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Abstract 

 

The characterization of functional elements in genomes relies on the identification of the 

footprints of natural selection. In this quest, taking into account neutral evolutionary processes 25 

such as mutation and genetic drift is crucial because these forces can generate patterns that may 

obscure or mimic signatures of selection. In mammals, and probably in many eukaryotes, 

another such confounding factor called GC-Biased Gene Conversion (gBGC) has been 

documented. This mechanism generates patterns identical to what is expected under selection for 

higher GC-content, specifically in highly recombining genomic regions. Recent results have 30 

suggested that a mysterious selective force favouring higher GC-content exists in Bacteria but the 

possibility that it could be gBGC has been excluded. Here, we show that gBGC is probably at 

work in most if not all bacterial species. First we find a consistent positive relationship between 

the GC-content of a gene and evidence of intra-genic recombination throughout a broad 

spectrum of bacterial clades. Second, we show that the evolutionary force responsible for this 35 

pattern is acting independently from selection on codon usage, and could potentially interfere 

with selection in favor of optimal AU-ending codons. A comparison with data from human 

populations shows that the intensity of gBGC in Bacteria is comparable to what has been 

reported in mammals. We propose that gBGC is not restricted to sexual Eukaryotes but also 

widespread among Bacteria and could therefore be an ancestral feature of cellular organisms. We 40 

argue that if gBGC occurs in bacteria, it can account for previously unexplained observations, 

such as the apparent non-equilibrium of base substitution patterns and the heterogeneity of gene 

composition within bacterial genomes. Because gBGC produces patterns similar to positive 

selection, it is essential to take this process into account when studying the evolutionary forces at 

work in bacterial genomes. 45 
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Introduction 

Comparative genomics is a fundamental key to the inner workings of genomes. The identification of 

genes and other functional elements such as regulatory regions, as well as the understanding of their 50 

influence on the fitness of organisms rely essentially on the detection of signatures of natural selection 

within genomes [1]. In that respect, devising a model of sequence evolution in the absence of selective 

constraints (a neutral model) is critical for the detection of functional sequences. Indeed, to explain the 

features of a given genomic segment, comparing the fit of a neutral model to that of a model that also 

invokes selection (either purifying or positive) is the operational way to infer evolutionary constraint 55 

and hence function. 

The base composition of genomic sequences varies widely, both across species and along chromosomes 

[2,3]. For instance, the genomic GC-content of cellular organisms ranges from 13% to about 75% [4,5], 

with vast intra-genomic heterogeneity. These large-scale variations in base composition affect all parts 

of genomes, intergenic regions and genes – including all three codon positions [6] – and hence cannot 60 

be simply explained by selective constraints on the encoded proteins. Determining the underlying 

causes (selective or neutral) of these variations in GC-content is a major issue in genetics: if they result 

from selection, it implies that the genomic base composition per se is an important trait that contributes 

to the fitness of organisms; conversely, if these “genomic landscapes” are largely shaped by non-

adaptive molecular processes, then characterizing these processes is essential for the reliable detection 65 

of selection (see e.g. [7]). 

In mammals, the analysis of polymorphism data and substitution patterns along genomes demonstrated 

that the evolution of GC-content is driven by recombination, which tends to increase the probability of 

fixation of AT→GC mutations [8,9]. The impact of recombination on base composition in these 

genomes is most probably due to a phenomenon known as GC-biased gene conversion (gBGC), which 70 

favours G/C nucleotides at polymorphic sites in the conversion of intermediates of recombination (see 

review in [10]). Although gBGC as a process is unrelated to natural selection, it affects the probability 

of fixation of alleles in patterns similar to selection [11]. It has been shown to be an important 

confounding factor, which can mimic some marks of positive selection [7,12] and interfere with 

selection by actively promoting the fixation of deleterious alleles [13,14]. The process of gBGC has 75 

been observed directly in meiosis products from yeast and human [15,16], and there is ample evidence, 
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based on the analysis of relationships between recombination rate and substitution patterns within 

genomes, that this process affects many other eukaryotes [17–19].  

In Bacteria and Archaea, several environmental factors potentially affecting genomic GC-content have 

been proposed (such as the availability of oxygen or nitrogen in the environment, growth temperature, 80 

or the variety of environments encountered by an organism, see for instance [20] and ref. therein). 

Because these effects are weak and the nature of the selective pressures remain elusive, the major force 

driving genomic GC-content has long been considered to be mutational bias [21]. Recently however, 

two independent analyses have shown that in virtually all Bacteria, independently of their genomic GC-

content, there is an excess of G/C→A/T mutations [22,23]. This suggests that an unknown process, 85 

selective or neutral, is opposing this universal mutational bias by favouring the fixation of G/C alleles 

Previously, an analysis of a large number of E. coli genomes had suggested a possible role of gBGC, 

based on the link between GC-content, recombination and the organization of the chromosome in this 

species [24]. However Hildebrand et al. [23] observed that the excess of G/C→A/T mutations was still 

present after removing datasets with evidence of recombination. Moreover they found no correlation 90 

between GC-content and recombination rate across bacterial species. They therefore concluded that this 

force could not be gBGC and hence that selection was driving an increase of genomic GC in Bacteria. 

The nature of this selective advantage remains however mysterious, though various hypotheses have 

been proposed [25,26].  

 95 

Here we argue that the analyses performed by Hildebrand et al. [23] are not conclusive regarding the 

gBGC hypothesis, and we present evidence that variations in GC-content observed in Bacteria are 

influenced by gBGC. One pervasive signature of gBGC is that genomic regions undergoing high 

recombination rates will also acquire a high GC-content [6]. We thus studied the relationship between 

recombination and GC-content in 20 groups of Bacteria and one group of Archaea. This dataset covers 100 

a wide range of clades representative of the bacterial diversity. To avoid problems inherent to 

comparisons of recombination rates among species (such as differences in polymorphism, genome 

samples, population size, mutation rates, an other life history factors), we examined the intragenomic 

variability for both recombination and GC-content.  

