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Abstract 

For tissues to carry out their functions, they rely on the right proteins to be present. 
Several high-throughput technologies have been used to map out which proteins are 
expressed in which tissues; however, the data have not previously been systematically 
compared and integrated. We present a comprehensive evaluation of tissue expression 
data from a variety of experimental techniques and show that these agree surprisingly 
well with each other and with results from literature curation and text mining. We further 
found that most datasets support the assumed but not demonstrated distinction 
between tissue-specific and ubiquitous expression. By developing comparable 
confidence scores for all types of evidence, we show that it is possible to improve both 
quality and coverage by combining the datasets. To facilitate use and visualization of 
our work, we have developed the TISSUES resource (http://tissues.jensenlab.org), which 
makes all the scored and integrated data available through a single user-friendly web 
interface. 
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Introduction 
Mapping out which proteins are present in each tissue is of major importance for 
understanding the functional differences between tissues as well as their development 
and differentiation 1,2. Several high-throughput experimental technologies have been 
used for this, the most widely used of which are expressed sequence tags (ESTs) 3,4, 
high-density oligonucleotide microarrays (also called DNA chips) 5,6, and RNA 
sequencing (RNA-seq) 7,8. 

ESTs are short sequence reads — typically around 400bp — derived from 5’ or 3’ ends 
of complementary DNA (cDNA) libraries from tissues or cell lines 9–11. Consequently, for 
a highly expressed gene, one would expect to see a correspondingly high abundance of 
ESTs derived from its transcripts. A more recent sequencing-based approach to 
quantifying transcript levels is RNA-seq. The major difference to EST sequencing is that 
random cDNA fragments are sequenced instead of only the 5’ and 3’ ends. The 
resulting reads are aligned to a reference genome, producing a quantitative expression 
profile for each gene 12,13. Because reads are generated from all parts of a transcript 
instead of only the ends, the number of reads observed for a gene depends on both its 
length and its level of expression. A major advantage of RNA-seq is the ability to 
resolve individual splice variants if enough reads are obtained for a gene. Microarrays 
are another extensively used technology for transcriptome analysis. Gene expression is 
quantified by measuring the fluorescence intensity of labeled cDNA that hybridizes to 
oligonucleotide probes 14–16. Because a microarray can contain millions of different 
probes, the transcript levels of all genes can be measured simultaneously. 

The above mentioned techniques are all based on measuring mRNA levels. Fewer 
techniques exist for high-throughput measurement of protein levels. One of them is 
multiplexed immunohistochemical staining of tissue samples embedded in paraffin 
blocks (sometimes referred to as tissue microarrays). Histological analysis of the 
resulting images of tissues stained with an antibody can semiquantitatively tell where 
the target protein is present 17. The main challenge to using this approach at the 
proteome scale is the need for specific antibodies against all proteins 18. Mass 
spectrometry has also been used for measuring protein abundances in tissue samples, 
mainly in bodily fluids 19–21, muscle biopsies 22, and tumor samples 23–25. Two recent 
publications collected many of these experiments into a single repository 26 and for the 
first time used this technology for in-depth proteomic profiling of a broad selection of 
normal human tissues 27, respectively. 

Large-scale tissue expression datasets have formed the basis for many analyses and 
discoveries related to roles of housekeeping and tissue-specific genes in protein 
complexes 2,28, biological processes 29–31, and diseases 32–36. However, the majority of 
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these studies 28,30–32,34–36 are based solely on microarray data from the GNF Expression 
Atlas 5, which could bias the results. It is thus relevant to test to which extent the 
different technologies and datasets give congruent results. 

We here present the first comparative evaluation of the quality of tissue associations 
from a variety of different datasets and experimental methods as well as from manual 
curation 37 and automatic text mining of the biomedical literature (Figure 1). We show 
that these datasets — despite the technological differences — agree surprisingly well 
with each other and can be combined to improve quality and coverage. Finally, as a 
result of the integration process, we have developed the TISSUES resource 
(http://tissues.jensenlab.org), which makes the above mentioned heterogeneous data 
more easily accessible to researchers by collecting them in a single place and assigning 
confidence scores. 

