count to convert the distribution to a probability distribution
via Dirichlet process. This is done to remove any deterministic
0/1 values appearing in the probability tables. If 0/1 appears in
the probability tables then one has deterministic evidence re-
garding an event and the building of the Bayesian engine col-
lapses. Finally, the frequencies in T are normalized in order
to obtain the final conditional probability values for DKK1.
Estimation of cpts for genes SFRP1, WIF1 and DKK4
which have methylation, TRCMPLX and Sample as par-
ents require same computations as above. Figure 5 shows the

16 | 1–25

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2014. ; https://doi.org/10.1101/011064doi: bioRxiv preprint 

https://doi.org/10.1101/011064
http://creativecommons.org/licenses/by-nc/4.0/


Sample Methylation TRCMPLX Pr(DKK1=Off) Pr(DKK1=On)

Normal No Off (A-a*p + 1)/(A + 2) (a*p + 1)/(A + 2)

Tumor No Off (B-b*p + 1) /(B + 2) (b*p + 1)/(B + 2)

Normal Yes Off (c*p + 1)/(C + 2) (C-c*p)/(C + 2)

Tumor Yes Off (d*p + 1)/(D + 2) (D-d*p + 1)/(D + 2)

Normal No On (A-a*(1-p) + 1)/(A + 2) (a*(1-p) + 1)/(A + 2)

Tumor No On (B-b*(1-p) + 1)/(B + 2) (b*(1-p) + 1)/(B + 2)

Normal Yes On (c*(1-p) + 1)/(C + 2) (C-c*(1-p) + 1)/(C + 2)

Tumor Yes On (d*(1-p) + 1)/(D + 2) (D-d*(1-p) + 1)/(D + 2)

MeDKK1 TRCMPLX
Sample

DKK1

Conditional probability table for node 
D K K 1 w i t h p a r e n t s S a m p l e , 
Methylation and TRCMPLX (model = t1)

Fig. 5 Conditional probability table for node DKK1 in MPBK+EI .

CPT for DKK1 inMPBK+EI (model-t1)
Sample Methylation TRCMPLX Pr(DKK1=Off) Pr(DKK1=On)
Normal No Off h (1) l (9)
Tumor No Off h/l (2) l/h (10)
Normal Yes Off h (3) l (11)
Tumor Yes Off h (4) l (12)
Normal No On h (5) l (13)
Tumor No On h/l (6) l/h (14)
Normal Yes On h (7) l (15)
Tumor Yes On h (8) l (16)

Table 8 Conditional probability table for DKK1 in MPBK+EI

(model-t1). h - probability of event being high; l - probability of
event being low. Serial numbers in brackets represent the ordering
of numbers in vectorial format.

pictorial representation of one of the cpt inMPBK+EI .

% Multiply probability of TRCMPLX in
% on/off state to add the 3rd
% dimension in deciding the conditional
% probability tables.

% Conditional probability table for
% DKK1 given its parents
T = [A-a*p, a*p;...
B-b*p, b*p;...
c*p, C-c*p;...
d*p, D-d*p;...
A-a*(1-p), a*(1-p);...
B-b*(1-p), b*(1-p);...

c*(1-p), C-c*(1-p);...
d*(1-p), D-d*(1-p)];

[r,c] = size(T);

% Convert the table to probability
% distribution via Dirichlet process
T = T + 1;
for i = 1:r
T(i,:) = T(i,:)./sum(T(i,:));

end

(model=’t2’) There are two parents for DKK1, namely
TRCMPLX and Sample. The conditional probability value
for a gene being active or inactive is estimated based on the
state of the Sample. But since the actual probability values
for the activation of the TRCMPLX is not known the condi-
tional probabilities are multiplied with a probability value of p
when the TRCMPLX is off and with probability value 1−p
when the TRCMPLX is on.