We show that in a wide variety of bacterial species, genes with evidence of recombination have a 105 

higher GC-content. We further show that this bias towards G/C nucleotides in recombining genes 
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cannot be explained by selection on codon usage, and could interfere with the selection for AT-ending 

optimal codons. These two observations strongly suggest that homologous recombination, via gBGC, is 

a crucial factor universally influencing the nucleotide content of genes and genomes. If confirmed, 

gBGC can account for several pervasive yet unexplained features of bacterial genomes. Finally, we 110 

emphasize that because gBGC has the ability to both mimic and interfere with natural selection, gBGC 

must be considered by future studies geared at understanding processes driving bacterial genome 

evolution. 

Results 

A universal relationship between recombination and GC% in Bacteria. In Bacteria, recombination 115 

occurs in the form of gene conversion (i.e. unidirectional transfer of genetic material from a donor 

sequence towards a homologous recipient sequence). To detect past gene conversion events in bacterial 

species, it is necessary to compare closely related genomes. We therefore selected in the database of 

homologous gene families HOGENOM (release 6) [27] all groups of closely related species or strains 

encompassing at least 6 sequenced genomes. This dataset contains 20 bacterial groups and one archaeal 120 

group. For each gene family represented in these groups, we computed i) the average GC-content at 

different positions of codons and ii) the index of recombination provided by PHI [28] based on 

alignments of standardized length (see methods for details). PHI is a rapid method for detecting 

recombination in multiple alignments at the scale of the gene, which has been shown to be more robust 

than most methods to variations in recombination rates, sequence divergence and population dynamics 125 

[28]. We used this test to determine if homologous gene families had experienced gene conversion 

events among members of the taxa of interest. One important feature of this test is that it measures 

whether there is sufficient phylogenetic signal in an alignment to tell if recombination has occurred. 

Only those alignments with sufficient signal, whether recombinant or non-recombinant were retained 

for tests in the remaining of this study. We also used three other approaches for detecting 130 

recombination, and these confirm the robustness of our conclusions (see Methods and Supplementary 

Material). 

In Eukaryotes, a general relationship between various estimates of recombination rate and the GC% of 

genes has been documented and provides indirect evidence for gBGC. Our first goal was to test this 

prediction in Bacteria and Archaea. To exclude a potential effect of the number of genes in the 135 

alignment on our estimates of recombination (because alignments with more sequences are expected to 
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give more power to detect recombination), we focused on single-copy genes of the core genome (i.e. 

genes that are present in only one copy and found in each genome of a group). In 7 of the 21 groups, 

the proportion of single-copy genes of the core genome with evidence for recombination was very low 

(<2% of all gene alignments tested), suggesting that these species are clonal or nearly so (Table 1; 140 

shaded datasets in Fig. 1). In 11 of the 14 remaining groups, we found a significant positive difference 

in average GC-content at all and/or at the third position of codons (GC3) between recombinant and 

non-recombinant genes (Figure 1). In these 11 species, the difference in GC3 is always larger than that 

at all positions, suggesting that the effect of recombination on gene composition is stronger at 

synonymous positions (probably because of purifying selection on protein sequences). Two notable 145 

exception to this pattern are i) the bacterial species Helicobacter pylori, where GC-content seems to be 

lower in recombining genes and ii) the Bacillus anthracis/cereus group, where GC at all positions and 

GC3 display opposite patterns, with GC3 being higher in recombining genes. Consistent results are 

obtained using alternative recombination detection methods (Fig. S1). 

In principle, gBGC should affect all genomic regions where recombination occurs, including intergenic 150 

regions. Intergenes are generally shorter than coding regions. Furthermore, they evolve more rapidly 

and hence are more difficult to align. Hence, the methods that we used to detect recombination in 

coding regions cannot be applied with intergenes. We therefore used the recombinant or non-

recombinant status of the neighboring protein-coding genes as a proxy of the status of the intergenes. In 

11 of the 14 taxonomic groups, we observed that intergenes flanked by recombining genes have a 155 

higher GC-content than intergenes flanked by non-recombining genes (Fig. S2). The difference in GC-

content between the two classes is weaker than that observed in coding regions, and when considered 

individually, only one comparison is statistically significant (Streptococcus pyogenes, p < 0.01). This is 

possibly because the prediction of recombination status of intergenic regions is indirect (based on the 

status of flanking genes) and therefore less accurate than that of coding regions. However, the number 160 

of cases where the difference in GC-content between the two classes is positive (11 out of 14 

comparisons) is significantly higher than expected by chance (Chi-squared test: p=0.03).   

 

Selection on optimal codons cannot explain the association of GC with recombination. 

Recombination is known to enhance the efficacy of selection by breaking linkage between neighboring 165 

selected sites. It is therefore possible that selection is more efficient in recombining genes. This effect 
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(referred to as Hill-Robertson interference) should theoretically be more pronounced in the case of 

selection on codon usage [29], which is relatively weak compared to selection on amino acid 

sequences. Thus recombination – in the absence of any gBGC – can potentially explain the pronounced 

effect observed on GC3: if Hill-Robertson interference leads to a higher frequency of optimal codons in 170 

highly recombining genes, and if optimal codons tended to be GC-rich, this effect could explain a 

relationship between GC-content and recombination. The “selection model” sketched above predicts 

that the frequency of all optimal codons (both GC-ending and AU-ending) should increase with 

recombination. In contrast, a model incorporating the effect of gBGC predicts that GC-ending codons 

(not specifically optimal codons) should be enriched in recombining regions, and that AU-ending 175 

codons (and possibly AU-ending optimal codons if gBGC is strong enough to override selection on 

codon usage) should display the opposite pattern. We therefore looked specifically at the frequency of 

the different types of codons, i.e. optimal and non-optimal, in recombining and non-recombining genes.  

