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Abstract

Deleterious alleles can reach high frequency in small populations because of random fluctuations in allele
frequency. This may lead, over time, to reduced average fitness. In that sense, selection is more ‘effective’
in larger populations. Recent studies have considered whether the different demographic histories across
human populations have resulted in differences in the number, distribution, and severity of deleterious
variants, leading to an animated debate. This article first seeks to clarify some terms of the debate
by identifying differences in definitions and assumptions used in recent studies. We argue that variants of
Morton, Crow and Muller’s ‘total mutational damage’ provide the soundest and most practical basis for such
comparisons. Using simulations, analytical calculations, and 1000 Genomes data, we provide an intuitive
and quantitative explanation for the observed similarity in genetic load across populations. We show that
recent demography has likely modulated the effect of selection, and still affects it, but the net result of
the accumulated differences is small. Direct observation of differential efficacy of selection for specific allele
classes is nevertheless possible with contemporary datasets. By contrast, identifying average genome-wide
differences in the efficacy of selection across populations will require many modelling assumptions, and is

unlikely to provide much biological insight about human populations.

One of the best-known predictions of population
genetics is that smaller populations harbor less diver-
sity at any one time but accumulate a higher num-
ber of deleterious variants over time [1]. Consider-
able subsequent theoretical effort has been devoted
to the study of fitness differences at equilibrium in
populations of different sizes (e.g., [2]) and in sub-
divided populations (e.g., [3, 4]). The reduction in
diversity has been observed in human populations
that have undergone strong population bottlenecks:
For example, heterozygosity decreased in populations
that left Africa, and further decreased with successive
founder events [5, 6, 7, 8]. The effect of demogra-
phy on the accumulation of deleterious variation has
been more elusive in both humans and non-human
species. In conservation genetics, where fitness can
be measured directly and effective population sizes
are small, a modest correlation between population
size and fitness was observed [9]. In humans, the first
estimates of the fitness cost of deleterious mutations
were obtained through the analysis of census data

[10], but recent studies have focused on bioinformatic
prediction using genomic data [11, 12]. Lohmueller
et al. [13] found that sites variable among Europeans
were more likely to be deleterious than sites variable
among African-Americans, and attributed the finding
to a reduced efficacy of selection in Europeans be-
cause of the Out-of-Africa (OOA) bottleneck. How-
ever, recent studies [14, 15] suggest that there has
not been enough time for substantial differences in
fitness to accumulate in these populations, at least
under an additive model of dominance. By contrast
Peischl et al. [16], and more recently Henn et al.
[17], have claimed significant differences among pop-
ulations under range expansion models, and Fu et al.
[18] claims a slight excess in the number of deleteri-
ous alleles in European-Americans compared to that
in African-Americans. These apparent contradictions
have sparked a heated debate as to whether the ef-
ficacy of selection has indeed been different across
human populations [19, 18]. Part of the apparent
discrepancy stems for disagreement about how we
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should measure the effect of selection.

What does it mean for selection to be ‘effective’?
Some genetic variants increase the expected number
of offspring by carriers. As a result, these variants
tend to increase in frequency in the population. This
correlation between the fitness of a variant and its
fate in the population—that is, natural selection—
holds independently of the biology and the history of
the population. However, the rate at which delete-
rious alleles are removed from a population depends
on mutation, dominance, linkage, and demography,
and can vary across populations. Multiple metrics
have been proposed to quantify the action of selec-
tion in human populations and verify the classical
population genetic predictions, leading to apparent
discrepancies between studies.

In this article, we first review different metrics used
in recent empirical work to quantify the action of se-
lection in human populations. We show that many
commonly used metrics implicitly rely on ‘steady-
state’ or ’equilibrium’ assumptions, wherein genetic
diversity within populations is independent of time.
This condition is not met in human populations. We
discuss two measures for the efficacy of selection that
are appropriate for the study of human populations
and other out-of-equilibrium populations.

We then seek to provide an intuitive but quanti-
tative understanding of the effect of mutation, selec-
tion, and drift on the efficacy of selection in out-of-
equilibrium populations. This is done through a com-
bination of extensive simulation and analytical work
describing differentiation between populations after
a split from a common ancestor. Using this infor-
mation, we discuss how the classical predictions con-
cerning the effect of demography on selection could
be verified in empirical data from human populations.

1 Measuring selection in out-
of-equilibrium populations

We consider large panmictic populations whose size
N (t) may change over time, and whose reproduction
follows the Wright-Fisher model [20]. Given alle-
les a and A, we assume that genotype aa has fit-

ness 1, aA has fitness 1 + s;h;, and AA has fitness
1+ s;. We suppose that A is the least favourable
allele (s; < 0) and that 0 < h; < 1. In a random-
mating population, an allele A at frequency x; adds
an average of dw; = s; (thxi +(1- 2h1)x22) to in-
dividual fitness compared to the optimal genotype.
We compute the expected fitness over multiple loci
asw = [[,(1+0w;) ~ 1+ ", dw;, under the assump-
tion that the individual selection coefficients s; are
small. Finally, we define the genetic load L =1 —w
as the total relative fitness reduction compared to the
optimal genotype, Wyqr = 1. This yields

2

To study the effect of selection over short time
spans and in out-of-equilibrium populations, we want
to define instantaneous measures of the effect of se-
lection on the genetic load and the frequency of dele-
terious alleles. In this article, the rate of adaptation
refers the instantaneous rate of fitness increase (or
load decrease) in a population. It has contributions
from selection, mutation, and drift. The contribu-
tion of selection has been the object of considerable
theoretical attention: It is the object of the Fitness
Increase Theorem (FIT) (see, e.g., [20]). We will refer
to the contribution of selection to the rate of adap-
tation as the FIT efficacy of selection.

We also wish to study the effect of selection on
the frequency of deleterious alleles. There are multi-
ple ways to combine frequencies across loci to obtain
a single, genome-wide metric: Any linear function
Liin =Y, piz; of the allele frequencies, with p; > 0
a weight assigned to locus ¢, provides an equally ac-
ceptable metric. A natural option, which weights al-
leles according to their selection coefficient, is Mor-
ton, Crow and Muller’s total mutational damage [21],
which is equivalent to the additive genetic load that
would be observed if all dominance coefficients were
replaced by 1/2, i.e., Loga = —_,; six;. Mutation
and selection systematically affect L;;,, but genetic
drift does not. We define the Morton efficacy of se-
lection as the contribution of selection to %. In
simulations, where all alleles have equal fitness, we
use p; = —s. Another common choice, in empirical
studies, is to set p; = 1 for all sites annotated as
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Figure 1: Frequency distribution of deleterious al-
leles with initial frequency 0.5 after one generation,
assuming population sizes of 2N = 100, 500, and oo;
a selection coefficient s = —0.6; and no dominance
(h = 0.5). The average effect of selection after one
generation does not depend on N.

deleterious by a prediction algorithm, and zero oth-
erwise [15, 14, 18]. Since different empirical studies
use different p;, direct comparison of the results can
be challenging.