The analysis of quality of sample generates frequency
estimates that can help derive probability values. These
frequencies depict the following cases (a) gene repressed
in normal (represented by vector offINn) (b) gene ex-
pressed in normal (represented by vector onINn) (c) gene
repressed in tumorous (represented by vector offINt)
and (d) gene expressed in tumorous (represented by vector
onINt), cases. For every jth entry in the vecTraining,
if the label (labelTraining(j)) is normal (≤0)
and the DKK1 gene expression (vecTraining(j))
is less than the estimated median (≤vecmedian) then
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value in vecTraining(j) is appended to offINn.
Here, expression level lower than median indicates prob-
able gene repression in normal case. If the la-
bel (labelTraining(j)) is normal (≤0) and the
DKK1 gene expression (vecTraining(j)) is greater
than the estimated median (≥vecmedian) then value in
vecTraining(j) is appended to onINn. Here, expres-
sion level greater than median indicates probable gene acti-
vation in normal case. If the label (labelTraining(j))
is tumorous (≥0) and the DKK1 gene expression
(vecTraining(j)) is less than the estimated median
(≤vecmedian) then value in vecTraining(j) is ap-
pended to offINt. Here, expression level lower than me-
dian indicates probable gene repression in tumour case. And
finally, If the label (labelTraining(j)) is tumorous (≥0)
and the DKK1 gene expression (vecTraining(j)) is
greater than the estimated median (≥vecmedian) then value
in vecTraining(j) is appended to onINt. Here, expres-
sion level greater than median indicates probable gene activa-
tion in tumorous case.

% Segregate values based on
% status of TRCMPLX
onINn = [];
offINn = [];
onINt = [];
offINt = [];
for j = 1:lencond
if labelTraining(j) < 0 &&...
vecTraining(j) < vecmedian
offINn = [offINn, vecTraining(j)];
elseif labelTraining(j) < 0 &&...
vecTraining(j) >= vecmedian
onINn = [onINn, vecTraining(j)];
elseif labelTraining(j) > 0 &&...
vecTraining(j) < vecmedian
offINt = [offINt, vecTraining(j)];
else
onINt = [onINt, vecTraining(j)];
end

end

Before estimating the values for cpt ofDKK1, it is important
to see how (1) the probability table would look like and (2) the
probability table is stored in BNT (Murphy et al.15). Table 9
represents the conditions of Sample as well as TRCMPLX
and the probable beliefs of events (DKK1 being on/off).
With two parents and binary state, the total number of con-
ditions is 22. To estimate the values of the probable be-
liefs of an event, the following computation is done. The
probability of gene expression being active given Sample
is normal and TRCMPLX is off i.e Pr(DKK1 = Active
|Sample = Normal, TRCMPLX = Off), is the fraction of

CPT for DKK1 inMPBK (model-t2)
Sample TRCMPLX Pr(DKK1=Off) Pr(DKK1=On)
Normal Off h (1) l (5)

Tumorous Off l (2) h (6)
Normal On h (3) l (7)

Tumorous On l (4) h (8)

Table 9 Conditional probability table for DKK1 in MPBK

(model-t2). h - probability of event being high; l - probability of
event being low. Serial numbers in brackets represent the ordering
of numbers in vectorial format.

number of 1’s in the normal sample (a×p) and the sum of to-
tal number of normal samples (A). Similarly, the probability of
gene expression being active given Sample is tumorous and
TRCMPLX is off i.e Pr(DKK1 = active |Sample = tumor-
ous, TRCMPLX = Off), is the fraction of number of 1’s in
the tumorous sample (b×p) and the sum of total number of tu-
morous samples (B). Again, the probability of gene expression
being inactive given Sample is normal and TRCMPLX is
on i.e Pr(DKK1 = inactive |Sample = normal, TRCMPLX
= On), is the fraction of number of 0’s in the normal sample
(A-a×(1 − p)) and the sum of total number of normal sam-
ples (A). Lastly, the probability of gene expression being in-
active given Sample is tumorous and TRCMPLX is on i.e
Pr(DKK1 = inactive |Sample = tumorous, TRCMPLX =
On), is the fraction of number of 0’s in the tumorous sample
(B-b×(1−p)) and the sum of total number of tumorous sam-
ples (b). Complementary conditional probability values for
DKK1 being inactive can easily be computed from the above
estimated values.

% Generate frequencies for conditional
% probability values
% pr(DKK1 - On|Sample - N,TRCMPLX - Off)
% # of On’s when Sample is N
a = length(onINn);
% total # of TRCMPLX is Off
A = length(onINn) + length(offINn);

% pr(DKK1 - On|Sample - T,TRCMPLX - Off)
% # of On’s when Sample is T
b = length(onINt);
% total # of TRCMPLX is On
B = length(onINn) + length(offINt);

% Conditional probability table
% for DKK1 given its parents
T = [A-a*p, a*p;...
B-b*p, b*p;...
A-a*(1-p), a*(1-p);...
B-b*(1-p), b*(1-p)];
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Fig. 6 Conditional probability table for node DKK1 in MPBK .