There is a debate over the best way to define optimal codons, based on their over-representation in 

either ribosomal protein genes (RP), or genes with the highest codon bias (HCB) [30–32]. We therefore 180 

analyzed the frequency of GC-ending and AU-ending optimal codons (FopGC and FopAU) and non-

optimal codons (FnopGC and FnopAU) according to both RP and HCB definitions (Fig. 2 and S3 and 

Fig. S4, respectively). The higher GC3 of recombining genes means that GC-ending codons are over-

represented in recombining genes, but this is true for optimal GC-ending codons in only 2 (RP optimal 

codons) or 4 (HCB optimal codons) species out of 11. This effect is hence essentially due to non-185 

optimal codons (FnopGC is significantly higher in recombining genes than non-recombining genes in 

respectively 9 and 8 species for RP and HCB definitions). Moreover, optimal AU-ending codons are 

significantly depleted in recombining genes for 8 (resp. 5) species for RP (resp. HCB) codons. In fact, 

only two species, S. pyogenes and Nesseiria meningitidis (using the HCB method – only S. pyogenes 

using the RP method) exhibit a pattern partially compatible with the selection hypothesis presented 190 

above. All species display either an increase of FnopGC and/or a decrease of FopAU in recombining 

genes, a fact that cannot be explained by a higher efficiency of selection. This pattern excludes the 

possibility of pervasive selection for codon usage promoting a better adaptation to the pool of tRNA for 

genes in regions of high recombination, but is compatible with the predictions of gBGC.  

 195 

Quantifying the impact of recombination on bacterial genome evolution.  
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To quantify the relationship between recombination and base composition, we first analyzed the 

genome of S. pyogenes, one of the species for which the signature of gBGC is strong (Fig. 1, see also 

Sup. Mat.). We used ClonalOrigin [33] to compute the population-scaled recombination rate (rho) for 

each gene of the core genome. The correlation between rho and the GC-content at third codon position 200 

of each gene (GC3) is slight but significant (R2=0.034, p<10-4, n=478). Interestingly, when we exclude 

genes for which the estimate of rho is less reliable (about 10% of the data, see Sup. Mat.), the 

correlation strongly increases (R2=0.087; p<10-9, n=437). Due to the low amount of data available in a 

gene-scale alignment, the measure of rho is expected to be noisy. Thus, the observed correlation is 

probably an underestimate. To try to get more robust estimates of rho, we binned the dataset into 20 205 

groups of genes according to their GC3, and we computed the correlation between the average GC3 

and the average rho of each bin. Using this approach, we observed a strong correlation between the 

GC3 and recombination (R2=0.60; Fig. 3A). 

For a comparison, we performed a similar analysis in humans: we randomly selected 600 human genes 

(which corresponds to the average number of genes analyzed in our bacterial data sets), binned the data 210 

set into 20 groups of genes according to their GC3, and we computed the correlation between the 

average GC3 and the average recombination rate as obtained from population-wide surveys [34]. The 

average correlation (computed after repeating the random sampling 1,000 times) is R2=0.55 (with 95% 

of the R2 values in the interval [0.26-0.78]; one representative example is presented in Fig 3A). 

Using this binning approach, we noted that the proportion of genes in a bin that are detected as 215 

recombinant by PHI is strongly correlated with the average value of rho (R2=0.70; p<10-5). This 

suggests that this index (hereafter referred to as PREC, for 'proportion of recombinant') is a good proxy 

for the average recombination rate in a bin. In fact, we observed that GC3 correlates more strongly with 

PREC (R2=0.68; Fig. 3B) than with rho. Given that the computation of rho with ClonalOrigin is 

extremely time consuming, we decided to use PREC to evaluate the correlation between GC3 and 220 

recombination rate in other species. Correlations were positive and significant for 11 of the 14 species, 

with R2 values ranging from 0.24 to 0.68, and we did not observe any significant negative correlation 

(Fig. 3B). This shows that the correlations between GC-content and recombination rate in bacteria are 

of similar magnitude to what is observed in humans. 
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 225 

 

Discussion 

 

Is there selection for higher genomic GC-content in bacteria? Our results suggest that recombination 

affects the GC-content of genes in most bacterial phyla. We analyzed genes of the core genome to 230 

compare the base composition of genes with or without evidence of recombination. In our sample, 

seven bacterial species showed very little evidence of recombination (less than 2% of gene alignments 

with detectable traces of recombination): the Burkholderia pseudomalei group, Chlamydia trachomatis, 

Francisella tularensis, Mycobacterium tuberculosis and Yersinia pestis which are species known to be 

pathogenic clonal complexes with low polymorphism and probably very low recombination [35–39], 235 

while Brucella spp. and Sulfolobus spp. are likely composed of ecologically isolated clades, because of 

their respective lifestyle as obligate intracellular pathogen or ecotypes endemic of hot springs [40–42]. 

The 14 other bacterial species contain clear signal of recombination (11% to 71% of testable core genes 

with evidence of recombination). In 11 of these 14 species, we observed that the GC-content (measured 

at the third codon position or along the entire coding region) is higher among recombining genes 240 

compared to other (hereafter labeled as “non-recombining”) core genes.  