Because Morton and FIT efficacies are instanta-
neous measures of the effect of selection, they can be
integrated over time to measure the effect of selec-
tion over arbitrary periods. Their integrals over long
periods are directly related to classical steady-state
metrics such as the rate of fixation of deleterious al-
leles and the average genetic load in a population.

To understand how genetic drift affects the FIT
and Morton efficacy of selection, consider an al-
lele with parental frequency z, selection coefficient
|s] < 1, and no dominance (h = 0.5). In the descend-
ing population, this allele is drawn with probability
' ~ x4+ sx(1 — x)/2. Figure 1 shows the resulting
distribution in offspring allele frequency for x = 0.5,
s = —0.6, and 2N = 100,500, and oo. The average
frequency z’ is independent of N, hence the expected
FIT and Morton efficacies are equal in all popula-
tions: Genetic drift does not instantaneously change
the effect of selection.

If we let these populations evolve further, how-
ever, we will eventually find that deleterious allele

frequencies decrease more slowly in smaller popula-
tions. This is because natural selection acts on fitness
differences, and therefore requires genetic variation.
By dispersing allele frequencies and reducing diver-
sity, genetic drift also reduces the subsequent effect
of selection (see Figure 2). Drift accumulated during
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Figure 2: Effect of drift on the rate of adaptation
for h = 0.5. We consider two populations with initial
allele frequency 0.5 and selection coefficient s = —0.1.
The red population does not undergo drift, and the
blue population undergoes one generation of neutral
drift, leading to increased variance in allele frequency.
The reduced diversity at each locus leads to a lower
average rate of fitness increase per generation (blue
star). Because the rate of fitness increase is a concave
function of allele frequency, drift always reduces the
future effect of selection when h = 0.5.

one generation can change the efficacy of selection
for many future generations. Conversely, the current
average efficacy of selection depends on the drift ac-
cumulated in many previous generations. This delay
between the action of drift and its impact on selec-
tion can be ignored in steady-state populations but
not in out-of-equilibrium populations. For this rea-
son, measures of the effect of selection that have been
developed for populations of constant size can be mis-
leading or biased when applied to populations out of
equilibrium.
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1.1 Other measures of the effect of se-
lection

The rate at which deleterious mutations are eradi-
cated from a population, for example, is an intuitive
metric for the effect of selection that has been re-
cently applied to out-of-equilibrium populations [22].
Over long time scales or in the steady state, this rate
of eradication is indeed equivalent to Morton’s effi-
cacy of selection. However, in out-of-equilibrium pop-
ulations, the rate of eradication is a biased measure
of the effect of selection. In Figure 1, the smaller pop-
ulation has a higher rate of eradication of deleterious
alleles, but this reflects the action of drift rather than
the effect of selection. This effect of drift on the rate
of eradication of deleterious alleles is short-lived on
phylogenetic time scales, but it can be the dominant
effect for time-scales relevant to human populations.

Classical work on the efficacy of selection in steady-
state populations has emphasized the role of the com-
bined parameter Ns in the dynamics of deleterious
alleles. The importance of this combined parame-
ter has led some authors to argue that it should be
used as a metric for the efficacy of selection even out-
side the steady-state [15, 19]. This is problematic for
practical and fundamental reasons. On the practical
side, the parameter N(¢)s is a function of time and
does not allow for comparison between populations
over finite times: N (t)s is not a rate, and its time in-
tegral is meaningless. At a more fundamental level,
an instantaneous difference between two populations
in the product N(t)s simply indicates a difference
in effective population sizes. The interesting biolog-
ical question is not whether the population sizes are
different, but whether these differences lead to differ-
ential action of selection by the process illustrated in
Figure 2.

More generally, it is commonly proposed that the
effect of selection should be measured relative to the
effect of drift [19], because the classical parameter
Ns is a ratio between a selection term s and a drift
term 1/N. Such a relative measure is not necessary:
Morton and FIT efficacies are absolute measures of
the effect of selection and they do capture the clas-
sical interaction between selection and genetic drift:
In populations of constant size, these efficacies do de-

pend on the relative magnitude of selection and drift
coefficients through the classical parameter Ns. In
out-of equilibrium populations, however, they depend
on a more complex function of s and N(t). In other
words, the classical parameter Ns does not measure
the effect of selection as compared to the effect of
drift; but rather the effect of selection as modulated
by past genetic drift.

Finally, even though most classical work has fo-
cused on the effect of selection on fitness or allele fre-
quency, Henn et al. [17] recently proposed to measure
the effect of selection on diversity, defining a ‘reduc-
tion in heterozygosity’ (RH) statistic that compares
the heterozygosity of selected and neutral sites. We
show in Section S1.2 that RH is robust to the ef-
fect of genetic drift, but it can be biased by recent
mutations.

2 Asymptotic results

To study the effect of selection after a population
split, we calculate the moments of the expected al-
lele frequency distribution ¢(x,¢) under the diffusion
approximation. In this formulation, ¢(z,t)dz repre-
sents the expected number of alleles with frequency
between x and x + dx at time ¢. In a randomly mat-
ing population of size N = N(¢) > 1 and constant s
and h, the evolution of ¢(x,t) approximately follows
the diffusion equation [20]:

op(x,t) 1 0?2
5 Wﬁx(l —x)p(x,t)
— S5 (h+ (1 —=2h)z)x(1 — z)p(x,t)
+ 2Nud(x — L),

2N
(1)

where u is the total mutation rate. The first term
describes the effect of drift; the second term, the ef-
fect of selection; and the third term describes the
influx of new mutations: ¢ is Dirac’s delta distribu-
tion. From this equation, we can easily calculate evo-
lution equations for moments of the expected allele
frequency distribution px = (2¥). For example, the
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rate of change in allele frequencies j1; = dd%, is driven
by mutation and selection:

Srl,h
4 )

fn=u+ (2)
where I'; j, = 4(p; — ptiv1)h+4(1 —2h) (phig1 — pit2) is
a function of the diversity in the population that gen-
eralizes the heterozygosity m; = I'y 12 (see Appendix
for detailed calculations, and References [23, 24] for
other applications of the moment approach). We
can define the contributions of selection and muta-
tion to changes in allele frequency as ji15s = %
and fi1, = u. Morton’s efficacy of selection at a lo-
cus is simply sfi15. Whereas the effect of mutation
is constant and independent of population size, Mor-
ton’s efficacy depends on the history of the popula-
tion through I'q 3:

. s°T'y p,
Sp1s = ——(—,

- 3)

Similarly, changes in the expected fitness W can be
decomposed into contributions from mutation, drift,
and selection:
W =W, + Wy + W,
(1 — 2h)71'1
4N
+s(hl'yn + (1= 2h)T20)/2].