[r,c] = size(T);

After the values in T has been established, a constant 1 is
added as pseudo count to convert the distribution to a prob-
ability distribution via Dirichlet process. Finally, the frequen-
cies in T are normalized in order to obtain the final con-
ditional probability values for DKK1. Estimation of cpts
for genes SFRP1, CCND1, CD44, WIF1, MYC and
DKK4 which has TRCMPLX and Sample as parents re-
quire same computations as above. Figure 6 shows the picto-
rial representation of one of the cpt inMPBK .

% Convert the table to probability
% distribution via Dirichlet process
T = T + 1;
for i = 1:r
T(i,:) = T(i,:)./sum(T(i,:));

end

(model=’p1’) Following the Naive Bayes model presented
by Verhaegh et al.2 and making slight modifications to it,
Sinha1 generatedMNB+MPBK . In this all genes have a sin-
gle parent, namely TRCMPLX and it is assumed that the
predicted state of TRCMPLX is exactly the same as the
quality of the test sample. Thus the initial probability values
for TRCMPLX are assumed to be fixed and no variation is
made on it. The conditional probability value for a gene be-
ing active or inactive is estimated based on the state of the
TRCMPLX .

The segregation of the probability values depends on the
following conditions (a) gene is active and TRCMPLX is
on (represented by vector onINTrOn) (b) gene is inactive and
TRCMPLX is off (represented by vector offINTrOn) (c)
gene is active and TRCMPLX is off (represented by vector
onINTrOff) and (d) gene is inactive (represented by vector

offINTrOff). For every jth entry in the vecTraining,
if the label (labelTraining(j)) is ≤0 (TRCMPLX is
off) and the DKK1 gene expression (vecTraining(j))
is less than the estimated median (≤vecmedian) then value
in vecTraining(j) is appended to offINTrOff. If
the label (labelTraining(j)) is ≤0 (TRCMPLX is
off) and the DKK1 gene expression (vecTraining(j))
is greater than the estimated median (≥vecmedian) then
value in vecTraining(j) is appended to onINTrOff.
If the label (labelTraining(j)) is ≥0 (TRCMPLX is
on) and the DKK1 gene expression (vecTraining(j))
is less than the estimated median (≤vecmedian) then
value in vecTraining(j) is appended to offINTrOn.
And finally, if the label (labelTraining(j)) is ≥0
(TRCMPLX is on) and the DKK1 gene expression
(vecTraining(j)) is greater than the estimated median
(≥vecmedian) then value in vecTraining(j) is ap-
pended to onINTrOn.

% Segregate values based on
% status of TRCMPLX
onINTrOn = [];
offINTrOn = [];
onINTrOff = [];
offINTrOff = [];
for j = 1:lencond
if labelTraining(j) < 0 &&...
vecTraining(j) < vecmedian
offINTrOff = [offINTrOff,...
vecTraining(j)];

elseif labelTraining(j) < 0 &&...
vecTraining(j) >= vecmedian
onINTrOff = [onINTrOff,...
vecTraining(j)];
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CPT for DKK1 inMNB+PBK (model-p1)
TRCMPLX Pr(DKK1=Off) Pr(DKK1=On)

Off h (1) l (3)
On h (2) l (4)

Table 10 Conditional probability table for DKK1 in
MNB+MPBK (model-p1). h - probability of event being high; l -
probability of event being low. Serial numbers in brackets represent
the ordering of numbers in vectorial format.

elseif labelTraining(j) > 0 &&...
vecTraining(j) < vecmedian
offINTrOn = [offINTrOn,...
vecTraining(j)];
else
onINTrOn = [onINTrOn,...
vecTraining(j)];

end

Before estimating the values for cpt ofDKK1, it is important
to see how (1) the probability table would look like and (2)
the probability table is stored in BNT (Murphy et al.15). Table
10 represents the conditions of TRCMPLX and the prob-
able beliefs of events (DKK1 being on/off). With a single
parent and binary state, the total number of conditions is 21.
To estimate the values of the probable beliefs of an event, the
following computation is done. The probability of gene ex-
pression being active given TRCMPLX is off i.e Pr(DKK1
= Active |TRCMPLX = Off), is the fraction of number of
1’s in the normal sample (a) and the sum of total number of
normal samples (A). Similarly, the probability of gene expres-
sion being inactive given TRCMPLX is off i.e Pr(DKK1 =
active |TRCMPLX = On), is the fraction of number of 1’s
in the tumorous sample (b) and the sum of total number of
tumorous samples (B). Complementary conditional probabil-
ity values for DKK1 being inactive can easily be computed
from the above estimated values. Figure 6 shows the pictorial
representation of one of the cpt inMPBK .