Results 
To systematically compare the different datasets, we standardized the varying names 
used for the same tissues to their respective terms in the Brenda Tissue Ontology 38 
(Supplementary data 1). Because this ontology is structured as a directed acyclic graph, 
this also helps deal with the challenge of different datasets having different tissue 
resolution; for example, some datasets study the brain as a whole whereas others study 
different parts separately. We decided to base our analyses on the 21 major tissues 
shown in Figure 1. 

Tissue-specific and ubiquitous transcripts 

Many studies have made the distinction between housekeeping and tissue-specific 
genes, which are expressed in most or only a few tissues, respectively 29,39–44. However, 
there are no strict definitions of these two classes of genes, and it is not clear to what 
extent this represents a natural classification. To answer the latter, we analyzed the 
expression breadth of five transcriptome datasets, i.e. how many genes are expressed 
in how many tissues. As this depends strongly on the threshold used to decide whether 
a gene is expressed in a given tissue, we performed the analysis with three different 
cutoffs, in the following referred to as low, medium, and high confidence (see Methods). 

Figure 2 shows the expression breadths for five transcriptome datasets, each at the 
three different confidence levels. Most show a clear bimodal distribution with peaks at 
the extreme ends, i.e. the vast majority of genes are expressed either in only a few 
tissues or in most tissues measured. We thus show that data from several sources and 
technologies robustly support a natural distinction between tissue-specific and 
ubiquitously expressed genes. 

Zhu and colleagues 42 also showed a bimodal trend when comparing the GNF 
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expression atlas and EST sequencing data; however, for the latter data type the 
bimodality was weak. We similarly find very few tissues-specific genes when analyzing 
UniGene at the low-confidence cutoff, but show that this trend is reversed when using 
more stringent cutoffs. We observe that the GNF dataset is atypical in that it identifies 
fewer ubiquitously expressed genes at all cutoffs than the rest of the datasets, including 
the other microarray-based study (Exon array). 

Consistency of transcriptomic methods 

The previous analysis showed that the global trends in terms of tissue specificity are 
similar across the transcriptome datasets. That, however, does not imply that the 
datasets necessarily agree on which genes are expressed where. To quantify the 
agreement, we focused on the five tissues and 3,254 genes covered by all the 
transcriptome datasets. Comparing the five transcriptome datasets, we saw that genes 
are assigned to tissues with high consistency between datasets at all three confidence 
levels (Figure 3). At medium confidence 39.2% (5679/14504) of gene–tissue 
associations are common to all datasets and 65.8% (9537/14504) are common to at 
least four of the five datasets (Supplementary data 3). 

The largest discrepancy in the comparison is the large number of gene–tissue 
associations found by all datasets except GNF at all three confidence levels (Figure 3). 
This is likely because the GNF Expression Atlas was made using microarrays designed 
prior to the completion of the Human Genome Project, which consequently have 
suboptimal probe sets for many genes. 

Conversely, the largest agreement is seen among the three most recent datasets, which 
were generated using RNA-seq or exon arrays. At medium confidence, their overlap 
makes up 72.65% (10538/14504) of all gene–tissue associations, 13.66% (1439/10538) 
of which are not found by any other dataset. 

Correlation between expression values and confidence levels 

The high consistency between the mRNA datasets demonstrates their quality; however, 
it does not guarantee that the selected cutoffs are comparable and represent the same 
level of confidence across datasets. To assess the assumed correlation between 
expression values and confidence, we compared all datasets to a gold standard of 
gene–tissue associations extracted from scientific literature by UniProtKB 37. While 
reliable, UniProtKB annotations are very incomplete as they are restricted to what has 
been published. It is thus not possible to estimate the precision of a dataset; instead, we 
quantified the quality of the datasets in terms of its fold enrichment of correct gene–
tissue associations compared to random chance. 

The comparison showed that fold enrichment for gold-standard associations increased 
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steadily with expression value from all datasets (Figure 4A). This was expected 
because, in general, the more abundant a transcript, the more reliably it can be 
identified. Moreover, we find that the low-, medium-, and high-confidence cutoffs used in 
the preceding analyses correspond to the same quality in all datasets. However, a 
dataset of lower quality will give fewer associations at any given confidence cutoff. 