= s|2hu + (4)

Favorable mutations increase fitness, drift increases
fitness when fitness of the heterozygote is below the
mean of the homozygotes, and selection always in-
creases average fitness.

The FIT efficacy, W5, is therefore

W, = S(hFLh + (1 - 2h)F27h)/2, (5)
The right-hand side is the additive variance in fit-
ness, and Equation (5) is an expression of the Fitness
Increase Theorem (see, e.g., Equations 1.9 and 1.42
in [20]). Importantly, the FIT efficacy only describes
one of three genetic contributions to the rate of adap-
tation. Interpreting changes in fitness in terms of FIT
efficacy requires picking apart the effects of drift and
mutation from those of selection. In addition to these

genetic effects, changes in the environment can di-
rectly affect fitness, introducing a further confounder
[25].

Now consider an ancestral population that splits
into two isolated randomly mating populations with
initial sizes N4 and Np at time t = 0. The popula-
tions may experience continuous population size fluc-
tuations. If we expand the moments uy of the allele
frequency distribution in Taylor series around ¢ = 0,
we can easily solve the diffusion equation to study
the differentiation between the two populations right
after the bottleneck. Here we provide an overview of
the main results. Detailed derivations are provided
in the Appendix.

The difference in fitness between the two popula-
tions, AW (t) = W4 (t)—Wp(t) grows linearly in time
under dominance:

—s(1—=2h)tm, (1 1 9
AW(t) = 1 (NB NA) + O(t%),
(6)
Here, t is measured in generations, m , is the ex-
pected heterozygosity in the source population, and
O(#?) represents terms at least quadratic in ¢. This
rapid, linear differentiation is driven by drift coupled
with dominance. The smaller population has higher
fitness when h > 0.5 for s < 0: Drift hides dominant,
deleterious alleles from the action of selection.

If the source population is large and h > 0, we
have 1 o ™~ 271 o ~ _h—g;‘ [26] and the rate of fitness
differentiation is independent of s. This generalizes
Haldane’s observation that load is insensitive to the
selection coefficient in large populations [27]. By con-
trast to the constant-size population case, however,
the observation does not hold when A = 0. The initial
response to the bottleneck is independent of fitness
for 0 < h < .5 (see Figures S2 and S3), but not for
h=0or h =0.5 (see Figures 3 and S1).

The effect of selection on fitness differences,
AW(t), grows only quadratically:

2,2
AVVS(t):StHh< 1 1

—_ - — ot 7
o (-3 roen
where II}, is a measure of diversity that reduces to 7y ,
when h = 0.5 (see Appendix). This slower response
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is the mathematical consequence of the intuition pro-
vided by Figures 1 and 2: Right after the split, the
fitnesses are identical and the efficacy of selection is
the same in both populations. It takes time for drift
to increase the variance in allele frequency and cause
differences in the efficacy of selection, accounting for

a factor ¢ (NLB — ﬁ) It then takes time for differ-
ences in the efficacy of selection to accumulate and
produce differences in fitness, accounting for an ad-
ditional factor st.

Combining Equations (6) and (7), we get an
asymptotic result for the load differentiation.

—s(1 —2h)tm, S21
AWasymptOtiC(t) = < ( 4 ) - + 16 h)

(%)
®)

This expression describes the leading differentiation
in fitness in all simulations below. It is straight-
forward to refine this asymptotic result by comput-
ing higher-order corrections, however the number of
terms in the expansion increases rapidly. Some of
these terms are of particular interest, such as the con-
tribution of new mutations. Since the direct effect
of mutation on load is independent of demography
[Equation (4)], we must wait for mutations to accu-
mulate before load differentiation can begin. This
leads an additional factor of ut compared to the case
of standing variation. The contribution of drift acting
on new recessive mutations is therefore quadratic:

—sut?(1—2n) [ 1 1
AWper = ——— 2 [ — — —
W <NB Ny

1 >+o(t3)7 9)

The effect of selection on new mutations is only cubic
in time: We must wait for mutations to appear (con-
tributing a factor of wt), then wait for drift to cause

differences on the frequency distribution of the new
1 1

Ny Na )],

and finally wait for selection to act on these frequency

distribution differences (contributing a factor of st.)

The leading contribution of selection is therefore

s?t3uh(5h —2) (1 1 4

mutations [contributing a factor of t(

AWs,new =

Finally, since drift alone does not produce differ-
ences in average allele frequencies, the rate of dif-
ferentiation in deleterious allele frequencies is always
quadratic in time:

t2
Apins (1) :% ((3h — 1)m1.0 + 3(1 — 2h)7a0) X

(- o) o o

3 Simulations

We simulated the evolution of ¢(z,t) using Jadi [28]
and the Out-Of-Africa (OOA) demographic model il-
lustrated in Figure 3A. This model begins with an an-
cestral population of size N, = 11930 with frequency
distribution following the quasi-stationary distribu-
tion of Kimura [29], and features population splits
and size changes that were inferred from synony-
mous polymorphism from the 1000 Genomes dataset
[30]. We estimated the probability ¢, (i,t) that a
variant is at frequency 4 in a finite sample of size
n = 100 for each population, given a mutation rate
of u=1.44 x 10~ 8bp~! generation™! [31] in an infi-
nite genome. We used the finite sample predictions
to estimate the expected genetic load and the contri-
butions of drift, selection, and mutation. Finally, to
ensure that results were not model-dependent, we re-
peated each simulation using a different demographic
model described in [15], featuring a single deeper but
shorter OOA bottleneck.

We simulated all combinations
of selection coefficients 2N,s €
{0,-0.01,-0.1,-0.3, —1,—3,—10,—30,—100}, and
dominance coefficients h € {0,0.05,0.2,0.3,0.5,1}.
The contributions of selection and drift were ob-
tained using Equation (4). To emphasize the
long-term effects of the OOA bottleneck even after
drift is suppressed, simulations were also carried
to future times assuming large population sizes
(N = 20N,) and no migrations (Figure S6). In all
cases, Equations (8), (9), and (10) capture the initial
increase in load (Figures 3, S1, S2, and S7).
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3.1 Genic selection; h =1/2

Simulated differences in load are modest and limited
to intermediate-effect variants (.3 < |2N,s| < 30,
2.5x1075 < |s| < 0.0025). Assuming the distribution
of fitness effects inferred from European-American
data by Boyko et al. [32], the excess load in the OOA
population is 0.49 per Gb of amino-acid—changing
variants, in addition to a total accumulated load of 24
per Gb in the African population (this accumulated
load does not include variation that was fixed at the
time of the split). If we consider the 24 Mb of exome
covered by the 1000 Genomes project, and assume
that 70% of mutations are coding in that region [33],
the model predicts a non-synonymous load difference
of 0.008. The total estimated non-synonymous load,
excluding mutations fixed in the ancestral state, is 0.4
in the African-American population. In this model,
the reduced efficacy of selection caused by the OOA
bottleneck leads to a relative increase in non-recessive
load of 2%. Since we did not consider fixed ancestral
deleterious alleles in the total load, this figure is an
overestimate of the relative increase in load due to the
bottleneck. The relative increase reaches a maximum
of 8% for mutations with —20 < 2N, s < —10. The
results are similar if we use the distribution of fitness
effects inferred from African-American data [32].