% Generate frequencies for
% conditional probability values
% pr(DKK1 - On | TRCMPLX - Off)
% # of On’s when TRCMPLX is Off
a = length(onINTrOff);
% total # of TRCMPLX is Off
A = length(onINTrOff) + length(offINTrOff);

% pr(DKK1 - On | TRCMPLX - On)
% # of On’s when TRCMPLX is On
b = length(onINTrOn);
% total # of TRCMPLX is On

B = length(onINTrOn) + length(offINTrOn);

% Conditional probability table
% for DKK1 given its parents
T = [A-a, a;...
B-b, b];

[r,c] = size(T);

After the values in T has been established, a constant 1 is
added as pseudo count to convert the distribution to a probabil-
ity distribution via Dirichlet process. Finally, the frequencies
in T are normalized in order to obtain the final conditional
probability values for DKK1. Figure 7 shows the pictorial
representation of one of the cpt inMNB+MPBK .

% Convert the table to probability
% distribution via Dirichlet process
T = T + 1;
for i = 1:r
T(i,:) = T(i,:)./sum(T(i,:));

end

2.6.2 DKK2: (model-’t1’) Sample is the single par-
ent of DKK2. The conditional probability value for a
gene being active or inactive is estimated based on the state
of the Sample. The analysis of quality of sample gener-
ates frequency estimates that can help derive probability val-
ues. These frequencies depict the following cases (a) gene
repressed in normal (represented by vector offINn) (b)
gene expressed in normal (represented by vector onINn) (c)
gene repressed in tumorous (represented by vector offINt)
and (d) gene expressed in tumorous (represented by vector
onINt), cases. For every jth entry in the vecTraining,
if the label(labelTraining(j)) is normal (≤0) and
the DKK2 gene expression (vecTraining(j)) is
less than the estimated median (≤vecmedian) then
value in vecTraining(j) is appended to offINn.
Here, expression level lower than median indicates prob-
able gene repression in normal case. If the la-
bel (labelTraining(j)) is normal (≤0) and the
DKK2 gene expression (vecTraining(j)) is greater
than the estimated median (≥vecmedian) then value in
vecTraining(j) is appended to onINn. Here, expres-
sion level greater than median indicates probable gene acti-
vation in normal case. If the label (labelTraining(j))
is tumorous (≥0) and the DKK2 gene expression
(vecTraining(j)) is less than the estimated median
(≤vecmedian) then value in vecTraining(j) is ap-
pended to offINt. Here, expression level lower than me-
dian indicates probable gene repression in tumour case. And
finally, If the label (labelTraining(j)) is tumorous (≥0)
and the DKK2 gene expression (vecTraining(j)) is
greater than the estimated median (≥vecmedian) then value
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Fig. 7 Conditional probability table for node DKK1 in MNB+MPBK .

CPT for DKK2 inMNB+PBK (model-t1)
Sample Pr(DKK2=Off) Pr(DKK2=On)
Normal l/h (1) h/l (3)
Tumor h/l (2) l/h (4)

Table 11 Conditional probability table for DKK2 in
MNB+MPBK (model-t1). h - probability of event being high; l -
probability of event being low. Serial numbers in brackets represent
the ordering of numbers in vectorial format.

in vecTraining(j) is appended to onINt. Here, expres-
sion level greater than median indicates probable gene activa-
tion in tumorous case.