The expression breadth distribution of UniProtKB is strongly skewed towards tissue-
specific proteins; only 0.72% of proteins (106/14722) are annotated as expressed in 
more than five tissues. This likely reflects that many annotations describe proteins as 
widely or ubiquitously expressed but list only a few tissues. Also, UniProtKB annotations 
are incomplete, because many proteins have only been described in the literature as 
present in some of the tissues where they are expressed. 

In light of this and the high quality of the mRNA datasets, we built a complementary set 
of gene–tissue associations, hereafter called the mRNA reference set, with high-
confidence support from at least three datasets. This set exhibits the expected bimodal 
distribution of expression breadth (Figure 4C) and provides 7,384 gene–tissue 
associations not present in UniProtKB (Figure 4D, Supplementary data 3). 

Quality of proteomics data 

To complement the mRNA datasets with protein-level data, we investigated the Human 
Protein Atlas immunohistochemistry data (HPA IHC) 8 and the mass spectrometry data 
from the Human Proteome Map (HPM) 27. 

To compare these with other datasets, we developed a quality scoring scheme for each. 
For HPM, we define the quality score as the number of unique tryptic peptides identified 
for a protein in a given tissue. The HPA IHC protein–tissue associations come with 
quality scores based on a combination of the staining level observed in the experiment, 
RNA-seq data and literature evidence. To make the IHC data independent of the other 
datasets, we instead developed a scoring scheme based purely on the staining levels 
and agreement between results from different antibodies with the same target (see 
Methods). 

With the scoring schemes defined, we analyzed the two proteomics datasets with 
respect to enrichment for associations from both the UniProtKB and mRNA reference 
sets (Figure 5A). Higher scores were correlated with higher enrichment, giving some 
validation for the proposed scoring schemes. Despite looking at proteins instead of 
transcripts, the proteomics datasets show worse fold enrichment than the transcriptome 
datasets, when compared to the UniProtKB gold standard. This is consistent with the 
criticism raised over the quality of the HPM data based on analysis of olfactory 
receptors 45. In case of HPA IHC, this is especially true for data derived based only on a 
single antibody. 
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HPM exhibits bimodal distributions of expression breadth at all confidence level 
consistent with the majority of the transcriptome datasets (Figure 5B). This consistency 
across confidence levels is in part due to a substantial fraction (23,440/107,935) of the 
associations from HPM being high confidence. Conversely, the HPA IHC dataset is 
dominated by low-confidence associations for proteins studied with only a single 
antibody or with multiple antibodies that gave different results. At low confidence, 
proteins tend to be associated with many tissues, which is likely due to unspecific 
antibodies. By contrast, most proteins have higher-confidence links to only a few 
tissues. 

Complementary annotations from text mining 

Automatic text mining of the biomedical literature has the potential to extract information 
that has been either overlooked by curators, not yet curated, or not annotated due to 
curation standards 46,47. We used a previously published text-mining pipeline 48,49, 
expanded with a dictionary of tissues and cell lines, to extract associations between 
genes/proteins and tissues and scored them according to their co-occurrence in 
sentences and abstracts. 

We evaluated the quality of these associations by comparing them to both the 
UniProtKB and mRNA reference sets (Supplementary figure 1a). This analysis shows 
that co-occurrence-based text mining performs well for this task. The high agreement 
with UniProtKB is not surprising considering that text mining and curation are both 
based on the available literature. The comparison to the mRNA reference set, however, 
shows that many of the associations found by text mining, but not by curators, are also 
supported by direct experimental evidence. 

The distribution of expression breadths is, like for UniProtKB, skewed towards the 
tissue-specific end (Supplementary figure 1b), due to the same literature limitations. 
However, text mining associates each gene/protein with more tissues, even at high 
confidence. For example, 421 are linked to more than five tissues, which is four times 
more than what UniProtKB annotates. These results demonstrate the value of 
complementing manual annotation with automatic text mining. 