Using the simple bottleneck demographic model of
Do et al [15], we find very similar load (24 per Gbp)
and load differences across populations (2% of the
total load).

3.2 Partial and complete dominance

The picture changes dramatically when we consider
recessive deleterious variants (h = 0). Reactions
to changes in population size are linear rather than
quadratic, and they are more substantial than in the
additive case (Figure S1). The OOA load due to seg-
regating variants with 2/V,s = —100 almost doubles
after 500 generations. This excess load in the OOA
population is due entirely to drift, and leads to an in-
creased efficacy of selection in the OOA population,
since a higher proportion of deleterious alleles are now
visible to selection. The difference in load for the
most deleterious variants is therefore not sustained.
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Figure 3: Changes in load after the OOA split model
illustrated in (A) as a function of s, given ances-
tral population size N, = 11,930 and no dominance
(h = 0.5). (B) Load evolution after the split. We
subtracted the load due to variants fixed in all popu-
lations. (C) Difference in load between populations.
Since h = 0.5, this is equivalent to the difference in
additive load. Dotted lines show asymptotic results
from Equations (8) and (10). Load is given per Gbp
of variants at the specified selection coefficient. The
total amount of variation under strong selection in
the human genome is likely much less than 1 Gbp.
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Both the number of very deleterious variants and the
associated genetic load eventually becomes higher in
the simulated Yoruba population. By contrast, weak-
effect deleterious variants contribute more load in the
simulated European population.

Even though a bottleneck inexorably leads to in-
creased load when no dominance is present, the ad-
ditional exposure of recessive variants therefore leads
to ‘purging’, a reduction of the frequency of delete-
rious alleles (see [2] and references therein). Simu-
lations show that the increase in recessive load can
last hundreds or thousands of generations for weakly
deleterious variants. Glémin argued that the purg-
ing effect is suppressed in constant-sized population
when Ns is much less than “2 to 5”. [2]. This also
holds in a non-equilibrium setting in recessive alleles
going through a bottleneck (Figure S1, see also [34]).
The time required for purging to compensate the ini-
tial fitness loss increases rapidly as the magnitude
of the selection coefficients decreases: Whereas our
model predicts a reduced load in present-day OOA
populations for alleles with 2N,.s = —100, it would
take over 20,000 generations of continued isolation
in large constant-sized population to see purging in
alleles with 2N, s = —3 (Figure S6).

Opposite effects are observed for dominant delete-
rious variants (Figure S7). Drift tends to increase
fitness by combining more of the deleterious alleles
into homozygotes, reducing their average effect on
fitness. The difference between populations is much
less pronounced and less sustained than in the re-
cessive case. Equation (6) shows that the reduced
magnitude is caused by reduced ancestral heterozy-
gosity, 71,0: Dominant deleterious alleles are much
less likely to reach appreciable allele frequencies be-
fore the split. Here again, the population with the
highest load depends on the selection coefficient, with
a higher load in the simulated European population
for strongly deleterious variants and a higher load in
the simulated Yoruba population for the weakly dele-
terious variants.

The distribution of dominance coefficients for mu-
tations in humans is largely unknown, but non-
human studies suggest that partial recessive may be
the norm (see, e.g., [35] and references therein). Un-
der models with h = 0.2, we find that the genetic load

is elevated in OOA populations for most selection co-
efficients N,s, whereas the additive genetic load is
mostly reduced (Figure S3B-C and S4B-C). These
simulations suggest that the rate of adaptation was
reduced in OOA populations (i.e., the genetic load is
higher in OOA population), while the efficacy of se-
lection was higher in the OOA population, whether
it is measured by the Morton efficacy or the FIT ef-
ficacy (Figure S5). Thus, unless most nearly-neutral
variation has A > 0.20, we do not expect an overall
elevated number of deleterious variants in OOA pop-
ulations. As we move closer to additive selection, for
example at h = 0.3, the contributions of alleles with
larger and weaker selection coefficient are of compa-
rable magnitude and opposite direction. Because of
our limited ability to estimate selection coefficients in
humans, this might explain why observing differences
in the overall frequency of deleterious alleles between
populations has been so difficult. This also suggests
that any claim for an across-the-board difference in
the efficacy of selection between two populations will
have to rely on a number of assumptions about fitness
coefficients in human populations.

4 Present-day differences in

the efficacy and intensity of
selection

The Wright-Fisher predictions for the instantaneous
Morton and FIT efficacies of selection, Equations (3)
and (5), depend on the present-day allele frequency
distribution, on the dominance coefficient A, and on
the selection coefficient s. However, s is a multiplica-
tive factor in both equations and cancels out when we
consider the relative rate of adaptation across pop-
ulations. We can therefore use Equations (3) and
(5) to estimate differences in the efficacy of selec-
tion between populations based on the present-day
distribution of allele frequencies. For nearly-neutral
alleles, the present-day frequency distribution is sim-
ilar to the neutral frequency spectrum and largely
independent of h. We can therefore use the present-
day frequency spectrum for synonymous variation
to estimate the relative efficacy of selection for all
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nearly-neutral alleles at different values of h (Fig-
ure 4). Figures S10 and S11 show similar results
for non-synonymous and predicted deleterious alleles
(For the most deleterious classes, the assumption that
the present-day frequency spectra depend weakly on
h is less accurate).

In the nearly-neutral case, the Luhya population
(LWK) shows the highest Morton an FIT efficacy of
selection for most dominance parameters and is used
as a basis of comparison. The estimated FIT effi-
cacy of selection is higher in African population for all
dominance coefficients, as is the Morton efficacy, ex-
cept for completely recessive alleles. The reduction in
Morton’s efficacy of selection for nearly-neutral varia-
tion in OOA populations is 25% to 39% for dominant
variants, 19% to 31% for additive variants, and 6% to
13% for fully recessive variants. The reduction in the
FIT efficacy in OOA populations is 29% to 44% for
dominant variants, 19% to 31% for additive variants,
and 0.2% to 6% for fully recessive variants. This is
also consistent with the interpretation of Glémin that
purging, the reduction in the frequency of recessive
alleles caused by a bottleneck, is not expected for
nearly neutral variants. By contrast, estimates us-
ing sites with high predicted pathogenicity according
to CADD [36] do suggest that purging of deleterious
variation by drift is still ongoing in OOA populations
(Figures S10 and S11).