% Segregate values based on
% different types of samples
onINn = [];
offINn = [];
onINt = [];
offINt = [];
for j = 1:lencond
if labelTraining(j) < 0 &&...
vecTraining(j) < vecmedian
offINn = [offINn, vecTraining(j)];
elseif labelTraining(j) < 0 &&...
vecTraining(j) >= vecmedian
onINn = [onINn, vecTraining(j)];
elseif labelTraining(j) > 0 &&...
vecTraining(j) < vecmedian
offINt = [offINt, vecTraining(j)];
else
onINt = [onINt, vecTraining(j)];
end

end

Before estimating the values for cpt of DKK2, it is impor-
tant to see how (1) the probability table would look like and
(2) the probability table is stored in BNT (Murphy et al.15).
Table 11 represents the conditions of Sample and the prob-
able beliefs of events (DKK2 being on/off). With a single
parent and binary state, the total number of conditions is 21.
To estimate the values of the probable beliefs of an event, the
following computation is done. The probability of gene ex-
pression being active given Sample is normal i.e Pr(DKK1
= Active |Sample = Normal), is the fraction of number of 1’s
in the normal sample (a) and the sum of total number of nor-
mal samples (A). Similarly, the probability of gene expression
being active given Sample is tumorous i.e Pr(DKK2 = ac-
tive |Sample = Tumorous), is the fraction of number of 1’s in
the tumorous sample (b) and the sum of total number of tu-
morous samples (B). Complementary conditional probability
values forDKK2 being inactive can easily be computed from
the above estimated values.

% Generate frequencies for
% conditional probability values
% pr(DKK2 - On | Sample - Normal)
% # of On’s in Normal
a = length(onINn);
% total # of samples in Normal
A = length(onINn) + length(offINn);

% pr(DKK2 - On | Sample - Tumor)
% # of On’s in Normal
b = length(onINt);
% total # of samples in Tumor
B = length(onINt) + length(offINt);

After the values in T has been established, a constant 1 is
added as pseudo count to convert the distribution to a probabil-
ity distribution via Dirichlet process. Finally, the frequencies
in T are normalized in order to obtain the final conditional

1–25 | 21

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2014. ; https://doi.org/10.1101/011064doi: bioRxiv preprint 

https://doi.org/10.1101/011064
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 8 Conditional probability table for node DKK2 in MPBK+EI and MPBK .

probability values for DKK2. Estimation of cpts for genes
DKK3 − 1, DKK3 − 2, SFRP3 and LEF1 which have
Sample as parent require same computations as above.

% Conditional probability table for
% DKK2 given its parents
T = [A-a, a;...
B-b, b];

[r,c] = size(T);

% Convert the table to probability
% distribution via Dirichlet process
T = T + 1;
for i = 1:r
T(i,:) = T(i,:)./sum(T(i,:));

end

(model-’t2’) When epigenetic factors are removed from
MPBK+EI and the model transformed into MPBK i.e
model=’t2’, then the estimation of cpt values for DKK2 re-
main the same as in model=’t1’. Same computations ap-
ply for genes DKK3 − 1, DKK3 − 2, SFRP2, SFRP3,
SFRP4, SFRP5, LEF1, DACT1, DACT2 and DACT3,
in model=’t2’.

Figure 6 shows the pictorial representation of one of the cpt
inMPBK+EI andMPBK .

2.6.3 DACT3: (model-’t1’) The conditional probability
value for a gene being active or inactive is estimated from
generated frequency estimates that can help derive probabil-
ity values. These frequencies depict the following cases (a)
gene repressed in normal (represented by vector offINn) (b)
gene expressed in normal (represented by vector onINn) (c)
gene repressed in tumorous (represented by vector offINt)
and (d) gene expressed in tumorous (represented by vector
onINt), cases. For every jth entry in the vecTraining,
if the label(labelTraining(j)) is normal (≤0) and
the DACT3 gene expression (vecTraining(j)) is

less than the estimated median (≤vecmedian) then
value in vecTraining(j) is appended to offINn.
Here, expression level lower than median indicates prob-
able gene repression in normal case. If the la-
bel (labelTraining(j)) is normal (≤0) and the
DACT3 gene expression (vecTraining(j)) is greater
than the estimated median (≥vecmedian) then value in
vecTraining(j) is appended to onINn. Here, expres-
sion level greater than median indicates probable gene acti-
vation in normal case. If the label (labelTraining(j))
is tumorous (≥0) and the DACT3 gene expression
(vecTraining(j)) is less than the estimated median
(≤vecmedian) then value in vecTraining(j) is ap-
pended to offINt. Here, expression level lower than me-
dian indicates probable gene repression in tumour case. And
finally, If the label (labelTraining(j)) is tumorous (≥0)
and the DACT3 gene expression (vecTraining(j)) is
greater than the estimated median (≥vecmedian) then value
in vecTraining(j) is appended to onINt. Here, expres-
sion level greater than median indicates probable gene activa-
tion in tumorous case.