Improved tissue profiles through data integration 

So far we have shown that the quality of the different datasets is comparable at each of 
the chosen confidence levels. To assess the consistency and complementarity of 
different data sources, we compared the medium-confidence associations from 
UniProtKB and text mining to two pooled sets of high-confidence associations from 
transcriptomics and proteomics experiments, respectively. 

Despite the inherent differences between data types and technologies compared, when 
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looking at the common proteins and tissues, 44.5% (18,904/42,435) of all associations 
are supported by at least two of the four sets (Figure 6A). The transcriptomics and 
proteomics sets show the largest pairwise agreement, which accounts for 33.5% 
(12,902/38,471) of the associations from the two sets and 30% (12,902/42,435) of all 
associations (Supplementary data 4). This agreement highlights the strong connection 
between transcription and final protein abundance; indeed, transcription was recently 
demonstrated to explain about 80% of the differences seen in protein expression 50. 

Although all the sets are consistent on the proteins and tissues they have in common, 
they are also highly complementary because they cover different proteins and tissues. 
When not restricting the comparison to common proteins and tissues, 71% 
(102,574/144,525) of all the reported associations are unique to a single set (Figure 6B, 
Supplementary data 4). The analysis also reveals that only 6.2% (9,029/144,525) of the 
associations are unique to UniProtKB. Text mining alone captures 20% (5,551/27,596) 
of the curated literature results and complements them with 20,263 additional protein–
tissue associations, 41.5% (8,423/20,263) of which are supported by the transcriptomics 
or proteomics sets. 

Another way to illustrate the complementarity of the datasets is to compare the quality 
and coverage obtained when integrating many datasets compared to using a single 
dataset. To this end, we looked at the union of the transcriptomics and proteomics sets 
and compared it to the same number of top-scoring associations from the GNF atlas. 
Focusing on the 7,445 proteins and 17 tissues that GNF and UniProtKB have in 
common, 77% (11,489/14,978) of the associations from the integrated list were 
annotated in UniProtKB, whereas this was only the case for 60% (8,912/14,978) of the 
associations from GNF. Moreover, the integrated list includes 12,562 associations not 
covered by GNF (Supplementary data 5 and Supplementary figure 2). 

The TISSUES web resource 

In light of the clear advantages of combining multiple datasets, we believe the scientific 
community can benefit from having a resource that integrates and provides easy access 
to the available information on tissue expression. We thus developed the TISSUES web 
resource that is available at http://tissues.jensenlab.org. Several other resources 
provide gene–tissue associations, including TiGER 51, BioGPS 52, TissueDistributionDB 
53, VeryGene 54, and EBI Gene Expression Atlas 55. What makes TISSUES unique is 
that it integrates data from many different technologies and sources, quantifies the 
reliability of each gene–tissue association, and thereby makes results from different 
sources comparable. 

The web interface allows the user to search for a human gene and get a complete 
overview of where it may be expressed. To provide an at-a-glance overview, we show a 
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body map with each the 21 major tissues colored according to the confidence that the 
gene of interest is expressed there (Supplementary figure 3). The figure also allows the 
user to see which sources of evidence support expression in a given tissue. Three 
interactive tables below the body map provide the user with more detailed information 
for the evidence from UniProtKB, high-throughput experiments, and text mining. This 
includes information on additional tissues, linkout to the source of the evidence 
whenever possible, and a unified confidence score ranging from 1 to 5 stars (see 
Methods). 

TISSUES holds information for 21,294 genes and 5,305 different tissues and provides 
more than 2.2 million gene–tissue associations at varying confidence levels. These are 
all available for download under the Creative Commons Attribution License at 
http://tissues.jensenlab.org to facilitate large-scale studies. 

Discussion 

We have compared gene–tissue associations derived from different transcriptomic and 
proteomic methods, automatic text mining and manual curation of the scientific 
literature. To ensure robustness, the analysis was performed using different confidence 
levels. The comparison enabled us to assess the consistency across the various 
datasets, highlighting the differences between them in terms of quality and coverage. 

Overall, the associations derived from the different high-throughput experimental 
methods show reasonably good overlap. Good agreement was also observed for the 
highest scoring associations when comparing the datasets with manually curated 
annotations, which are recognized as being of high reliability. This shows that high-
confidence information can be extracted from any of these high-throughput methods 
when using appropriate scoring schemes. Conversely, many discrepancies were 
observed for low-scoring associations, and some datasets had poor coverage once 
filtered for quality. 