Admixed populations from the Americas with the
highest African ancestry proportion also show ele-
vated efficacy of selection: African-Americans (75.9%
African ancestry [37]), Puerto Rican (14.8% African
ancestry [31]), Colombians (7.8% African ancestry
[31]), and Mexican-Americans (5.4% African ances-
try [31]). The Morton efficacy of selection in admixed
populations is much larger than the weighted aver-
age of source populations would suggest (Figure 4C,
which uses CHB, CEU, and YRI as ancestral popula-
tion proxies for Native, European, and African ances-
tries). By averaging out some of the genetic drift ex-
perienced by the source populations since their diver-
gence, admixture increases the overall amount of ad-
ditive variance in the population, and therefore leads
to a substantial and rapid increase in the predicted
efficacy of selection for nearly neutral alleles.
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Figure 4: A) Present-day Morton efficacy of selec-
tion for nearly neutral variants, estimated from 1000
Genomes synonymous variation. B) FIT efficacy for
the same variants, and C) Morton efficacy in admixed
populations is increased compared to the average ef-
ficacies in ancestral populations.
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5 Discussion

Selection affects evolution in many ways. It tends to
increase the frequency of favourable alleles and the
overall fitness of a population, and it often reduces
diversity. The rates at which it performs these tasks
varies across populations, and population geneticists
like to frame these differences in terms of the efficacy
of selection. The word ‘efficacy’ implies a measure
of achievement, but there are many ways to define
achievement for selection. We considered two mea-
sure of achievement: the change in deleterious allele
frequency (i.e., Morton’s efficacy), and the change in
load caused by selection (i.e., the FIT efficacy). Even
though the two quantities are closely related, and are
equal for additive selection, Morton’s efficacy is much
easier to measure: systematic differences in the fre-
quency of deleterious alleles are robust to drift and
to modest changes in the environment. By contrast,
the FIT efficacy is impossible to observe directly and
requires picking apart the contributions of selection,
drift, and the environment. Given the long-standing
controversy about how this should be done in the con-
text of Fisher’s Fundamental Theorem [38], we would
advise against using it.

We have argued that other popular measures for
the efficacy of selection [13, 19, 8, 17] are biased
in out-of-equilibrium populations studied over short
time-scales. Many previous claims that selection
acted differentially in human populations [13, 8] could
be explained by these biases. Confirming this in-
terpretation, Fu et al. [18] found no differences in
the average frequency of deleterious alleles between
African-Americans and European-Americans in the
ESP 6500 dataset [39]. However, they did report
a slight but extremely significant difference in the
average number of deleterious alleles per individual
for a set of putatively deleterious SNPs. The con-
trasting results are surprising, since the two statistics
are equal up to a multiplicative constant: the aver-
age number of deleterious alleles per genome equals
the mean frequency of deleterious alleles multiplied
by the number of loci. We could reproduce the re-
sults from [18], but found that the statistical test
used did not account for variability introduced by ge-
netic drift in a finite genome: results remained signifi-
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cant if allele frequencies were randomly permuted be-
tween African-Americans and European-Americans
(see Section S1.1 for details). This emphasizes that
an empirical observation of differences in genetic load
must be robust to both finite sample size and finite
genome to be attributed to differences in the efficacy
of selection.

Figures 4, S10 and S11 strongly suggest that the
OOA bottleneck still influences the present-day ef-
ficacy of selection. By extension, they also suggest
that the efficacy of selection did differ and will differ
among populations. Importantly, the differences in
frequency distributions across populations that pro-
vide this support are not a consequence of past differ-
ences in the efficacy of selection but a possible cause
for such differences in the present and future. We
have shown that some of the future differences are
not inevitable and can be attenuated by demographic
processes including admixture. Therefore, measuring
actual differences in the efficacy of selection can only
be achieved by measuring actual differences in the
average frequency or effect of deleterious alleles.

Simulations presented here, together with the re-
sults of [14, 15], do suggest that the classical predic-
tion on the differential efficacy of selection in small
populations can be verified if only we can accurately
isolate variants of specific selective effect and domi-
nance coefficients. By picking apart variants of dif-
ferent selection and dominance coefficients, we should
soon be able to convincingly and directly observe the
consequences of differences in the efficacy of selec-
tion. The recent results of Henn et al. [17], using a
version of Morton’s efficacy, do suggest such differ-
ences for a subset of variants and therefore provide
important experimental validation for a classical pop-
ulation genetics prediction. By contrast, the obser-
vation of genome-wide differences in the efficacy of
selection across populations depends on the cancella-
tion of effects across different variant classes, and can
therefore depend sensitively on the particular choice
of a metric. For this reason, overall differences in
load among populations may not be particularly in-
formative about the fundamental processes governing
human evolution.
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A1l Appendix
A1l.1 Background

To derive the asymptotic results in the text, we start
with the diffusion approximation for the distribution
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¢(x,t) of allele frequencies x over time ¢ in an infinite-
sites model (see [26], section 8.6):

b (x, 1 02
—sg- (b4 (1 =2h)a) (1 - 2)¢(x,1)
+ 2Nud(x — %)7

(A1)

where N is the effective population size, h is the
dominance coefficient, s is the selection coefficient,
and u is the mutation rate. In this model, new mu-
tations are constantly added via Dirac’s delta func-
tion 0. Because there are no back mutations in this
model, the proportion of fixed mutations increases
over time without bound. Because we are only inter-
ested in population differences accumulating over a
short time span, however, we can simply ignore the
(infinite) number of deleterious alleles that fixed be-
fore the population split. The time-scales that we
will consider are short enough that back-mutations
and multiple mutations contribute little to changes
in allele frequencies.