Several hypotheses have been proposed to explain the variations in GC-content among bacterial 

genomes [25]. Recently, two studies have revealed that the genomic GC-content of bacterial genomes is 

always higher than what would be predicted from mutational bias [22,23]. Hence, it seems inescapable 

that some other evolutionary force is driving the genomic GC-content towards higher values in 245 

virtually all bacterial species, except maybe for the most AT-rich genomes [22]. A former study of E.coli 

genomes showed that the excess of new AT-enriching mutation was erased with time, but that purifying 

selection on protein sequence could not alone account for this compensatory process [43]. Actually, the 

recombination-associated process we observe here is noticeably stronger at the third codon position, 

which is often synonymous. This suggests that purifying selection on protein sequences is rather 250 

counteracting its effect. Recombination is known to enhance the efficiency of selection by breaking 

linkage among sites. It is therefore conceivable that our results merely reveal a universal selective 

pressure favoring GC-rich alleles. But the mechanism underlying such selection would have to be 

acting more efficiently on synonymous sites than non-synonymous sites because the difference of GC% 
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between recombining and non-recombining genes is higher at the third position of codons. This 255 

excludes potential selection on amino-acid content. One selectable trait that may influence synonymous 

positions is codon usage. If optimal codons tended to be GC-rich, recombination could drive GC% 

higher by favoring the adaptation of genes to better translation efficiency. However, we observed a 

higher GC-content in recombining genes even in species favoring A/U-ending codons (Fig. 2). 

Moreover, A/U-ending and G/C-ending codons show opposite relationships with recombination in most 260 

species, irrespective of their optimality. These observations suggest that the evolutionary force 

explaining our results is also largely independent from selection on codon usage. This conclusion is 

supported by the fact that the relationship between GC-content and recombination is also observed in 

intergenic regions (Fig. S2). 

In fact, as suggested by Hershberg and Petrov [22], who observed that the intergenic regions of bacterial 265 

genomes also have higher GC% than expected from their mutational pattern, it seems likely that the 

process is unlinked to gene expression or function. Hence, either there is selection acting 

simultaneously on each nucleotide of a bacterial genome to become G or C, or GC-biased gene 

conversion, which has now been observed in a variety of Eukaryotes is also at work in Bacteria. 

 270 

gBGC effect on nucleotide composition is manifest within genomes. The hypothesis that gBGC plays 

a role in bacterial genome evolution has been considered previously [23]. Hildebrand et al. analyzed the 

correlation between genome-wide measures of recombination rate (scaled by effective population size) 

with genomic GC-content among 34 species, covering different bacterial phyla. As they did not find 

any significant correlation, they concluded that there was no evidence of gBGC in Bacteria [23]. 275 

However, we argue here that this observation is not conclusive. In fact, the strength of gBGC depends 

on four variables: the effective population size (Ne), the rate of recombination per bp per generation (r), 

the length of conversion tracts (L) and the intensity of the repair bias (b0) (for review, see [6]). In a 

haploid organism, the population-scaled gBGC coefficient is: 

B = 2 Ne · r · L · b0  (1) 280 

Similar to selection, the impact of gBGC on genome evolution depends on its intensity relative to 

genetic drift, and becomes negligible when B << 1. There is evidence that besides Ne and r, both L and 

b0 can vary strongly across species. For example, in budding yeast, when a GC/AT heterozygote site is 
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involved in a gene conversion event, the GC-allele is transmitted with a probability pGC=0.507 (which 

is significantly higher than the expected Mendelian transmission ratio; [15]), whereas in humans, a 285 

recent analysis of gene conversions tracts associated to non-crossover recombination showed that GC-

alleles are transmitted with a probability pGC=0.70 [16]. Thus, the parameter b0 (b0  = 2 · pGC – 1) is 

about 30 times higher in humans than in yeast. Conversely, gene conversion tracts are on average about 

4 times longer in yeast than in mammals [15,44]. Thus, for a same population-scaled recombination rate 

(Ne r), the intensity of gBGC would be about 7 times stronger in humans than in yeast. This example 290 

illustrates that because of variations in L and b0, the gBGC model does not necessarily predict a good 

correlation between population-scaled recombination rate and GC-content across species. In fact, to 

test the predictions of the gBGC model, it is more appropriate to investigate correlations between base 

composition and recombination rate within genomes, so that the other parameters (Ne, L and  b0) can 

be controlled for.  295 

 

The impact of gBGC on bacterial genome evolution is quantitatively strong.  

The observations presented previously are qualitatively consistent with the gBGC model. However, 

they do not provide a quantification of the impact of recombination on bacterial genomes: to what 

extent might this model account for the strong variations of GC-content observed across bacterial 300 

species? The gBGC model predicts that, all else being equal, the present-day GC-content of a genome 

should directly reflect its average recombination rate over long evolutionary time. To test this 

prediction, it is important to take into account two difficulties. First, recombination rates measured in 

extant populations reflect recent events (more recent than the coalescent time, i.e. of the order of Ne 

generations), and hence may not correspond to the average recombination rate over times necessary for 305 

genomic GC-content to evolve significantly (i.e. inter-species divergence times). Second, the precision 

in the estimate depends on the physical scale at which recombination is measured. To illustrate these 

points let us consider the human genome, where the impact of gBGC is well documented [6]. At the 

gene scale, the correlation between present-day recombination rate (measured in a 10-kb window, 

centered on the middle of the gene, using HapMap genetic map [34]), and the gene GC-content (at third 310 

codon position) is significant but quite weak (R2=0.035, p<10-10). However, at 1Mb scale the 

correlation is much stronger (R2=0.15; [9]). Furthermore, when GC-content variations and 
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recombination rates are measured over the same evolutionary time period, the correlation becomes very 

strong (1Mb scale: R2=0.64; [45]).  

To test whether the impact of gBGC in bacteria was comparable to what is observed in mammals, we 315 

first focused on Streptococcus pyogenes, one of the species for which the signature of gBGC is strong 

(Fig. 1, see also Sup. Mat.). We computed the population-scaled recombination rate (rho) for each gene 

of the core genome, using ClonalOrigin [33]. The correlation between rho and the GC-content at third 

codon position of each gene (GC3) is higher than what is observed in humans  (R2=0.087; p<10-9). 

