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Abstract

To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq
expression data for more than thirty distinct human tissues. This data provides an opportunity for deriving
shared and tissue-specific gene regulatory networks on the basis of co-expression between genes. However,
a small number of samples are available for a majority of the tissues, and therefore statistical inference
of networks in this setting is highly underpowered. To address this problem, we infer tissue-specific
gene co-expression networks for 35 tissues in the GTEx dataset using a novel algorithm, GNAT, that
uses a hierarchy of tissues to share data between related tissues. We show that this transfer learning
approach increases the accuracy with which networks are learned. Analysis of these networks reveals
that tissue-specific transcription factors are hubs that preferentially connect to genes with tissue-specific
functions. Additionally, we observe that genes with tissue-specific functions lie at the peripheries of our
networks. We identify numerous modules enriched for Gene Ontology functions, and show that modules
conserved across tissues are especially likely to have functions common to all tissues, while modules that
are upregulated in a particular tissue are often instrumental to tissue-specific function. Finally, we provide
a web tool, available at mostafavilab.stat.ubc.ca/GNAT, which allows exploration of gene function and
regulation in a tissue-specific manner.

Author Summary

Cells in different tissues perform very different functions with the same DNA. This requires tissue-specific
gene expression and regulation; understanding this tissue-specificity is often instrumental to understanding
complex diseases. Here, we use tissue-specific gene expression data to learn tissue-specific gene regulatory
networks for 35 human tissues, where two genes are linked if their expression levels are correlated. Learning
such networks accurately is difficult because of the large number of possible links between genes and small
number of samples. We propose a novel algorithm that combats this problem by sharing data between
similar tissues and show that this increases the accuracy with which networks are learned. We provide a
web tool for exploring these networks, enabling users to pose diverse queries in a gene- or tissue-centric
manner, and facilitating explorations into gene function and regulation.

Introduction

Tissue-specificity, in which cells perform different functions despite possessing identical DNA, is achieved
partially through tissue-dependent mechanisms of gene regulation, including epigenetic modification and
transcriptional and post-transcriptional regulation [1–3]. These complex programs of control produce
different gene expression programs across tissues, with most genes showing statistically significant
differential expression [4, 5]. These differences can have significant consequences: tissue-specific genes are
especially likely to be drug targets [6] and tissue-specific transcription factors are especially likely to be
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implicated in complex diseases [2, 7, 8]. Understanding these differences is also essential for understanding
pleiotropic genes, and for interpreting studies in which genomics data can only be collected for an accessible
or a proxy tissue (such as use of blood in studying psychiatric disorders [9–11]).

Tissue-specific mechanisms of control may be captured by co-expression networks, in which two genes
are connected if their expression levels are correlated across a set of individuals. In such a setting, genetic
or environmental differences across individuals serve as small perturbations to the underlying regulatory
network, resulting in correlation between genes’ expression levels that are consistent with regulatory
relationships. Co-expression networks provide insight into cellular activity as genes that are co-expressed
often share common functions [12], and such networks have been widely used to study disease [13–15].

The Genotype-Tissue Expression (GTEx) consortium dataset [16] provides an opportunity to study
such co-expression networks for an unprecedented number of human tissues simultaneously. However,
many of the profiled tissues have fewer than a dozen samples, too few to accurately infer the tens of
millions of parameters that would define a co-expression or regulatory network. One solution would be to
combine all available samples and learn a single consensus network for all tissues, but this would offer
no insight into tissue-specificity. On the other hand, inferring each network independently ignores tissue
commonalities: tissue networks share far more links than would be expected by chance, and learning links
across multiple tissues is less noisy than learning links using a single tissue, even when using the same
number of total samples [12].

Here, we use a novel algorithm, GNAT (Gene Network Analysis Tool), to simultaneously construct
co-expression networks for 35 distinct human tissues. Using a hierarchy which encodes tissue similarity,
our approach learns a network for each tissue, encouraging tissues that are nearby in the hierarchy to have
similar networks. Hierarchical transfer learning has been shown to improve power and accuracy in previous
work [5,6,17,18]. We propose a novel hierarchical model along with a parameter optimization method
designed for large-scale data, and apply it to the GTEx data. We show that our method infers networks
with higher cross-validated likelihood than networks learned on each tissue independently or a single
network learned on all tissues. Our method is applicable to any dataset in which sample relationships can
be described by a hierarchy – for example, multiple cancer cell lines or species in a phylogenetic tree. The
complete code for our method is available as Data S1.