The various experimental methods and other data sources have different strengths and 
weaknesses. Integration of the data from different sources is thus a prerequisite for 
getting the best possible overview of the tissue expression of proteins. Combining 
diverse high-throughput methods overcomes the limitations of single experiments where 
quality is often questioned; for example, the recently published drafts of the human 
proteome [26, 27] have been suggested to have high false positive rates [46]. We have 
also shown that integration of text-mining results extends the space of manually curated 
associations with unreported literature information, often supported by experimental 
methods. 

We thus believe that the comparison presented in this paper demonstrates that high-
throughput datasets should be neither trusted at face value nor entirely discarded. 
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Rather, they should be carefully analyzed and integrated to determine which parts of 
which datasets should be trusted, and how much. The publicly available TISSUES 
resource provides exactly that and thereby makes it easy for researchers to make the 
most of the many tissue-profiling efforts. 

  

Methods 

GNF Gene Expression Atlas 

The experimental data from the Human U133A/GNF1H Gene Atlas) 5  was downloaded 
from the BioGPS portal (http://biogps.org/). The dataset contains information for 44,775 
probe sets, which we filtered to remove probe sets associated with multiple targets 
(names ending with “_[r,i,f,x]_at” and control probe sets (names starting with “AFFX”). 
We mapped the remaining probe sets to gene identifiers using the probeset-to-gene 
annotation file (gnf1h.annot2007.tsv) and finally mapped these to 16,598 Ensembl 
protein identifiers using the alias file from the STRING database 56. The GNF Gene 
Expression Atlas provides information for 79 tissues, 60 of which we could map to 
Brenda Tissue Ontology terms. We scored each gene–tissue association based on the 
normalized expression units obtained from the microarray analysis, under the 
assumption that transcripts identified with higher intensity are less likely to be false 
positives. When multiple probe sets mapped to the same gene, we used the mean 
expression value. 

Affymetrix Exon tiling array  

These high-density microarrays 6 contain probe sets for more than one million 
annotated and predicted exons. We downloaded the data from the Gene Expression 
Omnibus 57 (GSE5791 series matrix) and used the 565,690 probe sets mapped to a 
gene identifier according to the GPL4253 platform. We mapped the latter to 15,559 
Ensembl protein identifiers. The Exon Array experiment examined 16 tissues mainly 
from the nervous system studying six sub-regions of the brain. All tissues could be 
mapped to BTO terms. As in the other microarray experiment, we used the mean 
normalized expression units as the score for each gene–tissue association. 

UniGene  

The UniGene database 3,4 clusters together Expressed Sequence Tags (EST) that 
belong to a single gene and includes information about the tissue where each EST was 
observed. We used the Homo sapiens UniGene Build #236, which contains 24,289 
clusters that could be mapped to 18,493 Ensembl protein identifiers via the provided 
gene symbols or UniGene cluster identifiers. UniGene Human library (Hs.lib.info) 
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provides information for 80 tissues from which we discarded several with ambiguous 
names, e.g. “retina and testis” or ”uncharacterized tissue” (see Supplementary data 1), 
and finally obtained 60 BTO terms. The scoring scheme for UniGene is based on the 
number of ESTs clustered into a single gene that belong to the same tissue. When 
multiple clusters mapped to the same gene, we used the total number of ESTs from the 
clusters. 

RNA-seq atlas  

The RNA-seq Atlas 7 is a web-based resource that provides expression data for 21,399 
genes in 11 tissues. We mapped the genes to 18,063 Ensembl protein identifiers using 
the STRING alias file; all the specified tissues mapped directly to BTO terms. We used 
the normalized Reads Per Kilobase per Million mapped reads (RPKM) as the 
confidence score for each gene–tissue association. 