This result is remarkable, given that recombination rates are measured here at the gene scale (typically 320 

about 1kb). 

 

To go further, we binned the data set into 20 groups of genes according to their GC3, and we computed 

the correlation between the average GC3 and the average rho of each bin. Our reasoning is that by 

computing average values, we should get estimates of rho that are more robust to measurement noise 325 

and to possible temporal variations in recombination rates. Using this approach, we observed a strong 

correlation between the GC3 and recombination (R2=0.60; Fig. 3A). To investigate the amplitude of 

this relation in the other bacterial species studied here, we used PREC (an index based on the proportion 

of genes in a bin that are detected as recombinant by PHI), which provides a good estimate of the 

average recombination rate in a bin, and is much easier to compute than ClonalOrigin's rho. We 330 

observed a significant correlation for 11 of the 14 species, and these significant correlations were 

positive in all cases, with R2 values comprised between 0.24 and 0.68 (on average R2=0.43; Fig. 3B). 

Thus, in many bacteria, the average recombination rate in a bin is a good predictor of its average GC-

content. We performed an analogous analysis in human genes using jackknife sampling of the dataset 

to scale it to the size of bacterial datasets. The average correlation observed in humans is R2=0.55 (Fig 335 

3A). Hence, in many bacteria, the intensity of the relationships between GC-content and recombination 

is comparable to that observed in humans, where the impact of gBGC on base composition is known to 

be strong [45]. This is consistent with the hypothesis that on the long term, the gBGC process can have 

a major influence on the evolution of base composition in bacteria. 

 340 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2014. ; https://doi.org/10.1101/011023doi: bioRxiv preprint 

https://doi.org/10.1101/011023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

13 

A dynamic model of the evolution of nucleotide composition: long-term equilibrium vs. short-term 

disequilibrium. If the base composition of a genome is at evolutionary equilibrium then, by definition, 

the number of A/T→G/C substitutions must be equal to the number of G/C→A/T substitutions. 

Hildebrand and colleagues [23] noted that in a large majority of bacterial genomes (94/149), the 345 

number of G/C→A/T changes (inferred from the comparison of closely related organisms) exceeds the 

number of A/T→G/C changes. Given that genomic base composition strongly fluctuates over long 

evolutionary times (as demonstrated by the wide distribution of GC-content across bacterial species), it 

is not surprising that many genomes are not at equilibrium. However, what is unexpected is that this 

non-stationarity predominantly leads to loosing GC-content: a priori, at the scale of the entire bacterial 350 

biodiversity, one would expect to observe as many GC-increasing genomes as GC-decreasing genomes. 

One possible explanation is that the observed excess G/C→A/T changes among closely related 

genomes corresponds to polymorphic mutations, which eventually do not reach fixation because either 

selection or gBGC favors GC-alleles over AT-alleles [23]. Hildebrand and colleagues observed an 

excess of G/C→A/T changes even in bacterial genomes that show no evidence of recent recombination 355 

population-wise (i.e. Ner = 0) [23]. They therefore rejected the hypothesis that the fixation bias could be 

due to gBGC. However, this conclusion relies on one important assumption: that the Ner parameter 

measured in extant populations reflects the long-term average recombination rate. In fact it is expected 

that Ne (and hence Ner) should fluctuate over time, as populations go through periods of bottlenecks 

and expansion. Immediately after a bottleneck, Ner would be close to 0, and hence genomes should  360 

accumulate G/C→A/T substitutions. However, on the long term, this can be compensated by an 

increase in GC-content when the effective population size becomes larger (and hence B > 1). Thus, the 

base composition of genomes may remain above the mutational equilibrium on the long term, even if 

many lineages go through periods during which Ner is null (and hence B=0). Interestingly, the rare 

species for which the long-term recombination rate is effectively null (typically endosymbiotic 365 

bacteria), generally have very AT-rich genomes [46], as predicted by the gBGC hypothesis. 

 

Universal mutational bias and selection on the strength of gBGC. Several lines of evidence suggest 

that the pattern of spontaneous mutations is biased towards AT nucleotides, in Eukaryotes as well as 

Prokaryotes [22,23,47]. Under such a bias, it is expected that the selective pressure to reduce mutation 370 
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rate should generally favor a GC-biased DNA repair machinery. Recombination and repair are tightly 

linked processes that use many common pathways. In yeast, the analysis of conversion tracts in meiotic 

product indicates that the conversion bias is most probably due to the mismatch repair machinery 

(MMR) [48]. The MMR components involved in homologous recombination (MutS, MutL) are 

generally conserved between Bacteria and Eukaryotes. Hence, in Bacteria as well as Eukaryotes, gBGC 375 

could be the secondary effect of a selection for biased repair mechanisms. However, population 

genetics model show that when gBGC is strong, it drives the fixation of deleterious mutations [49]. 

Thus, one interesting hypothesis is that in highly recombining species, selection might favor unbiased 

repair mechanisms (i.e., values of b0 close to 0 in equation (1)), so as to limit the deleterious 

consequences of strong gBGC. H. pylori is notorious for being highly recombining [50,51], as confirmed 380 

by our results. It is interesting that we have found no evidence for gBGC in this species, and 

recombining genes even seem to have slightly lower GC-content than non recombining genes. This 

trend is however relatively weak because there is no significant trend of variation of recombination 

rates among classes of homogeneous GC-content, as shown in fig. 3B. One possible explanation for the 

absence of gBGC in H. pylori could hence be that b0 is null in this species, in compensation of a very 385 

high rate of recombination.  