We analyze the resulting networks to make several novel observations regarding principles of tissue-
specificity. We propose multiple metrics for identifying genes that are important in defining tissue identity,
and demonstrate that such genes are disproportionately essential genes. We show that tissue-specific
transcription factors, which are central hubs in our networks, link to genes with tissue-specific functions,
which in turn display higher expression levels. We identify 1,789 gene modules that are enriched for
Gene Ontology functions, and show that enriched modules that are upregulated within a tissue are often
instrumental to tissue function. We also show that modules which occur across tissues are especially
likely to be enriched for Gene Ontology functions, and that these functions tend to be those which are
essential to all tissues. The results presented here, including all the networks and gene modules, can be
interactively queried through our web tool [19]; the genes and modules identified provide a basis for future
investigation.

Results

The results we report here are based on application of the GNAT algorithm to 1,559 samples from 35
tissues in the GTEx dataset. In each sample, we analyzed expression levels for 9,998 genes (Methods;
Table S1).
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Algorithm

The goal of our algorithm was to construct co-expression networks that captured both tissue-dependent
and tissue-shared relationships between genes. In order to increase statistical power and accuracy when
inferring such relationships in tissues with limited sample sizes, it used a two-stage transfer learning
framework to construct networks for all tissues simultaneously. The first stage of the algorithm constructed
a hierarchy over the tissues. The second stage optimized the network for each tissue using a method that
encouraged fidelity to the expression data, sparsity in the networks, and similarity between networks that
were nearby in the hierarchy.

1. Learning a hierarchy: A tissue hierarchy was constructed using agglomerative hierarchical
clustering on the mean gene expression levels for the 35 tissues (Figure 1). Since the rest of the algorithm
was independent of the construction of the hierarchy, the method would also work with a hierarchy based
on prior knowledge or on some other measure of dataset similarity.

2. Learning networks based on the hierarchy: We modeled the network for each tissue in the
hierarchy using a Gaussian Markov Random Field (GMRF), a standard model in computational biology
and image processing [20–22]. GMRFs model gene expression with a multivariate Gaussian distribution;
we projected the samples for each gene onto a Gaussian (Methods) so this modeling assumption was
reasonable. GMRFs are parameterized by an inverse covariance matrix S(k) (where k denotes the kth
tissue) whose zero entries indicate pairs of genes that have expression levels which are conditionally
independent given the expression levels of the other genes. These entries correspond exactly to direct
connections between genes in the GMRF; other genes may still be connected through longer paths in the
network. To encourage zero entries and diminish the number of links in the network, GMRFs maximize
the convex Gaussian log likelihood plus an L1 sparsity penalty:

n(k)

2

(
log detS(k) − tr(S(k)Σ(k))

)
− λ(k)s ||S(k)||1

where n(k) is the number of samples and Σ(k) the empirical covariance matrix for the genes in tissue k,

and λ
(k)
s is a sparsity parameter. The sparsity makes the networks more interpretable and computationally

tractable.
We extended this method by constraining the matrices S(k) in tissues that were nearby in the hierarchy

to have similar entries, creating similar networks, using an L2 penalty that penalized differences between
the S(k). We used an L2 penalty rather than an L1 penalty because it allowed us to develop a fast
parallel algorithm for optimizing the objective function (Methods). This transfer learning framework
proved especially valuable for tissues with very few samples, for which we would otherwise lacked sufficient
statistical power to infer co-expression networks. For example, we had only about two dozen samples for
each of the 13 brain tissues in the GTEx dataset – too few to learn networks with 50 million parameters –
but because all the brain tissues were closely related in our hierarchy, by adaptively sharing samples for
related brain tissues we were able to make more robust estimates of co-expression. We provide a schematic
illustration of our algorithm in Figure 2.

Previous work suggests the promise of using transfer learning to learn multiple genetic networks
[18,20,21,23]; hierarchical models have also been used more broadly throughout biology, for example to
study phylogenies [24]. [18] used prior knowledge of a hierarchy of cancer cell types to learn a network for
each cell type. Their method, however, relied on a hand-specified hierarchy, which would only be feasible if
the number of datasets was smaller than the 35 in the GTEx dataset, and though successful in simulation
was never shown to improve on prior methods on real data. [20] and [21] learn networks for multiple
datasets using shrinkage between precision matrices, although they do not use a hierarchy and simply use
a single shrinkage parameter. Additionally, none of these methods were designed to work on the large
number of tissues included in the GTEx dataset, because such data has not been previously available.
Importantly, our choice of optimization objective allows parallel optimization of all 35 tissue networks,
which is critical for scaling to a large number of tissues. In contrast, the methods described in [18] and [20]
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cannot be easily parallelized and thus will not scale to the GTEx dataset, as we confirmed by testing
their code on simulations with 35 tissues but far fewer genes than we use in our analysis (n = 10 versus
n = 9998). Adapting our algorithm to the scale of the GTEx data required several further methodological
innovations (Methods). For example, selecting a sparsity parameter for each of the 35 datasets using cross
validation would have been prohibitively slow, so we developed a faster heuristic.