A complete solution of this problem can be ex-
pressed as a superposition of Gegenbauer polynomi-
als [29]. However, here we are looking for simple
asymptotic results that will help us understand the
dynamics of the problem. We will consider the evolu-
tion of moments of the allele frequency distribution:
e = fol drz*¢(x,t). Similar moment approaches
have been used in [23, 24]. Because there is a possi-
bly infinite number of fixed sites at frequencies 0 and
1, it is often convenient to distinguish contributions
from segregating sites and fixed sites:

,Uk:Z/
0

where K is the number of sites fixed at frequency 0,
K is the number of sites fixed at frequency 1, and
0,0 is Kronecker’s delta. Both K, and K; can be
infinite in this model, but this will not be a problem
since we will ultimately consider only differences or
rates of change in the moments, and these remain
finite. In this notation, pg is the (possibly infinite)

=
dza®¢(x,t) + Kodp,o + K1,

+
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number of sites, and u; is the expected number of
alternate alleles per haploid genome.
To obtain evolution equations for the moments, we

integrate both sides of equation (A1) using folJ: dra®.
The left-hand side gives

J

and the right-hand side can be integrated by parts.
For k = 0, this yields

¢(0,1) + ¢(1, 1)
AN

where ¢(0,t) and ¢(1,t) are defined by continuity
from the open interval (0,1) and do not include
fixed sites. Because the number of sites is constant
(f10 = 0) and the diffusion equation is continuous, we
require

U ek 00t 0 Jos duaFo(a)
ot ot
= jix — Kodro — K1,

(A2)

+

o =2Nu — +K()+K1,

KO — —2N’U,—|— ¢(O7t)’
AN
(A3)
Kl — (b(lat)
4N

These equations are equivalent to Equations 3.18 and
3.19 in [29].

To obtain an evolution equation for py, at arbitrary
k, we return to the integration of Equation (A1) with

folJ: dxx®. We use the left-hand-side expression ob-

tained in Equation (A2), and once again integrate the

right-hand side by parts. This yields

k(k—1)
8N

u

sk
b Tp—1 + 1 k,h T QN)F—1’ (Ad)

where

T =2(Mk — frt1)

A5
F]“h =2 (hﬂ'k + (1 - 2h)ﬂ';ﬁ.1) . ( )

These are functions of the moments p and can there-
fore be thought of as measures of the shape of the
frequency distribution ¢.

The first term in (A4) represents the effect of drift,
the second term the effect of selection, and the third
term the effect of mutation.
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For example, if k = 1 and h = 1/2, we get

fn = s(p1 — p2)/2+u

The frequency of damaging alleles can decrease be-
cause of selection, or increase because of mutation.

A1.2 Response in allele frequencies

Solving Equation (A4) in general is challenging, be-
cause [ir can depend on pg41 and g2, leading to an
infinite number of coupled equations. However, it can
be used to calculate the response in allele frequency
to a sudden change in demographic or selective con-
ditions. Consider a population of size N, that expe-
riences a change in size to N4 at time ¢ = 0. We can
expand puy for short times:

(i (t) = pro + prat + peat® + O(?),  (A6)

where py o is the kth moment prior to the population
size change and O(t3) represent terms at least cubic
in t. The coefficients can be evaluated by expanding
both sides of Equation (A4) using Equation (A6),
then collecting powers of t. For example, we get

pa(t) = p1,0 + (% + u) t+O(t%).

The frequency of variants can increase even in a
steady-state regime with N4y = N,, since our model
assumes a constant supply of irreversible mutations.
However, this linear term is independent of N4 and
does not contribute to differences across populations
that share a common ancestor. Differences Ay (t) in
the number of segregating sites between two popula-
tions with sizes N4 and Np appear at the next order
in £. Computations are elementary but a bit more
cumbersome. Matching terms linear in ¢ in Equation
(A4), we find equation (10):

2
Ap () z% (3h — 1)my0 +3(1 — 2h)m2.0) X

1 1
X | ——-—= o(t?
<NB NA) + ( )7
where 7; , is the moment 7; computed for the com-
mon ancestral population.

A1.3 Response in genetic load

To compute the fitness in the diploid case, we write

W =5 (2hus + (1 — 2h)uz) . (A7)
Using (A4), we get
W =W, + W, + W, (A8)
where
. s
Wy =s (5 (h0us + (1 - 2h)r2,h)) ,
W, = s(2hu),
(A9)

5.
Il

(5

are the instantaneous contributions of selection, mu-
tation, and drift to changes in fitness. The mutation
term is constant in time and independent of popu-
lation size; it does not directly contribute to differ-
ences across populations. The drift term, by contrast,
has an explicit dependence on the population size;
this leads to differentiation between populations that
grows linearly in time. To see this, we compute the
load using Equation (A7) and the time dependence
computed in Equation (A6), as in section A1.2:

B _ —s(1—2h)tmy, (1 1
AW =W, — Wy = 1 (NB NA>
+O(t%).
(A10)

This reduction in load is driven by drift, i.e., the third
term in equation (A9). It is not caused by selection,
in the sense that it does not result from differential re-
productive success between individuals. As expected,
the contribution of drift vanishes for additive variants
(h=1/2).

For arbitrary h, the change in fitness caused by
selection is
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where Il is a statistic of the ancestral frequency dis-
tribution:

I, =4k o(5h — 2) — 1279 ,(1 — 2h)(1 — 4h)

+ 2473 ,(1 — 2h)?,
(A11)

which reduces to the heterozygosity m ¢ when h =
1/2. The statistic IIj, depends only on the ancestral
frequency distribution and the dominance coefficient.

Genetic drift also contributes to the changes in load
at second order in t through Wy. In addition to
the linear term from Equation (A10), we find three
quadratic contributions that vanish when h = 1/2:
a second-order contribution of genetic drift, a con-
tribution from the rate of change in population size
and drift, and a contribution from new mutations and
drift. Even though these terms can be comparable in
magnitude to the contribution of selection in Equa-
tion (A1l) when h # 1/2, they are sub-dominant to
Equation (A10). We only consider the contribution
of new mutations in some detail, as this contribution
tells us whether population differentiation in the ge-
netic load is due to old, shared variation or to new,
population specific variation.

Al.4 Effect of new mutations

If we set m;, = 0 in the equations above, we can

calculate the impact of new mutations on the genetic

load. The leading term is again due to drift and dom-
> +o(t%),

inance:
(A12)

while the leading term describing the efficacy of se-
lection is now cubic in ¢:

When h # 1/2, drift also contributes t3 terms
to AWj,e,- These are reasonably straightforward to
compute, but are sub-dominant to Equation (A12).

—sut?(1 — 2h)
4

1 1

A new —
W Np  Na

1 1

Np Na

s2t3uh(5h — 2)
6

AWs,new ) + 0(t4).
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We therefore use the asymptotic result:

2
AI/Vne’w,asymptotic :M (]\}B — ]\}A>
s*t*uh(5h —2) [ 1 1
P ()
(A13)

Comparisons with simulated data are shown on Fig-
ure S9.
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S1 Supplementary Material

S1.1 Analysis of the Fu et al. result

Fu et al presents two different tests for differences
in the number of deleterious alleles between individ-
uals. In the first test, a t-test, they compare the
average frequency of deleterious alleles between the
two populations and find no significant differences
(p = 0.82). In the second test (a Mann-Whitney
test), they compared the number of deleterious alle-
les per individual, and found an extremely significant
difference (p < 10715). We could reproduce these re-
sults using the publicly available ESP 6500 data [39]
using a permutation test. Since the average frequency
of deleterious alleles and the number of deleterious
alleles per individual are related by a proportional-
ity constant (i.e., the length of the genome), we sus-
pected that the significant difference results from a
difference in the underlying null models of each test.