 

Although the MMR pathway is a good candidate as a molecular source of gBGC in Bacteria, the 

association of gBGC with MutSL genes is not straightforward. These genes are absent from three of 

our genome datasets, C. jejuni, H. pylori and Bifidobacterium longum, resulting from ancestral losses 390 

in Delta-Proteobacteria and Actinobacteridae, respectively [52]. In H. pylori, we indeed find no 

evidence of gBGC while the genomes are recombining at high frequency [50,51]. In C. jejuni and B. 

longum, however, we observe patterns similar to the other bacterial datasets that are in support of the 

existence of gBGC, indicating that it does not depend on the presence of a typical MutSL complex. The 

existence of gBGC in Bacteria and Eukaryotes however suggests that it may have been present in the 395 

last universal common ancestor of all cellular life forms (LUCA). Unfortunately, the only archaeal 

dataset matching our criteria was a group of Sulfolobus sp. genomes for which our analysis showed few 

evidence of recombination (Table 1), in agreement with the previously described isolation of endemic 

clades in this group [42].  

 400 
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We do not claim that gBGC is the unique determinant of base composition in bacterial genome: in fact 

there is evidence that mutation patterns vary significantly among species [22], and these variations are 

expected to contribute to differences in genome base composition. However, the model we propose 

provides a simple explanation for several important results of comparative bacterial genomics. First, 405 

gBGC can explain why bacterial genomes can maintain a high GC-content, even though the pattern of 

mutation is universally AT-biased [22,23]. Second, gBGC can explain some of the intragenomic 

heterogeneity in GC-content observed in bacterial genomes. Indeed, we observe that genes with 

evidence of recombination display on average substantially higher GC-content than other genes. This 

observation also suggests that the probability of recombination is variable among genes in the genome, 410 

as proposed under some speciation models [53]. Furthermore, given that recently acquired genes tend 

to be AT-rich, gBGC would contribute to their progressive enrichment in GC-content [54,55].  

 

 

 415 

gBGC, a new component of the neutral theory of evolution. The variations of GC-content in Bacteria 

have long remained unexplained. The results presented here highlight a strong relationship between the 

GC-content of genes and their history of recombination. This result, and the observation that bacterial 

genomes are generally above the GC-content predicted from their mutational bias towards AT, are fully 

consistent with the existence of gBGC. To explain our results under a selective model, one would have 420 

to hypothesize:  i) that all bacterial species are under the same selection for higher GC throughout their 

genome, ii) that this selective pressure affects all positions of a genome, independently of gene function 

and expression, and iii) that the efficiency of selection varies with recombination (Hill-Robertson 

interference). Incidentally, if the correlations between GC-content and recombination (Figure 3B) were 

due to Hill-Robertson interference, this would imply that all regions in a genome  (except possibly the 425 

most GC-rich) are mal-adapted. We favor the gBGC model because it is much more parsimonious, and 

it relies on mechanisms that have already been uncovered in Eukaryotes. Ultimately, it will be possible 

to test experimentally the existence of gBGC by analyzing recombination products in bacteria. 

Our discovery is important because gBGC has been shown to interfere with the efficiency of selection 

in Eukaryotes, and to lead to false positives in the search for regions under positive selection in a 430 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2014. ; https://doi.org/10.1101/011023doi: bioRxiv preprint 

https://doi.org/10.1101/011023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

genome. The prevalence – if not universality – of this phenomenon underlines the importance of 

incorporating gBGC in the set of evolutionary forces to be considered when searching for signature of 

adaption in genomes.  

 

 435 

Materials and Methods 

 

Genomic datasets 

We used the HOGENOM database [27] to select sets of genome sequences comprising at least six 

closely related strains or species. The selection of closely related genomes was based on a genomic 440 

distance derived from the HOGENOM6 database. For each pair of genomes present in the database, we 

computed the best identity score, as obtained using BLAST, within each family of homologous proteins 

as defined in HOGENOM, and averaged these scores to obtain a global similarity score s. We then took 

1-s as a distance and selected groups of genomes with at least 6 members and a distance lower than 

0.15. This criterion left 21 groups of species representing a variety of bacterial and archeal species 445 

(Table 1). For each gene family, CDSs were extracted using ACNUC Python API [56] and re-aligned 

with MUSCLE [57] using default parameters. GC% and codon frequencies were computed using 

custom Python scripts. 

 

Detection of recombining genes. Detection of recombination based on multiple alignments is expected 450 

to be sensitive to both the number of sequences aligned, and the total length of the alignment. For this 

reason, we used only the universal unicopy genes of each species, and selected the 900 central positions 

of each nucleotide alignment (remaining positions as well as genes shorter than this threshold were 

ignored in our analysis). We used the software Phipack implementing the PHI test [28] (parameters: 

window size of 100bp, p-value computed from 1,000 permutations) to test if a gene family alignment 455 

contained evidence for recombination. Only families for which the site permutation test could be 

performed were considered, i.e. where the phylogenetic signal was sufficient to accept or reject the 

hypothesis of recombination. An alignment was determined to be “recombinant” if the p-value of the 

permutation test was lower than 0.05.  To confirm the results obtained with PHI, we also used three 
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other tests of recombination: NSS [58], MaxChi2 [59] and Geneconv [60]. NSS and MaxChi2 statistics 460 

were computed together with PHI (as implemented in Phipack package) using the same permutations to 

compute p-values. A consensus of PHI, NSS and MaxChi2 was done, classifying as recombinant or 

non-recombinant those gene families consistently detected by all those three methods as recombinant 

or non-recombinant, respectively; families with disagreeing results were discarded for the consensus 

analysis. Geneconv was run with the parameters “-GScale=1 -Numsims=10000 -465 

Maxsimglobalpval=0.05”, and a gene family was considered recombinant when at least one significant 

global recombinant fragment was reported; other families were considered non-recombinant. As 

Geneconv differs from the other methods on the nature of the reported evidence, it was not considered 

when defining a consensus classification. Individual tests and their consensus yielded quite different 

classifications of gene families, but all led to qualitatively very similar results (see Fig. S1, S3 and S4). 470 

To test for the presence of gBGC, we performed Student's t-tests comparing the mean GC-content (at 

all or at each separate codon position) of recombinant versus non-recombinant core gene family sets.  