Validation of algorithm

We used 5-fold cross-validation to evaluate our algorithm: for each tissue, we randomly divided our
samples into five groups, learned networks based on samples from four of the five groups, and measured the
accuracy of each network (quantified by the log likelihood on the held out test data) using the remaining
group. We compared the performance of our method to two baselines: learning a network for each tissue
independently, or learning a single network for all tissues. We observed a higher log likelihood on the held
out test set using our approach as compared to the two baselines on three different gene sets of increasing
sizes (Figure 3), indicating that the transfer learning approach resulted in a more robust estimation of the
networks.

Accuracy of Networks

We confirmed the accuracy of our learned networks in two ways. First, we evaluated agreement with two
previous datasets. When we compared our networks to the co-expression database COEXPRESdb [25],
pairs of genes we predicted to be linked had expression levels that were 2.6 times as correlated as genes we
did not predict to be linked (p < 10−6, 2-sample KS test). To analyze tissue-specificity, we also compared
our networks to TS-CoExp [12], which provides lists of tissue-specific co-expressed genes. Genes we
predicted to be linked in a tissue were 10.5 times more likely to be linked in the corresponding TS-CoExp
tissue than genes we did not predict to be linked (p < 10−6, χ2 test). Links in the TS-CoExp database
that were specific to a tissue were 2.1 times more likely to appear in our networks for the tissue than links
in the TS-CoExp database that were not specific to that tissue (p < 10−6, χ2 test). (We compared all
these numbers to the baseline of the learning the networks independently, which yielded slightly higher
agreement with TS-CoExp and virtually equivalent agreement with COEXPRESdb. We speculate that
the higher agreement with TS-CoExp is due to the fact that the TS-CoExp networks were also learned on
tissues independently.)

Second, using Gene Ontology [26], we found that genes that were linked in our networks were likely to
represent functionally coherent interactions: across all tissues, genes that shared a Gene Ontology function
were linked to each other 94% more often than were genes that did not share a function (p < 10−6, t-test).
(Gene Ontology annotations were downloaded January 2012; for enrichment analysis, we only considered
functional categories with 30-300 annotations.)

Genes Important to Tissue Identity

Tissue-specific transcription factors (tsTFs) are important in defining tissue-specific phenotypes and
mutations affecting tsTFs are enriched in loci associated with disease [2, 27]. We used our networks to
analyze the role tsTFs play in tissue specificity using a collection of 203 known tsTFs (Table S2) and 88
general TFs (gTFs) defined in [8]. We provide a schematic illustration of important conclusions of our
analysis in Figure 4 and a tabular summary in Table 1.

Well-connected genes (also known as “hubs”) are especially likely to be essential genes [28]. To quantify
a measure of “hubness”, we computed the betweenness centrality [29] in our networks for each gene. Both
general and tissue-specific TFs had higher average hubness scores than the average gene (p < .001, p = .023,
respectively), highlighting the importance of TFs in our networks.
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tsTFs were higher expressed in tissues they were specific to (p < .001, bootstrap; Figure S1), and
tsTFs that showed the largest expression increases in tissues they were specific to were especially likely
to be essential genes as defined in [30] (16 of the top 20 tsTFs as compared to 115/203 tsTFs overall,
p = .005, Fisher’s exact test; this enrichment was not sensitive to the choice of 20 as the cutoff). tsTFs
which showed tissue-specific increases in expression tended to also show increases in hubness (Spearman
p = 3 · 10−4) (Figure S2).

To investigate how tsTFs interacted with genes with tissue-specific functions, we defined thirteen sets
of tissue-specific function genes (tsFXNGs) using Gene Ontology annotations of gene function (Table S3).
Importantly, in our networks, tsTFs showed clear signs of preferentially connecting to and upregulating
genes with tissue-specific functions. Across all tissues, tsTFs were 58% more likely to be linked to genes
with tissue-specific functions than they were to be linked to other genes (p < 10−6, binomial test). Genes
with tissue-specific functions that were connected to tsTFs were higher expressed on average than either a)
genes with tissue-specific functions that were not connected to tsTFs or b) genes with non tissue-specific
functions that were connected to tsTFs (p < 10−6, t-test). (For a list of the tsTFs linked to the largest
numbers of tissue-specific genes, see Tables S4 and S5). This underscores the important role that tfTFs
play in upregulating genes with tissue-specific functions. Perhaps as a consequence of this upregulation,
tsFXNGs were higher expressed in the tissues they were specific to than in the tissues they were not
specific to (p < .001, bootstrap). (We note that because our analysis is correlative and our networks are
undirected, further analysis is needed to conclusively establish directed regulatory relationships.)

Strikingly, in contrast to tsTFs, tsFXNGs were less hubby than the average gene. This was especially
surprising given that, across all tissues, higher-expressed genes tended to be more hubby (p < .001, linear
regression). However, our finding is consistent with prior research showing that tissue-specific proteins
have fewer interactions than widely expressed proteins [31]. One possible explanation is that tsFXNGs
lie at the periphery of our networks because they have specialized functions, acting as final nodes in
pathways.