% Segregate values based on status
% of histone repressive and active
% marks
onINn = [];
offINn = [];
onINt = [];
offINt = [];

for j = 1:lencond
if labelTraining(j) < 0 &&...
vecTraining(j) < vecmedian
offINn = [offINn, vecTraining(j)];

elseif labelTraining(j) < 0 &&...
vecTraining(j) >= vecmedian
onINn = [onINn, vecTraining(j)];
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H3K27me3 H3K4me3 Sample Pr(DACT3=Off) Pr(DACT3=On)

low low Off (A - a + 1)/(A + 2) (a + 1)/(A + 2)

high low Off (A - a + 1) /(A + 2) (a + 1)/(A + 2)

low high Off (a + 1)/(A + 2) (A - a)/(A + 2)

high high Off (A - a + 1)/(A + 2) (a + 1)/(A + 2)

low low On (b + 1)/(B + 2) (B - b + 1)/(B + 2)

high low On (b + 1)/(B + 2) (B - b + 1)/(B + 2)

low high On (B - b + 1)/(B + 2) (b + 1)/(B + 2)

high high On (b + 1)/(B + 2) (B - b + 1)/(B + 2)

H3K27me3

Sample

DACT3

Conditional probability table for node 
DACT3 w it h p a re nt s S amp le , 
H3K27me3 and H3K4me3 (model = t1)

H3K4me3

Fig. 9 Conditional probability table for node DACT3 in MPBK+EI .

elseif labelTraining(j) > 0 &&...
vecTraining(j) < vecmedian
onINt = [onINt, vecTraining(j)];

else
offINt = [offINt, vecTraining(j)];

end
end

Before estimating the values for cpt of DACT3, it is impor-
tant to see how (1) the probability table would look like and
(2) the probability table is stored in BNT (Murphy et al.15).
Table 12 represents the conditions of Sample, H3K4me3
and H3K4me3 the probable beliefs of events (DACT3 be-
ing on/off). Finally, from biological data presented in Jiang
et al.3 the conditional probability values for theDACT3 gene
being active based on the histone modification and the avail-
able samples suggest that DACT3 expression is high in nor-
mal samples when the histone repressive mark H3K27me3
is reduced and activating mark H3K4me3 are present in
high abundance. Thus, the probability i.e Pr(DACT3 =
active|HK327me3 = low,H3K4me3 = high, Sample =
normal) is the fraction of the number of 1’s in the normal
samples (a) and the total number of normal samples (A). For
all other conditions of H3K27me3 and H3K4me3 when
the Sample is normal the probability of DACT3 being ac-
tive is (A-a), i.e flip or complementray of Pr(DACT3 =
active|HK327me3 = low,H3K4me3 = high, Sample =
normal). This is because in all other conditions of the hi-
stone marks the probability of DACT3 being active will
be reverse of what it is when H3K27me3 is reduced and

CPT for DACT3 inMPBK+EI (model-t1)
H3K27me3 H3K4me3 Sample Pr(DACT3=Off) Pr(DACT3=On)

1 1 Normal h (1) l (9)
2 1 Normal h (2) l (10)
1 2 Normal l (3) h (11)
2 2 Normal h (4) l (12)
1 1 Tumor h (5) l (13)
2 1 Tumor h (6) l (14)
1 2 Tumor l (7) h (15)
2 2 Tumor h (8) l (16)

Table 12 Conditional probability table for DACT3 in MPBK

(model-t1). h - probability of event being high; l - probability of
event being low. 1 - low; 2 - high.Serial numbers in brackets
represent the ordering of numbers in vectorial format.

H3K4me3 is present in abundance. Similarly, in case of
tumorous samples, the probability of DACT3 being active
will occur when H3K27me3 is reduced and H3K4me3 is
high abundance (a rare phenomena). Thus the probability i.e
Pr(DACT3 = active|HK327me3 = low,H3K4me3 =
high, Sample = tumorous) is the fraction of the number of
1’s in the tumorous sample (b) and the total number of tu-
morous samples (B). For all other conditions of H3K27me3
andH3K4me3 when the Sample is tumorous the probability
of DACT3 being active is (B-b), i.e flip or complementray
of Pr(DACT3 = active|HK327me3 = low,H3K4me3 =
high, Sample = tumorous). . The reason for flip is the same
as described above.