To verify this, we produced simulated datasets in
which the allele frequency at each site was randomly
permuted between European-Americans and African-
Americans, creating a dataset for which there is no
meaningful evolutionary difference between the two
populations, except for randomly assigned differences
in allele frequency. We nevertheless found very signif-
icant differences between the average number of dele-
terious alleles carried by individuals of the two pop-
ulations for most simulations. This effect can even
be reproduced by analyzing a single SNP. This is the
Mann-Whitney test used in Fu et al. conditions on
the set of SNPs used: it does not account for the fact
that drift can have affected different SNPs differently.
The difference in deleterious allele count observed in
Fu et al is therefore real, but it only applies to a
particular set of SNPs and it is consistent with the
action of genetic drift acting on neutral variation. It
does not indicate differences in the action of selec-
tion, nor systematic differences in fitness across pop-
ulations. To assign differences in deleterious allele
frequency to the systematic action of selection, one
must show that the difference is robust to both finite
sample size and finite genome effects. Both can be
tested through simple resampling strategies. In the
ESP6500 example, resampling over SNPs by boot-

S1

strap led to no significant differences in the number
of deleterious alleles per individual.

S1.2 Reduction in
(RH) statistic

The reduction in heterozygosity (RH) statistic was
recently introduced [17] as a tool to measure the effect
of selection on population diversity as an addition to
analyses based on Morton’s efficacy. In this section,
we show that even though RH is an interesting mea-
sure of diversity in a population, its interpretation
in terms of the effect of selection can be challeng-
ing: First, RH can be affected by recent mutation
and, second, differences in the effect of selection on
RH may reflect rather mundane normalization issues
rather than interesting biology.
RH is defined as

RH=1-

heterozygosity

7'l'|5

)
7T‘n

where 7 is the average heterozygosity, |s indicates a
quantity measured at selected sites, and |n indicates

a quantity measured at neutral sites. The rate of
change in RH is therefore
. s T
RH = - 4 =10 (s2)
77\11 7T|n

Using equation (A4) and (A5) to leading order in +,
we find

. —Tn 4+ 2
v =
(S3)
s = s + 2uy, + SLinls —sI
Is IN |s 2,h|s*
where u is the mutation rate and I'; 5, is defined in

Equation (A5). The first terms describe the action
of drift, the second terms describe the action of mu-
tation, and the last two terms in the second line de-
scribe the action of selection. The contributions of
drift cancel out in Equation (S2), so that RH only
depends on contributions from selection and muta-
tion:

21_\27h|s - 1_‘17h|s

7T‘n

7T‘S 2’LL|S

7T|n

RH =s + 2uj, — (S4)
s
|n
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Now consider the rate of change in the difference
ARH between populations A and B:
s 1
28 | U — U —
Tr\n Tin
AQFQ,MS - Fl,h\s
27|p

oA (1 (uja (1 = RH) - us)> 7

7T|n

21—‘l2,h|s - Fl,h\s

ARH =sA
27|p

(S5)

By contrast with Morton’s efficacy, the mutation
term does not cancel out for ARH.

To show that the selection term can be substantial,
we consider the case of strong selection, where 1 —
RH < 1. In this case, the contribution of mutation
to ARH is

1
—2uj s A—,

Tin
while the contribution of selection to ARH is

209 p1s = Tings ‘ L
asts ~Tutte .y AP 5 A L (s5)

sA
27T‘n 7T|n 7T|n

where the first approximation uses Equation (A5)
and assumes that higher moments are sub-dominant
under strong selection because allele frequencies are
small. The second approximation uses the mutation-
selection balance relation i), ~ % (e.g, equation
6.2.9 in [26]). The effects of mutation and selection
on ARH cancel out: average frequencies of very dele-
terious alleles are governed by the mutation-selection
balance and are unaffected by population size dif-
ferences. Mutation tends to increase RH in the less
diverse population.

Identifying the effect of selection on diversity there-
fore requires picking apart the effects of selection and
mutation (if measuring ARH), or the effect of selec-
tion and drift (if measuring Arg). As in the case of
fitness, knowing only the present-day distribution of
allele frequency is not enough to identify the effect of
selection unambiguously, unless the alternate effect
can be shown to be weak.
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S1.3 Example of two populations with

identical start and end frequency
distributions, but different mea-
sures of FIT efficacy

Imagine that all alleles all have dominance coeflicient
0 < h < 1, selection coefficient s and dominance
h, and consider two identical populations with ex-
actly L segregating alleles, all at frequency z, at time
t,. The initial fitness in both populations is W, =
Ls (2hx, + (1 — 2h)x?2) . Assume no mutation. In the
second population, a short bottleneck occurs that in-
creases the variance in allele frequency before selec-
tion had time to change mean allele frequencies. The
difference in fitness between the two populations after
the short bottleneck is Wy it t1eneck = Ls(1—2h)o?,
where o2 is the variance in allele frequency in the sec-
ond population. The change in fitness in population
2 up to this point is entirely attributed to drift.

After the bottleneck, the population sizes increase
to a very large value, so that subsequent effects of
drift can be neglected. Selection is left to act until we
have approached the maximum fitness state, which
has fitness W = Ls if s > 0and W =0 if s < 0. The
change in fitness W —W,, is equal in both populations,
since the initial and final states are exactly the same.
The FIT ‘effect of selection’ is W — W, in population
1, since all changes are due to selection. In population
2, the effect of selection is W — W, — 6W} jttleneck:
because a change 0W} ttleneck Was caused by drift
rather than by selection.

S1.4 Microscopic and macroscopic ef-
ficacy and intensity of selection

The main text discusses the effect of selection by av-
eraging over all possible allelic trajectories. A natural
question is whether individual allelic trajectories can
be interpreted in a similar manner. Of course, it is
not possible in general to attribute specific changes
in frequency to the effect of drift or to selection, just
as it is impossible to attribute the precise number
of offspring borne by an individual to drift or fitness
alone—these attributions can be made only in an av-
erage sense. However, individual trajectories can con-
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tain more information than allele frequency distribu-
tions, for example when selection coefficients fluctu-
ate. Recent work has defined a microscopic ‘rate of
adaptation’ [25] as a measure of the effect of selection
on individual trajectories. Recent work has defined a
microscopic ‘rate of adaptation’ [25] as a measure of
the effect of selection on individual trajectories. Here
we show how the different metrics of the impact of se-
lection can be applied to individual trajectories, and
how they relate to Mustonens rate of adaptation.