To gain further insights into genes that were important to tissue specificity, at each internal node in
our tissue hierarchy (representing a point where one group of tissues split into two) we examined genes
that differed in hubness most dramatically between the two tissue groups.

We first sorted all genes by the difference in their hubness in brain and non-brain tissues. The highest
three scoring genes have all been previously shown to play important roles in the brain: ACTL6A, a
chromatin remodeling factor which is required for the development of neural progenitors [32,33]; VRK2, a
gene implicated in schizophrenia [34]; and the Huntington’s gene, HTT. Notably, three of the four genes
HTT was most often linked to in brain tissues are themselves associated with neurological disorders:
RNF123 to major depression [35], MTHFR to neural tube defects [36] and dementia [37]; MECP2 to Rett
syndrome [38]. HTT has been found to interact directly with MECP2 [39].

Several other tissue-specific hubs proved interesting (Table S6). For example, the genes which increased
most in hubness in the two skin tissues were APOE, which has been linked with skin lesions known
as xanthomas [40] (although it is more famous because of its link with Alzheimer’s) and CERS3 [41],
which when mutated causes congenital ichthyosis, a skin disease. Similarly, in the testis, the top-two
ranked tissue-specific hubs were DDX3Y and KDM5D, both Y-chromosome linked genes which function
in spermatogenesis [42–44].

Modules Important to Tissue Identity

To identify tissue-specific and tissue-shared gene modules, we used the affinity propagation algorithm [45]
to group genes into modules for each of the tissue networks. The average number of genes per module
was 18, with the largest module containing 56 genes; there were 548 modules per tissue on average.
1,789 modules were enriched for Gene Ontology functions (Fisher’s exact test with Bonferroni correction
p < .05); all enriched modules can be viewed online [19].
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Functionally enriched modules upregulated in a given tissue were often instrumental to tissue-specific
function (Table S7). In the blood, for example, the most upregulated enriched module (henceforth, the
“top module”) was enriched for T cell receptor complex expression (Figure 5); in the skin, for epidermis
development; in the testis, for chromosome segregation; in the muscle and heart for muscle-related
functions; and in various brain tissues for glutamate receptor activity, chloride channel activity, and
regulation of axonogenesis. Given the plausibility of these functions, these modules represent useful
candidates for future investigation.

Curiously, genes that were members of enriched clusters were less hubby than genes that were not in
every tissue (p < .001, t-test). This discrepancy was so pronounced that we originally noticed it by visual
examination of the networks in our web tool. One explanation would be that these enriched modules, like
tsFXNGs, lie at the peripheries of networks because they act as the final steps in functional pathways.

Top modules also revealed more complex relationships between tissues. For example, immune-related
modules were found not only in the blood, but also in lung and digestive tissues. (We note that there
is some possibility of sample contamination, with the collected lung tissue including some blood cells.
On the other hand, previous research [5] has found that the lung has similar gene expression patterns to
immune tissues like the spleen and thymus, perhaps indicating the importance of immune function in the
lung.) The top module in suprapubic skin, enriched for mitosis, was also upregulated in other tissues
where cells divide frequently, including the testis, the stomach, the esophagus, and the colon.

Our analysis also revealed upregulation of tissue-specific modules in “similar” tissues: the top module
in one tissue was often upregulated in tissues nearby in the hierarchy. For all brain tissues, top modules
were dramatically upregulated in all other brain tissues as well, but not in non-brain tissues (Figure 6).
The top module in the heart atrium, related to “structural constituent of muscle” was unsurprisingly
upregulated in the muscle and heart ventricle as well.

We also identified a number of modules that were conserved in most tissues, representing ubiquitous
functions shared by all cells. For each module in each tissue, we measured the degree to which the module
was conserved by calculating the average fraction of links that were present among its genes in other
tissues: f = 1

K

∑K
j=1

nk

n , where K was the total number of tissues, nk was the number of links between
genes in the module in the kth tissue, and n was the number of links had the module been fully connected.
When we sorted modules by f (filtering out modules with fewer than 10 genes, which tended to have high
interlink fractions) we found that the top 50 modules were much more likely than the average module to
be significantly enriched for a Gene Ontology function (78% vs 11%), and were dominated by functions
related to chromosome segregation or the cell cycle, capacities essential for almost every tissue. When we
sorted functions by the degree to which their enriched modules were conserved, we found that 8 of the 10
most conserved functions were general to almost every tissue, relating to cell division or cell signaling:
“phosphatidylinositol-mediated signaling”, “mitotic cell cycle spindle assembly checkpoint”, “chromosome
segregation”, “cell cycle”, “transport”, “cytokinesis”, “M phase of mitotic cell cycle”, and “chromosome,
centromeric region”.