% Generate frequencies for
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% conditional probability values
% pr(DACT3 - On | H3K27me3 - 1,
% H3K4me3 - 2, Sample - Normal)
% # of On’s in Normal
a = length(onINn);
% total # of On’s in Normal
A = length(offINn) + length(onINn);

% pr(DACT3 - On | H3K27me3 - 1,
% H3K4me3 - 2, Sample - Tumor)
% # of On’s in Tumor
b = length(onINt);
% total # of On’s in Tumor
B = length(offINt) + length(onINt);

% In rest of the cases where
% (H3K27me3 - 1 and H3K4me3 - 2) is not
% present, the probabilities reverse.

After the values in T has been established, a constant 1 is
added as pseudo count to convert the distribution to a prob-
ability distribution via Dirichlet process. Finally, the frequen-
cies in T are normalized in order to obtain the final conditional
probability values for DACT3. Figure 9 shows the pictorial
representation of one of the cpt inMPBK+EI .

% Conditional probability table
% for DACT3 given its parents
T = [a, A-a;...
a, A-a;...
A-a, a;...
a, A-a;...
b, B-b;...
b, B-b;...
B-b, b;...
b, B-b];

[r,c] = size(T);

% Convert the table to probability
% distribution via Dirichlet process
T = T + 1;
for i = 1:r
T(i,:) = T(i,:)./sum(T(i,:));

end

Finally, for every gene, after the computation of the proba-
bility values in their respective cpt, the function generate-
Genecpd returns the following arguments as output.

gene_cpd = struct();
gene_cpd.vecmedian = vecmedian;
gene_cpd.T = T;

3 A programming project for practice

To get a feel of the project, interested readers might want to
implement the following steps when the evidence eviDence
is ’me’. The code needs to be embedded as a case in the switch
part of the twoHoldOutExp function. The idea is to perturb
the methylation nodes with binary values and find if one can
converge to the correct prediction of state of TRCMPLX as
well as the Sample. These binary values are stored in a vector
and represents a permutation of the methylation states of the
methylation node in MPBK+EI . Varying the values of the
vector can help study how perturbations affect the prediction
of the network and the predictions. The steps are given below
-

1. Define variables for storing predictions of TRCMPLX
(tempTRCMPLX) and Sample (tempSample).

2. Find the total number of methylation cases in
MPBK+EI and store the number in a variable
noMethylation.

3. Generate binary values for noMethylation nodes.
Define a cell (binaryStatesOfMethylation) that
can store vectors of binary values where every permuta-
tion represents a set of methylation states. The total num-
ber of permutations should be 2noMethylation which is
stored in noMethylationConfig. One might want
to use quantizer and num2bin functions from matlab.

4. Next, generate methylation evidences. Define a 2D ma-
trix variable methylationEvidence that stores the
methylation evidences. One might want to use the mat-
lab function str2num. Finally, add a value of 1 to methy-
lationEvidence as the BNT takes in ’1’ and ’2’ as states
representing binary values.

5. Build evidence for inference for every test example. The
steps following might be necessary

• For every methylation configuration and for every
methylation node build evidence.

• Build a new bayesian network in bnetEngine
using jtree inf engine and store the mod-
ified engine (in engine) using the function
enter evidence.

• Finally, compute the Pr(TRCMPLX = 2|ge as ev-
idence) and Pr(Sample = 2|ge as evidence) using
the function marginal nodes.

6. Store predicted results on observed methylation in struc-
ture Runs indexed with runCnt.

After the section of new code is filled in, run the code and
check the results.
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4 Conclusion

A pedagogical walkthrough of a computational modeling and
simulation project is presented using parts of programming
code interleaved with theory. The purpose behind this endeav-
our is to acclimatize and ease the understanding of beginner
students and researchers in transition, who intend to work on
computational signaling biology projects. To this end, static
Bayesian network models for the Wnt signaling pathway has
been selected for elucidation. This is done due to lack or
paucity of manuscripts explaining the computational experi-
ments from tutorial perspective due to restrictive policies.
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