 

Estimation of recombination rate. We used ClonalOrigin [33] to estimate the recombination rate on 

full-length core gene family alignments of 900bp or more. As ClonalOrigin inferences are highly 475 

demanding in computation time and power, we only performed this analysis on the moderately sized 

dataset of S. pyogenes genomes (Spyo). The program was used with default parameter weights, running 

the MCMC with 1,000,000 burn-in generations and 500,000 generations sampled every 1,000 

(command line was : 'warg -a 1,1,0.1,1,1,1,1,1,0,0,0 -x 1000000 -y 500000 -z 1000'). Families for 

which this task could not be finished in less than 1 month computation were discarded, yielding a total 480 

dataset of 478 gene families (out of 496 core ≥900bp-long ones). A number of genes also exhibited 

very high variance in their estimates of rho and their exclusion yielded better correlations with GC3.  

 

Recombination inference in intergenes. Intergenic regions are evolving fast, leading to inaccurate 

alignments that are not amenable to robust detection of recombination as performed on coding 485 

sequences. We thus chose to test the relationship of intergenic GC% with recombination in a gene-

centered way: for each core protein-coding gene tested with PHI, we considered non-coding regions up 

to 400bp on both sides of a CDS and averaged their GC%, provided they were of a size larger than 

50bp each (to avoid stochastic errors due to too small number of observed nucleotides). A measure of 
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intergenic GC% per core gene family was obtained as the mean over all genomes of the previous 490 

values, and was associated to the recombinant/non-recombinant status of the gene family for further 

testing.  

 

Frequencies of optimal codons. Optimal codons for each amino acid were computed by comparing 

synonymous codon frequencies within CDSs encoding ribosomal proteins (as defined from 495 

HOGENOM family annotations) versus all other CDSs (RP method). Under the hypothesis of selection 

for highly expressed genes to be adapted to the tRNA pool, codons statistically enriched in ribosomal 

proteins (Chi-squared test based on a 2x2 contigency table of counts of occurrence at a focal codon 

against those of its synonyms in ribosomal vs. other protein-coding genes, with p-value < 0.001) were 

considered as “optimal”; others were classified as “non-optimal”. (Table S2). We then computed the 500 

absolute frequency of optimal (Fop) and non-optimal codons (Fnop) over all coding sequences. Fop 

and Fnop were calculated separately for codons pooled by composition at the third position, i.e. ending 

in A/U or G/C. As there is a debate on whether this method is appropriate to define optimal codons 

[30–32], we also used an alternative definition and took optimal codons datasets from a previous 

exhaustive survey of Hershberg and Petrov [30] (HCB method).  A set of optimal codons was selected 505 

when determined in Hershberg and Petrov [30] study for several strains with a strong consensus, i.e. 

when >60% documented strains agreed on the preferred codon and remaining strains preferred a codon 

with the same composition (A/U or G/C) at the third position (found in all datasets but A. baumanii) 

(Table S3). 

 510 
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Tables:  

 530 

Table 1: Dataset used in this study. Total number of genes in the core-genome, as well as the number of 

core genes classified as recombinant and non-recombinant based on PHI analysis and unclassified ones 

(genes with insufficient signal to test for recombination, excluded from comparison tests) are indicated. 

The mean proportion of GC (all positions of codons) and GC3 (third position of codons) of core genes 

are shown for each dataset.  535 
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Figures legends 

 

 540 

Figure 1 – Effect of recombination on core genes GC-content 

Difference in average GC-content of recombinant and non-recombinant genes, measured on entire CDS length (GC, dark 

brown) or at third codon position only (GC3, light brown) in the core genome of each dataset. Recombinant status was 

determined using the PHI test [28] (p < 0.05) on alignments of core gene families trimmed to a common length of 900bp. A 

positive difference indicates that recombinant families are enriched in GC. Stars indicate the level of significance of a 545 

Student's t-test (“.”, p < 0.1; “*”, p < 0.05; “**”, p < 0.01; “***”, p < 0.001). Statistical tests are detailed further in Table 

S1. Dataset abbreviations are explained in Table 1. Boxes under dataset names indicate the mean percentage of GC and 

GC3 values of core genes. Figures at the bottom indicate the number of recombinant core gene families in the dataset, 

figures in parenthesis indicate their percentage in the total pool of recombinant and non-recombinant families. Shading in 

background marks datasets with less than 20 recombinant gene families (detailed Table 1). 550 

 

Figure 2 – Effect of recombination on codon usage of core genes. 

Difference in frequency of optimal (fop) or non-optimal (fnop) codons (as determined by RP method) in recombining and 

non-recombining genes in each dataset for AU-ending (redish colors) and GC-ending (blueish colors) codons. The 

recombination status of genes was determined as in Fig. 1, only datasets with more than 10% recombining genes are shown. 555 

A positive difference indicates that recombining genes are enriched in a category of codons, while a negative difference 

indicate depletion. Stars indicate significance of a Student's t-test between recombining and non recombining genes. Boxes 

under dataset names indicate the numbers of AU-ending and GC-ending optimal or non-optimal codons used by the taxon 

(detailed in Table S2). Symbols and dataset abbreviations as in Fig. 1; shading is only used to distinguish between datasets. 

It should be noticed that variations in fopGC and fnopAU (resp. fopAU and fnopGC) are not totally independent (typically, 560 

for all amino-acids encoded by two synonymous codons, if the optimal codon is GC ending, the non-optimal is AT-ending). 

 

Figure 3 – Correlations between GC3 and estimates of recombination rate. 