Discussion

We present an algorithm that infers genetic networks in a collection of tissues, using a hierarchy to share
data between tissues with many samples and tissues with few, and show that this sharing increases the
accuracy with which we infer the networks. We use an objective function that can be optimized over
all tissues in parallel, allowing our algorithm to scale to the GTEx dataset, and propose several further
innovations that increase scalability. Our algorithm has broad applicability to any dataset of hierarchically
related samples: species in a phylogenetic tree or cell lineages in a tumor, for example.

We then conduct a detailed analysis of the genetic networks in 35 human tissues, searching for principles
underlying both the unity and diversity of tissue function. We find that unity arises from modules that
persist across tissues, which are not only disproportionately likely to be enriched for Gene Ontology
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functions, but for functions like mitosis that are shared across virtually every tissue. We show that
previously discovered general transcription factors, which act across many tissues, tend to be hubs in our
networks.

At the same time, we find strong evidence of functional specialization among tissues (Figure 4).
tsTFs, which tend to be hubs in our networks, play instrumental roles: they preferentially connect to
genes with tissue-specific functions, and these genes show higher expression levels. Strikingly, genes with
tissue-specific functions lie at the peripheries of our networks, as do genes within enriched clusters; one
explanation for this is that these genes act as the final steps in pathways instrumental to tissue-specific
function. Finally, modules enriched for Gene Ontology functions that are upregulated within a tissue are
often instrumental to tissue-specific function, and provide intriguing candidates for biological investigation.
As the availability of biological data increases, statistical network analysis will continue to reveal both
important general principles by which networks accomplish their functions, and specific hypotheses worth
investigating.

Materials and Methods

GTEx Data

Genome-wide gene expression data for 1,606 samples across 43 unique tissues was collected by the GTEx
consortium using RNA-sequencing; we used version phs000424.v3.p1 of the data. We confined our analysis
to tissues with expression data for at least ten samples, resulting in a total of 1,559 samples and 35 tissues
(Table S1).

Gene Ontology Data

GO annotations were downloaded from www.geneontology.org on January 28th, 2012. All IEA annotations
were excluded, and then all remaining GO categories with 20-300 annotated genes (any annotation type
except IEA) were included in the analysis. No filter was placed on the ontology.

Normalization of Data

For each read count ni in each sample, we computed the normalized read count ri = log2(2 + C · ni/n)
where n was the total number of reads in the sample and C was the FPKM normalization constant, 5 · 107.
Because GMRFs are designed for Gaussian data, we projected all samples for each transcript for each
tissue onto a Gaussian with variance 1.

Selection of Gene Set

The GTEx dataset contained expression levels for 52,576 different transcripts, which would have produced
a prohibitively large covariance matrix. We filtered down the set of transcripts to a more computationally
tractable size. Since transcripts would have to show variation in expression levels to have meaningful
patterns in correlation, we first filtered out all probes that were zero or constant across any tissue by
requiring that genes show non-zero expression in at least 1/5 of samples in a tissue. We then selected a set
of transcripts as follows: we repeatedly looped over all tissues, and for each tissue selected the transcript
which corresponded to a gene which showed the highest relative expression in that tissue, was annotated
in Gene Ontology, and was not already included in the genes selected. (We defined relative expression
in a tissue to be the difference between the gene’s mean expression in that tissue and the gene’s mean
expression across all tissues divided by the variance of the gene’s expression). We continued this process
until we had obtained 9,998 genes. (This number was produced by choosing a threshold of 10,000 genes,
which represented a compromise between representing the entire dataset and achieving computational

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 29, 2014. ; https://doi.org/10.1101/010843doi: bioRxiv preprint 

https://doi.org/10.1101/010843


8

tractability, and removing two genes which did not have unique names.) This process yielded a set of
genes with diverse tissue-specific functions (since each tissue contributed many genes which showed high
relative expression in that tissue).

We confirmed that our algorithm also produced improvements over the baseline algorithms in two
smaller gene sets containing roughly 2,000 genes: one selected using the method described above, and one
selected using the genes that showed the largest variance across tissues.

Optimization of Networks Given Hierarchy

Given a hierarchy of K tissues, our algorithm learned a precision matrix for each node in the hierarchy,
including the K leaf nodes S(1), S(2), ..., S(K) (which corresponded directly to tissues) and the K − 1
internal nodes S(K+1), ..., S(2K−1). Denote by Sk

p the parent of node k. Then the optimization objective
was

max
S(k),k=1,...,2K−1

K∑
k=1

(
n(k)

2

(
log detS(k) − tr(S(k)Σ(k))