Consider an individual allelic trajectories. If the
allele frequency has trajectory {z }+=1, ., with ¢ the
time in generations, we can write the fitness change
AW, at generation t as

(A$t)2

W (s +Axy)—W(x) = W (xg) Axg+W" () 5

where Az, = x;11 — 2y and W’ represents the partial
derivative of the fitness function with respect to fre-
quency x. In the constant-fitness models discussed
above, W'(z;) = 2s(h + (1 — 2h)x) and W"(x;) =
2s(1 — 2h).

The expectation of W’ (z;)Az, gives our Wy, and

the expectation of W’ (xt)% gives Wy when
|s] < 1. We therefore define the quantities o, =
W'(zy)Azy and vy = W (x)(Az¢)? as microscopic
analogs of the macroscopic efficiency of selection W
and drift Wy. These are not the only possible
analogs—for example, we could consider the expec-
tation of the linear term 7; as the microscopic effect
of selection, and vy + o4 — 73 as the microscopic effect
of drift, without changing the expected values.
Mustonen and Lassig define a ‘fitness flux’ ¢; in
[25] as a measure of the rate of adaptation. The
fitness flux definition appears identical to our defi-
nition for o, namely ¢, = > . W’(y;)Ay;, where y;
is an allele frequency trajectory sampled densely in
time. However, it is not equal but corresponds to the
total change in fitness, vy + ;. Whereas our trajec-
tory {x}; is labeled by the time in generation, the
time steps in {y;} are chosen so that Ay; < % Be-
cause of this constraint, time steps in [25] must be
finer than one generation, and the y; must be inter-
polated within generations. While integrating over
this smoothed trajectory, quadratic terms in Ay, can

S3

be neglected: The integrated fitness flux yields the
total rate of fitness change, whether it is due to drift
or selection.

The intensity of selection i measures the rate of
increase in frequency of favorable alleles. At a micro-
scopic level, the intensity of selection is simply

W' (z)

i(t) = WA;E.

When 0 < h < 1 and selection coefficients do not
change sign over time, %
leles, and —1 for deleterious ones: The intensity of
selection is simply the average change in frequency
of favorable alleles. If h < 0 or h > 1, we have
overdominance, and the favored allele is frequency
dependent. In that case, the intensity of selection
is also independent of the trajectory followed, and is
given by I = —sgn(sh) (|zy — Z| — |z; — Z|), where
T = % represents the frequency of optimal fitness.
As discussed in the main text, there are many ways
to weight the intensity of selection when the effect is
to be measured across multiple sites. As long as the
weighing scheme is not frequency or time-dependent,
it remains possible to directly compare the intensity
of selection across populations without the need for
detailed modeling.

is 1 for favorable al-
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Figure S1: Changes in load after the OOA split model
illustrated in Figure 3A, assuming a recessive variant
(h = 0.0), as a function of s and given ancestral pop-
ulation size N, = 11,930. (A) Overall genetic load
evolution. The load due to variants that are fixed
in all populations is not included. (B) Difference in
load between the two populations. (C) Differences in
additive load. The dashed lines represent the asymp-
totic results from Equations (8) and (10).
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Figure S2: Changes in load after the OOA split model
illustrated in Figure 3A, assuming partial recessive
variants (h = 0.05) as a function of s and given an-
cestral population size N, = 11,930. (A) Overall
genetic load evolution. The load due to variants that
are fixed in all populations is not included. (B) Dif-
ference in load between the two populations. (C)
Differences in additive load. The dashed lines repre-
sent the asymptotic results from Equations (8) and
(10).
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illustrated in Figure 3A, assuming partial recessive
variants (h = 0.2) as a function of s and given an-
cestral population size N, = 11,930. (A) Overall
genetic load evolution. The load due to variants that
are fixed in all populations is not included. (B) Dif-
ference in load between the two populations. (C)
Differences in additive load. The dashed lines repre-
sent the asymptotic results from Equations (8) and
(10).
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Figure S4: Changes in load after the simple OOA
bottleneck model from [15], assuming partial reces-
sive variants (h = 0.2) as a function of s and given
ancestral population size N, = 11,930. (A) Over-
all genetic load evolution. The load due to variants
that are fixed in all populations is not included. (B)
Difference in load between the two populations. (C)
Differences in additive load. The dashed lines repre-
sent the asymptotic results from Equations (8) and
(10).
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Figure S5: Integrated contributions of selection to
load differentiation according to FIT (total load) and
Morton (additive load) for partially recessive alleles
(h = 0.2). Both show an overall increased effect of
selection in the OOA population. However, genetic
load remains higher in the OOA population because
of the contribution of drift (Figure S3).
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tions, assuming continued future isolation between
large populations (N = 20N,.). This serves to il-
lustrate that the ‘purging’ effect of the bottleneck
on deleterious variants is observed for all alleles with
N,s < —3, but that it would require much more time
to compensate for the initial loss in fitness for mildly
deleterious alleles with N,.s > —30.
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Figure S7: Changes in load after the OOA split model
illustrated in Figure 3A, assuming dominant delete-
rious variants (h = 1), as a function of s and given
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all genetic load evolution. The load due to variants
that are fixed in all populations is not included. (B)
Difference in load between the two populations. (C)
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sent the asymptotic results from Equations (8) and
(10).
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sent asymptotic values from Equation (A13).

S7


https://doi.org/10.1101/010934

bioRxiv preprint doi: https://doi.org/10.1101/010934; this version posted March 11, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

=
5
&
=
>
&

o
3
r
3
i
i
i
1
I
d
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
=
3
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

- - LWK »
095 7 LAKY Africa 095 LK ae
0.90 — ASW oo o Xr;{N rica

- PUR i
M Americas

[t
@
&

)
®
3

o
~
o

Morton efficacy (relative to LWK)
Morton efficacy (relative to LWK)

Asia Europe SR
0.70 J— CHB TSl
CHS
065
- - JPT e
060
0.0 02 04 06 08 1.0
h
B B)
- - LWK :
TR Africa
10PNty o o= — — = = = — = — = — = — = - — = — — ASW
- PUR i
m Americas

Americas

FIT efficacy (relative to LWK)
°
FIT efficacy (relative to LWK)

TR e NS
— CLM - - LWK

O7T| D MXL -- YRI T T RRsa L
Asia Europe
06— CHB TSI
CHS R
o5l JPT FIN

0.0 0.2 04 0.6 0.8 1.0

Figure S10: A) Present-day Morton efficacy of selec- Figure S11: A) Present-day Morton efficacy of se-
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