For each dataset, core genes are sorted by increasing GC3 and pooled into 20 classes of equal size. Correlations between the 

mean GC3 and mean recombination rate of each class are reported. (A) Correlation between GC3 and coalescent-based 565 

estimates of recombination rate for Homo sapiens (Hsap) and Stretococcus pyogenes (Spyo). For Hsap, recombination rate 

is expressed as cM·Mb-1; a subset of 600 genes out of the 16,346 human genes is shown as a representative of 1,000 

random samples (mean R² is 55%, see Main Text). For Spyo, recombination rate is expressed as the value of rho parameter 

in ClonalOrigin [33] inferences, which is scaled by arbitrary coalescent time units; a subset of 437 genes out of 478 core 

genes was used, after removal of the 41 genes showing no convergence of the rho estimate (correlation on the full 478 core 570 

genes yields a R² of 31%, see Suplementary Text). (B) Correlation between GC3 and PREC, the proportion of genes detected 

as recombinant by PHI test [28] in the class, for all 14 bacterial datasets showing sufficient evidence of recombination 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2014. ; https://doi.org/10.1101/011023doi: bioRxiv preprint 

https://doi.org/10.1101/011023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

27 

(Table 1).  

 

 575 
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Supplementary figures: 

Figure S1 – Comparison of several recombination detection programs on the inferred effect of recombination on 

core genes GC-content 

Legend as in Fig. 1. 

Figure S2 – Difference of GC% between intergenes located next to recombining vs. non−recombining genes 580 

Difference in average GC-content of intergenic regions around each single-copy core gene which had a conclusive result of 

the PHI test. Individual intergenic GC% values were computed as the average of both flanking intergenes when they were 

50bp or longer, measured on at most 400bp away of the reference gene. Intergenes were classified as recombinant and non-

recombinant as was the neighbouring gene based on the PHI test. A positive difference indicates that intergenes next to 

recombinant families are enriched in GC. Symbols and dataset abbreviations as in Fig. 1. 585 

Figure S3 – Comparison of several recombination detection programs on the inferred effect of recombination on 

codon usage of core genes, based on RP optimal codons. 

Legend as in Fig. 2. 

 

 590 

 

Figure S4 – Comparison of several recombination detection programs on the inferred effect of recombination on 

codon usage of core genes, based on HCB optimal codons from Hershberg and Petrov (2009). 

Legend as in Fig. 2. 

 Supplementary Tables: 595 

Table S1 – Detailed results of statistical tests of difference of GC% and Fop/Fnop between recombining and 

nonrecombining 

core genes, varying recombination detection methods and tested alignment length. 

Table S2 – Sets of optimal/non-optimal codons defined using RP method 

Table S3 – Sets of optimal/non-optimal codons defined using HCB method  600 
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Data derived from dataset established by Hershberg and Petrov[30]. 
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Dataset Taxon name 
Nb. of 

genomes 

Total nb. 
of core 
genes 

Nb. of core 
genes of 
size  ≥ 
900bp 

Nb. of 
recombinant 
core genes 

Nb. of non-
recombinant 
core genes 

Nb. of 
unclassified 
core genes* 

Mean GC 
of core 

genes (%) 

Mean 
GC3 of 

core 
genes (%) 

Mean GC of 
core genes of 
size  ≥ 900bp 

(%) 

Mean GC3 of 
core genes of 
size  ≥ 900bp 

(%) 

Brsp Brucella spp. 9 1675 776 0 422 354 58,1 67,3 58,8 68,6 

Ftul Francisella tularensis 8 1015 469 0 359 110 33,3 21,8 33,8 21,9 

Mtub Mycobacterium tuberculosis complex 7 2222 1078 0 91 987 65,6 79,3 66,1 80,3 

Bmal Burkholderia Pseudomallei group 9 1482 781 4 628 149 67,9 88,3 68,7 89,7 

Ypes Yersinia pestis 11 2017 1073 7 679 387 48,7 48,9 49,3 49,9 

Ctra Clamydia trachomatis 13 772 391 6 376 9 41,6 34,6 41,8 34,6 

Susp Sulfolobus spp. 8 1386 547 8 465 74 34,7 29,1 35,4 29,2 

Bcen Burkholderia cenocepacia complex (BCC)  8 1939 936 106 829 1 67,4 87,4 68,2 89,1 

Saur Staphylococcus aureus 15 1464 668 92 571 5 33,5 22,4 34,2 22,2 

Blon Bifidobacterium longum 6 1006 600 73 358 169 61,3 77,2 61,9 78,2 

Abau Acinetobacter spp. 6 1429 638 115 516 7 40,3 29,9 40,8 30,2 

Cjej Campylobacter jejunii 6 1048 501 93 403 5 31,0 19,4 31,6 19,6 

Cbot Clostridium botulinum 8 1715 730 168 562 0 28,6 16,8 29,1 16,4 

Spyo Streptococcus pyogenes 12 1051 496 119 370 7 38,9 31,6 39,6 32,2 

Spne Streptococcus pneumoniae 13 1090 507 119 368 20 41,3 36,9 42,0 37,4 

Sent Salmonella enterica 14 2121 975 323 652 0 53,4 59,4 54,6 61,6 

Lisp Listeria spp. 8 1631 678 328 350 0 38,1 29,6 38,8 29,5 

Bant Bacillus anthracis/cereus group 17 1730 727 422 305 0 36,3 26,3 37,0 26,5 

Nmen Nesseiria meningitidis 8 1156 552 339 213 0 54,4 63,9 55,3 65,7 

Ecol Escherichia coli 35 1357 619 442 177 0 52,3 56,3 53,3 58,0 

Hpyl Helicobacter pylori 14 995 467 334 133 0 39,9 42,8 40,4 43,3 
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