)
− λ(k)s ||S(k)||1

)
− λp

2K−2∑
k=1

||S(k) − S(k)
p ||22

S(k) � 0, k = 1, 2, ...,K

where λ
(k)
s were the k L1 sparsity penalties (chosen for each dataset as described below) and λp was

the L2 penalty that encouraged S(k) to be similar to its parent S
(k)
p (constant for all tissues). In other

words, for the leaf nodes, our optimization objective included the Gaussian log likelihood term, a sparsity
penalty on the off-diagonal elements, and an L2 parent similarity term; for the internal nodes, there was
only an L2 similarity term. While this optimization objective was convex, the inverse precision matrices
had tens of millions of entries and optimizing all 2K − 1 matrices simultaneously would have been very
slow. Instead, we used an iterative algorithm: given a hierarchy, the full optimization procedure was as
follows:

1. For each dataset k = 1, ...,K, learn an initial S(k) by maximizing
n(k)

2

(
log detS(k) − tr(S(k)Σ(k))

)
−λ(k)s ||S(k)||1. In other words, initialize by solving the graphical lasso

problem for each dataset independently.
2. Until convergence:
a. Optimize the internal matrices, S(k), k = K + 1, ..., 2K − 1, holding the leaf matrices fixed; because

all relevant terms of the objective were quadratic, this was analytic and essentially instantaneous. (We
note that this would not be true if an L1 penalty were used rather than an L2 penalty.)

b. Optimize the leaf matrices, S(k), k = 1, ...,K, holding the internal matrices fixed; each leaf matrix
was independent of the others given its parent, so this was done in parallel. Optimization was performed
using the L1General [46] and glasso [47] packages.

To ensure that the size of the entries in S were comparable across tissues and between internal and
external nodes, prior to each iteration we normalized each S such that all S had the same mean absolute
value of diagonal elements and the same mean absolute value of nonzero off-diagonal elements.

Sparsity Parameter Selection

To expedite this potentially lengthy process of choosing a sparsity parameter λ
(k)
s for each of 35 tissues, we

used a heuristic rather than using the traditional cross-validation for every single tissue. We confirmed that
our heuristic produced similar results to cross validation. [48] found the BIC penalty effective in selecting
the sparsity parameter for graphical lasso: log(n)||S(k)||0, where ||S(k)||0 is the number of non-zero

off-diagonal entries of S(k). This suggests setting λ
(k)
s to a value that makes the L1 penalty equal to the
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BIC penalty: λ
(k)
s = log(n(k))/s̄, where s̄ is the mean absolute value of the nonzero off-diagonal entries

in the optimized precision matrix. Substantiating this, we found that log(n(k)) was tightly correlated in

both simulated and actual data with the optimal L1 penalty, and also outperformed the
√
n(k) suggested

by [49]. This appears to beg the question of how to estimate s̄ without doing the actual optimization;
however, we found that s̄ was tightly correlated in both simulations and in the GTEx datasets with
Σ̄, the mean size of the entries in the empirical covariance matrix. Similarly, log(n(k))/Σ̄(k) was tightly

correlated in both simulations and actual data with λ
(k)
s . Thus, we can select λ

(k)
s for all K datasets by

using parameter search to select λ
(1)
s , λ

(2)
s , ...λ

(i)
s , where i is much smaller than K; we then do a regression

of the optimized λ
(k)
s s on log(n(k))/Σ̄(k), and use that fit to compute the remaining λ

(k)
s . We confirm that

this method works on both simulated precision matrices and the GTEx dataset. For the GTEx dataset,
using i = 5 yields λ(k) within 17% of the values selected by cross-validation on average; i = 3 yields values
within 26%, acceptable discrepancies given the coarseness of parameter search.

Constraining precision matrices to be block-diagonal

Most algorithms for solving the graphical lasso problem with p genes are O(p3), making optimization
intractable for 9,998 genes. If the optimal solution were block diagonal, with block sizes p1, ..., pk,

optimization could be performed in O
(∑k

i=1 p
3
i

)
, as noted in [50] and [51]. Unfortunately, we found

that the criterion these papers provide for determining whether the problem decomposes requires too
large a sparsity parameter to be practically useful. Instead, we used an approximate eigenvector-based
diagonalization similar to that described in [52]: for each tissue, we computed a matrix C(k), with

C
(k)
ij = max(0,Σ

(k)
ij − λ

(k)
s )2. We then computed the weighted sum of the matrices: S =

∑K
k=1 n

(k)C(k),
and partitioned S into approximate connected components using the principal eigenvector as described
in [52]. (To ensure that all components had tractable size, we set a maximum component size of 500
genes and recursively partitioned components until they fell below this threshold.) We confirmed that this
approximate solution had a higher test log likelihood than that obtained by choosing a sparsity parameter
sufficiently large to make an exact solution tractable.