HPA RNA-seq data  

The Human Protein Atlas version 12 8 provides short-read high-throughput sequencing 
data (RNA-seq) in 27 non-disease tissues. We mapped 20,315 Ensembl gene 
identifiers for which the database contained expression levels to 18,491 Ensembl 
protein identifiers and all the tissue names to BTO terms. Similarly to the scoring 
scheme applied to the RNA-seq Atlas dataset, we assigned the normalized expression 
levels in Fragments Per Kilobase of exon per Million fragments mapped (FPKM) as the 
confidence score for each gene–tissue association. 

HPA Immunohistochemistry  

HPA also provides an atlas of protein expression derived from immunohistochemistry 
experiments over many tissues 8. We obtained information on the expression of 16,384 
genes in 45 tissues (data downloaded on 21st January 2014), which we mapped to 
15,552 Ensembl Protein identifiers and 45 BTO terms. For each antibody and tissue, 
HPA provides a semiquantitative strength of staining (���������,�), which we translated 
into numeric values (not detected: 0, low: 1, medium: 3, high: 6). When only a single 
antibody was used to measure a protein, we simply used the staining values from that 
antibody as the confidence scores for the tissues. 

When multiple antibodies for the same protein were used we used a more complex 
scoring scheme to combine the staining values from the individual antibodies: 

���	
�,� �  
 ·  �������� · �
�
��,�  
where 
 is a scaling factor for making the multi-antibody scores comparable to the 

single-antibody scores, �������� captures the internal agreement among the 
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antibodies for the protein, and �
�
��,� is a weighted average of staining values of the 

antibodies for the protein in a given tissue. 

The correction factor for the quality of the antibodies is defined as: 

�������� �  
��
��
�

�� 

where � is a parameter optimized as described below, �� is the number of antibodies 

for the protein, and �	 measures the disagreement between the antibodies across all 

tissues: 

��
	 �  �   

���

� ��,�
	

 

��


 

where Τ is the set of tissues studied and ��,�
	  is the disagreement in a given tissue 

between one antibody and the average of the antibodies: 

��,�
	 �  ����������,� � 1��

� ���������,�  

���

�
	

 

We defined the level of a protein in a given tissue (�
�
��,�) as a weighted average of 

the antibodies: 

�
�
��,� � ∑ �
�����,� · ���������,�
 
��� ∑ �
�����,�

 
���

 

where the weights are defined based on the disagreements between the antibodies: 

�
�����,� � 1 � ��,�
	��
	

 

We validated the scoring scheme and determined the values of the free parameters 

by calculating the fold enrichment (see Quality of proteomics data) against UniProtKB. 
The optimal values of the parameters were 
 � 3.0 and � � 0.7. 

Human Proteome Map 

HPM is a large mass spectrometry-based catalogue of protein profiles in 30 normal 
human tissues 27, which contains more than 290,000 tryptic peptides. We mapped these 
to Ensembl by comparing the sequences to all theoretical tryptic peptides derived from 
Ensembl v75 protein sequences, allowing for up to two missed cleavages. We assigned 
each tryptic peptide to the corresponding Ensembl gene identifier and mapped these to 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2014. ; https://doi.org/10.1101/010975doi: bioRxiv preprint 

https://doi.org/10.1101/010975
http://creativecommons.org/licenses/by/4.0/


a total of 17,038 Ensembl protein identifiers using the STRING alias file. The 30 normal 
human tissues were comprised of 17 adult tissues, 7 fetal tissues, and 6 primary 
hematopoietic cell types. Because the corresponding adult and fetal tissues map to the 
same term in BTO, the 30 tissues mapped to only 26 different BTO terms. As 
confidence score for a protein being expressed in a given tissue, we used the number of 
different tryptic peptides observed. 

UniProtKB tissue annotations  

UniProtKB 37 provides manually curated protein annotations. This includes annotations 
of tissue expression for 17,075 human proteins. Whereas each protein is typically only 
annotated with one or a few tissues, the number of different tissue terms used is very 
high; we were able to manually map UniProtKB tissues for 401 different BTO terms in 
total. Because the annotations are manually curated, we considered all protein–tissue 
associations from UniProtKB to be of the highest confidence. 