Robustness to perturbation in the algorithm

Because the L1 optimization algorithm and our initializations are stochastic, the final optimized networks
may vary slightly from run to run. However, we verified that our results were not overly sensitive to
repeated runs of the algorithm, to parameter settings, or to which samples we used by examining two
modified networks: one optimized using a subset of 4/5 of the samples and one optimized using λp = 2
as opposed to λp = 4. We found that both modified networks were highly enriched for links in our
actual network; links in the actual network were more than 100 times as likely as random links to be
found in the modified networks. In modified networks, we tested a number of the network properties
reported above. First, we verified that we still saw statistically significant correlations with the external
datasets COEXPRESdb and TS-CoExp. Second, we verified that tissue-specific genes, and genes with
shared functions, still showed statistically significant tendencies to be linked to each other. Finally, we
verified that tsTFs still showed a statistically significant tendency to be linked to genes with tissue-specific
functions. The robustness of all these conclusions made us confident that the conclusions reported above
are unlikely to be due to which samples in the dataset are used, the values of the parameters, or variations
in the initialization of the algorithm, although specific links in the networks may change.

We also analyzed the proportion of links that were conserved across different conditions. We compared
networks calculated using our chosen value of λp = 4 to those learned with different values of λp (Table
S9); 89% of links were conserved between networks learned with λp = 4, λp = 2, and 98% between
networks learned with λp = 4, λp = 8. A somewhat lower proportion (75%) of links were conserved
between λp = 4, λp = 0, implying that the use of a similarity penalty may be more important than the
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exact size of the similarity penalty. We also compared the networks learned on all samples to the networks
learned using a subset of 4/5 of the samples; 38% of the links were conserved in the average tissue. Given
the sparsity of the networks, all these proportions are more than 100 times what random chance would
predict. However, because specific links can change depending on which samples are used, the broad
conclusions of our analysis are more robust than any particular link we predict.
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Figures

Figure 1. The hierarchy of tissues which is used as the basis for learning networks for each tissue. The
hierarchy was created using hierarchical clustering: for each tissue, the mean expression of each gene in
the tissue was computed, and tissues with similar gene expression patterns were merged into clusters.
Lower branching points represent clusters with more similar gene expression patterns. Many biologically
plausible clusters are apparent: the brain and non-brain cluster, and clusters for the basal ganglia, cortex,
adipose, heart, artery, and skin.
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Figure 2. An illustration of our algorithm for hypothetical tissues (1, 2, 3, 4) and genes (A, B, C). The
tree represents the hierarchy over tissues 1-4. For each tissue and each internal node in the hierarchy,
gene networks over three genes (A, B, and C) are represented by circles (genes) and edges. a) Learning
the hierarchy: tissues 1 and 2 are clustered together because A, B, and C have high mean expression
levels in both tissues (green) and low levels in tissues 3 and 4 (red). b) co-expression networks are learned
in each tissue independently. Edge AB is shared across three tissues; BC and AC only appear in one
tissue. c) Networks are learned for each internal node in the hierarchy, representing an “average” of the
child node networks, allowing similar tissues to share knowledge. The child node networks are re-learned
and encouraged to be similar to their parents; this repeats until convergence. d) The final networks. Edge
AB is now present in all 4 tissues; similarly, AC now appears in tissues 1 and 2, and edge BC in tissues 3
and 4.

Figure 3. Network accuracy as measured by 5-fold cross validation. Learning networks independently
corresponds to setting λp = 0 (the bottom left corner of each graph); the y-axis is the improvement in log
likelihood over baseline. Our method improved on this baseline for all three gene sets we experimented
with. The baseline of learning a single network for all tissues cannot be shown on this graph because its
log likelihood is so low; we dropped it from further consideration in our analysis. The differing scales on
the y-axes are due to the different sizes of the gene sets.
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Figure 4. Important principles of tissue-specificity. a) Tissue-specific transcription factors (circled in
blue) have higher expression levels (green) in tissues they are specific to, and those that change most
dramatically in expression are most likely to be essential genes. b) Tissue-specific transcription factors
connect to and upregulate genes with tissue-specific function (circled in red), which in turn connect to
each other. c) Transcription factors lie at the centers of networks; genes with tissue-specific function and
enriched modules lie at the network peripheries. d) Modules shared across tissues are more likely to be
enriched for Gene Ontology functions, and tend to have functions common to all tissues like cell division.
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Figure 5. Genes linked to the blood-specific transcription factor GATA3 are enriched for immune
function. Blue circles (and links) denote tsTFs; red circles denote tsFXNGs; the color of a gene indicates
its level of expression, with green denoting upregulation and red denoting downregulation. This tightly
connected cluster of genes comprises the blood-specific TFs GATA3 and RUNX3 (circled in blue) and 11
genes with immune related function (circled in red). GATA3 has been previously linked to RUNX3 [53]
and implicated as a master regulator of the immune system [54], required for the maintenance of T-cells;
consistent with this, the set of genes linked to GATA3 to is significantly enriched for the T cell receptor
signaling pathway and the T cell receptor complex (Fisher’s exact test with Bonferroni correction
p = .0001 and .01, respectively) with 8 of the top 10 most enriched functions for these genes relating to
the immune system.
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Figure 6. The most upregulated enriched cluster in the hippocampus, enriched for synaptic vesicle
function, shown across all tissues. Green indicates upregulation of a gene: the cluster is up-regulated in
all brain tissues (including the pituitary) and down-regulated in non-brain tissues.
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Tables

Property Tissue-Specific
Transcription
Factors

General Tran-
scription Factors

Genes with
Tissue-Specific
Functions

Higher-
expressed than
average gene?