Text mining 

The text mining pipeline used in this work has been described in detail elsewhere. It 
relies on an efficient dictionary-based named entity recognition algorithm 48 and a co-
occurrence scoring scheme 49 to extract associations from Medline abstracts. To use 
the pipeline to extract of protein–tissue associations, we complemented the existing 
dictionary of human gene and protein names from STRING with a dictionary of tissue 
and cell types constructed from BTO. The pipeline extracted more than one million 
protein–tissue associations based on co-occurrences of 16,748 proteins and 5,300 BTO 
terms. 

Evaluation and calibration of scores 

To evaluate the quality of the gene–tissue associations from each dataset, we 
compared them to the UniProtKB gold standard. We quantified the agreement in terms 
of the fold enrichment, which we define as the fraction of pairs in a dataset that are also 
in the gold standard divided by the fraction expected by random chance. The latter is 
defined as the fraction of possible gene–tissue pairs that are found in the gold standard. 
For these fold-enrichment calculations we considered only the genes and tissues that 
are shared between the dataset and the gold standard. 

We calculated the fold enrichment for score windows of 100 gene–tissue associations to 
capture the relationship between fold enrichment and the quality scores defined in the 
previous sections. To be able to convert the quality scores from individual datasets into 
confidence scores that are comparable between datasets, we first fit the relationships 
between quality scores and fold enrichments with mathematical functions with only a 
few parameters. We used these to define the low-, medium-, and high-confidence 
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cutoffs for the comparisons of the datasets (Supplementary Table 1). Next, we 
performed a global transformation of the fold enrichments into the “star” confidence 
scores used in the COMPARTMENTS resource 49 based on the text-mining scores, 
which the two resources have in common. The combined, calibrated functions for 
translating quality scores into the final confidence scores are listed in Supplementary 
Table 1 (Supplementary figure 4). 

Web resource 

To make the protein–tissue associations available for query by a web resource, we 
store all data in a PostGreSQL database. The web interface is implemented through the 
same Python web framework used for the COMPARTMENTS database 49. The body 
map onto which the data is visualized was manually created in Adobe Illustrator and 
saved as a Scalable Vector Graphics (SVG). In the user’s browser, JavaScript is then 
used to provide interactive coloring and labelling of tissues. 
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Figures 

Figure 1. Summary of the tissues and number of proteins present in each dataset. 
For our analyses, we mapped 9 datasets to 21 major tissues of interest. This figure 
shows which datasets cover which of these major tissues and how many proteins each 
dataset identified. 

Figure 2. Distribution of expression breadth of the transcriptome datasets. For 
each of the five mRNA datasets, the histograms show the number of protein-coding 
genes expressed at low, medium, and high confidence as function of number of tissues. 
With the exception of UniGene, the distributions are bimodal, with most proteins 
occurring in either few tissues or in most tissues measured, supporting the notion of 
distinguishing between tissue-specific and ubiquitous expression. 

Figure 3. Consistency of the transcriptome datasets. We assessed the consistency 
of the five transcriptome datasets by calculating the overlap of gene–tissue associations 
for the shared genes and tissues. At all levels of confidence, we observe surprisingly 
good agreement, with the largest count in each Venn diagram representing associations 
found by all five datasets. 

Figure 4. Quality of the transcriptome datasets. a. To assess the correlation 
between expression level and confidence, we compared the transcriptome datasets to a 
gold standard, namely UniProtKB. We quantify the quality of the datasets in terms of its 
fold enrichment for correct gene–tissue associations compared to random chance. The 
comparison shows that higher expression values imply higher quality and that the three 
confidence cutoffs (vertical dotted lines) used correspond to equivalent quality in all 
datasets. b. The distribution of expression breadth for UniProtKB is strongly skewed 
towards tissue-specific proteins, contrary to what was seen for transcriptome datasets. 
c. We thus constructed a consensus mRNA reference set; its expression breadth 
distribution is in line with that of the individual mRNA datasets. d. The mRNA reference 
set is highly complementary to the UniProtKB gold standard, providing 7,384 gene–
tissue association that are not in the latter. 

Figure 5. Analysis of the proteomic datasets.  a. To make the data from HPA IHC 
and HPM comparable with other datasets, we developed a quality scoring scheme for 
each. The quality scores show good correlation with the fold enrichment for associations 
from the UniProtKB and the mRNA reference sets. b. The distribution of expression 
breadth is consistent with the results of the transcriptome datasets in case of HPM, 
whereas the results for HPA IHC vary qualitatively between confidence levels. 

 

Figure 6. Consistency and complementarity of evidence types. To assess the 
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consistency and complementarity of the associations supported by different types of 
evidence, we compared the medium-confidence associations from UniProtKB and text 
mining to two pooled sets of high-confidence associations from transcriptomics and 
proteomics experiments, respectively. The white numbers show the overlap of protein–
tissue associations when considering only at the common proteins and tissues among 
all sets. The black numbers show the overlap when not restricting the comparison to 
common proteins and tissues. Together these analyses show that the different sources 
of evidence have high consistency across the common proteins and tissues, but that 
they are at the same time complementary because they cover different proteins and 
tissues. 
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Supplementary information 

All the data and R code necessary to reproduce the analyses performed in this 
systematic comparison can be downloaded at: 

https://github.com/albsantosdel/TISSUES-database-reproducible-analyses  

Supplementary Table 1  - Definition of cutoffs.  This table shows the different 
confidence cutoffs used in the analyses for each dataset, the quality score and how 
each quality score is converted to the unified confidence score used in the TISSUES 
web resource. 

Supplementary data 1 – Mapping of tissue names to Brenda Tissue Ontology 
terms 

This excel file contains the mapping from the tissue names from the original sources to 
the standardized BTO terms. 

Supplementary data 2 - Common associations transcriptomic methods 

This file contains the following information: 

• The list of genes studied at the different cutoffs 
• The list of common associations to all datasets at the different cutoffs 
• The list of common association for at least 4 datasets at the different cutoffs 

Supplementary data 3 - mRNA reference set associations 

This excel file contains the gene–tissue associations that form the mRNA reference set 
used in the fold-enrichment analysis. 

Supplementary data 4 - Common and unique gene–tissue associations to all the 
sets 

This file contains: 

• Overlap between all the sets (transcriptomic set, UniProtKB, Text-mining and 
proteomics set) 

• Overlap between the transcriptomic and the proteomic set 
• The list of gene–tissue associations unique to each set  

Supplementary data 5 - Gene–Tissue associations coverage and quality analysis 

This file contains: 

• Gene–tissue associations from the integration of the transcriptomics and 
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proteomics datasets 
• GNF atlas gene–tissue associations used in the analysis 
• Overlap between the integrated set and UniProtKB 
• Overlap between the GNF atlas studied set and UniProtKB 

 
Supplementary figure 1. Complementary annotations from text-mining a. We used 
text-mining to extract associations between genes/proteins and tissues and score them 
based on their co-occurrence in sentences and abstracts. Comparing these 
associations to the UniProtKB and mRNA reference sets showed both the expected 
high agreement with UniProtKB and that many of the text-mined associations not 
annotated by curators are nonetheless supported by experimental evidence. b. The 
distribution of expression breadth for text mining is subject to the same literature 
limitations as UniProtKB. However, text mining associates each gene/protein with more 
tissues than the latter, even at high confidence, which demonstrates the value of 
complementing manual annotations with automatic text mining. 

Supplementary figure 2. Quality and coverage. This figure shows how the overlap 
between UniProtKB and the sets derived from the GNF atlas alone (panel a) and the 
combined transcriptomics and proteomics data (panel b), respectively. 

Supplementary figure 3. TISSUES: all data accessible in a single resource. The 
TISSUES web resource integrates all the data compared in this study, quantifies the 
reliability of each gene–tissue association, and thereby makes associations from 
different sources comparable. When searching for a human protein, the user is 
presented with a body map that provides a complete overview of where the protein is 
likely expressed by coloring the 21 major tissues according to the confidence of the 
protein–tissue association. The body map is interactive and allows the user to see 
which sources of evidence support expression in a given tissue. The TISSUES web 
resource is available at http://tissues.jensenlab.org. 

Supplementary figure 4. Score calibration. The figure shows that after score 
calibration, the same confidence score corresponds to the same quality irrespective of 
the source of the evidence. 
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