Yes (p < .001,
25/25 tissues)

No Yes (p < .001,
27/29 tissues)

Hubbier than av-
erage gene?

Yes (p = .023,
20/25 tissues)

Yes (p < .001,
31/35 tissues)

Less hubby (p <
.001, 23/29 tissues)

Higher-
expressed in
tissues they’re
specific to?

Yes (p < .001,
10/10 gene sets)

NA Yes (p < .001,
13/13 gene sets)

Hubbier in tis-
sues they’re spe-
cific to?

No NA No

Table 1. Summary of principles of tissue specificity. Changes of expression and hubness for transcription
factors and genes with tissue-specific functions. All reported results were statistically significant by both
a parametric (T) test and a non-parametric (bootstrap) test. As an additional confirmation, because gene
sets in different tissues may have different properties, we also examined each gene set individually. We
include the bootstrap probabilities in parentheses below, along with the proportion of gene sets/tissues
for which the conclusion held true. To conduct the bootstrap comparisons, we compared values of
expression and hubness for tsTFs, gTFs, and tsFXNGs to those for randomly selected set of genes in each
tissue and repeated for 1000 iterates.

Supporting Information Captions

Figure S1: Tissue-specific transcription factors are upregulated in tissues they are specific
to. Each row is a tissue; each column is a tissue-specific transcription factor set; the color of a square
denotes the mean expression of the transcription factor set in the tissue, with green denoting upregulation
and red denoting downregulation.

Figure S2: Tissue-specific transcription factors plotted by their increase in hubness and
standardized gene expression in tissues they are specific to. Most tissue-specific transcription
factors increase in expression in tissues they are specific to, and those that increase in expression also
tend to increase in hubness. Transcription factors that are essential genes are marked in red; the “top”
transcription factors that show the largest tissue-specific increases in expression are especially likely to be
members of this essential gene set (16/20 top transcription factors as compared to 115/203 transcription
factors overall). For clarity, only the top TFs are labeled.

Table S1: The number of samples for each tissue in our dataset.

Table S2: Specific and General Transcription Factors used in analysis. Specific transcrip-
tion factors have been found to be specific to one particular tissue or set of tissues; general transcription
factors have been found to be active across many tissues.
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Table S3: Genes with tissue-specific functions, as identified by GO keyword. We defined
13 sets of tissue-specific genes. For all sets except for brain tissues, we defined keywords associated with
tissue-specific functions (third column of table), selected all GO annotations that contained these keywords
(some keywords produced no matches), and manually inspected all GO annotations to remove any false
positive annotations. (Eg, “uterine wall breakdown” would be falsely associated with the stomach due to
the “breakdown” keyword, but removed by manual curation.) We defined “tissue-specific function genes”
as all genes that were associated with these tissue-specific GO annotations.

Because of the importance of brain tissues to the analysis, we identified brain-specific genes by
individually examining all 1614 GO functions and identifying 109 brain-related ones; the large number
of brain genes is due to the fact that we selected genes which were highly expressed in our tissues. We
provide the most common brain-related GO functions in the table above.

Table S4: Tissue-specific transcription factors which were linked to an especially large
number of genes of interest – tissue-specific genes, tissue-specific transcription factors, or
general transcription factors. We filtered for transcription factors which were a) linked to at least
three genes of interest and b) linked to at least twice as many genes of interest as random chance would
predict. We include the unadjusted binomial probability that each transcription factor would be linked to
at least that many genes of interest by chance.

Table S5: Brain-specific transcription factors which are linked to an unusual number of
genes of interest. For each transcription factor, we give the brain tissues in which this occurs as well as
the brain tissue in which it is most linked to brain-specific genes and the unadjusted binomial probability
in that tissue.

Table S6: The genes which differ most dramatically at important split points in the hi-
erarchy, as measured by changes in expression and hubness.

Table S7: The GO functions of the three most upregulated enriched clusters in each tissue.

Table S8: Tissue-specific GO annotations selected using keyword search and manual cu-
ration.

Table S9: The fraction of links preserved between networks learned with different val-
ues of λp. The second column denotes the percentage of links that appear in the first network that also
appear in the second; the third column denotes the ratio of observed shared links to shared links expected
if there were no relationship between the networks.

Data S1: This file provides a MATLAB implementation of the algorithm described in
the paper.

Text S1: This file provides the full list of authors and affiliations for the GTEx Consor-
tium.
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