
 1 

FORMAL:A model to identify organisms present in 

metagenomes using Monte Carlo Simulation 

Genivaldo Gueiros Z. Silva
1
, Bas E. Dutilh 

4, 5
, and Robert A. Edwards 

1, 2, 3, 5, 6 * 
 

1
Computational Science Research Center, 

2
Department of Computer Science, and 

3
Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, 

CA 92182, USA, 
4
Centre for Molecular and Biomolecular Informatics, Radboud Institute 

for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 

6525 GA, Nijmegen, The Netherlands, 
5
Department of Marine Biology, Institute of 

Biology, Federal University of Rio de Janeiro, Brazil, 
6
Division of Mathematics and 

Computer Science, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439, 

USA  

 

*For correspondence please contact Dr. Robert Edwards at redwards@mail.sdsu.edu. 

 

Abstract 

One of the major goals in metagenomics is to identify organisms present in the microbial 

community from a huge set of unknown DNA sequences. This profiling has valuable 

applications in multiple important areas of medical research such as disease diagnostics. 

Nevertheless, it is not a simple task, and many approaches that have been developed are 

slow and depend on the read length of the DNA sequences. Here we introduce an 

innovative and agile approach which k-mer and Monte Carlo simulation to profile and 

report abundant organisms present in metagenomic samples and their relative abundance 

without sequence length dependencies. The program was tested with a simulated 
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metagenomes, and the results show that our approach predicts the organisms in microbial 

communities and their relative abundance. 

 

Introduction 

 Microbes are more abundant that any other organism (Whitman, Coleman & 

Wiebe, 1998), and it is important to understand what those organisms are doing and who 

they are. In many environments more than 99% of the microbes cannot be cultured 

(Sharon & Banfield, 2013).  

 Metagenomics is a powerful tool that makes it possible to study genomes and 

understand the diversity present in uncultured microorganisms just by using DNA 

sequences. Metagenomics uses high throughput sequencing – fast and cheap sequencing  

provided by the next generation of sequencing technologies (Wooley, Godzik & 

Friedberg, 2010). 

 The understanding of microbial communities is important in many areas of 

biology. For example, metagenomes can provide the difference the microbial community 

in marine animals (Trindade-Silva et al., 2012; Oliveira et al., 2012; Garcia et al., 2013). 

 It is not an easy task to identify the diversity of organisms present in 

metagenomes, and there are many approaches that have been developed to identify the 

organisms present in metagenomes, such as BLAST (Altschul et al., 1990), MEGAN 

(Huson et al., 2007), MG-RAST (Meyer et al., 2008), and Phymm (Brady & Salzberg, 

2009). However, most of these tools are slow and depend on the sequence length. 

 Sequence composition (k-mer) analyses have been widely used to cluster 

unknown sequences (Rosen, Reichenberger & Rosenfeld, 2011; Silva et al., 2014), while 
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Monte Carlo Simulation has been previously used on high dimensional biological data 

(Manly, 2006; Kerr et al., 2008; Liu, 2008). However, these two approaches have not 

previously been combined to explore the diversity of microorganisms in different 

communities. 

 This paper proposes an approach based in a stochastic model to identify the 

organisms present in metagenomic samples and their relative abundance using Monte 

Carlo simulation and k-mer frequency from known microbial genomes. 

 

Methods 

 

Calculating k-mer frequency 

 Given a DNA sequence S, k-mer counting is a problem, in 4
k
− dimensional 

space of determining the occurrence of substrings of length k.  A metagenome is a finite 

representation of the members of a community. The community can be considered to be a 

sample from all microbes. Since we are only concerned with identifying microbes that we 

know about, we limit the definition of community to be a sample of all known microbes 

(our reference set). Thus, k-mers could be used to predict the organisms that are present 

in a metagenome: the goal is to match up the organisms in the metagenome from 

reference dataset. There are several agile tools to count k-mers, and here we use Jellyfish 

(Marçais & Kingsford, 2011). 

 

Reference dataset 
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 A group of reference sequences are required to model and identify the organisms 

that are present in a metagenome. 2,518 complete genomes were downloaded from NCBI 

(ftp://ftp.ncbi.nih.gov/genomes/Bacteria) on 16 November 2013, and we manually 

selected 1 genome to represent each genus; a total of 655 genera. K-mer frequencies 

(k=6-8, default: k=7) were calculated and normalized by the sum of frequencies. 

 

Monte Carlo Simulation 

  Monte Carlo methods are used as an alternative to understand the behavior in high 

dimensional random samples (Mooney, 1997). This method is implemented in a 

computer program by defining a pseudo-population under conditions from the real world. 

For example, we consider metagenomes as the real problem world where M is a random 

metagenome with n organisms defined as the convex combination.                                            

 We present in the sub-section “stochastic modeling” the pipeline to profile a 

metagenome using Monte Carlo methods. 

 

 

Distributions for biological populations 

 As used in PHACCS (Angly et al., 2005), our tool assumes three biological rank-

abundance distributions: power (zipf) law, exponential, and log-normal distributions. The 

first two forms are empirical distributions used to model an asymptotic drop-off in the 

abundance (Ulrich, 2001) and the last form appears to be the most commonly present 

among species rank distribution (Pielou, 1975). 
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Simulated data 

 The program was tested using simulated data based in complete bacterial 

genomes (Table 1). In order to evaluate our approach performance, a medium complexity 

dataset, 507,808 single 100 nt reads using the supplied error model for pyrosequencing, 

was sampled from ten species using Grinder (Angly et al., 2012). The ten selected species 

are not present into the reference dataset. 

NCBI accession number Strain name Relative abundance (%) 

NC_021003.1 Streptococcus pneumoniae SPN032672 22.85 

NC_016842.1 Treponema pallidum SamoaD  16.30 

NC_015758.1 Mycobacterium africanum GM041182 15.09 

NC_015566.1 Serratia AS12  10.55 

NC_009455.1 Dehalococcoides BAV1 8.11 

NC_018887.1 Borrelia afzelii HLJ01 7.33 

NC_020411.1 Hydrogenobaculum HO 7.11 

NC_008600.1 Bacillus thuringiensis Al Hakam 5.86 

NC_008369.1 Francisella tularensis holarctica OSU18 4.92 

NC_015866.1 Rickettsia heilongjiangensis 054 1.87 

Table 1 – simulated metagenome. 

Stochastic modeling 

To model the data the program follows the pipeline depicted below 

  

1) K-mer frequency for the input data: a script written in Python language 

calculates the k-mer frequency for the user input data.       
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2) Select G genomes: the algorithm selects G genomes randomly among the 655 

reference genomes. 

3) Approximate distribution: calculate the approximate distribution of the 

genomes in metagenomes using k-mer frequencies applies a biological 

distribution on the k-mer frequency of each genome and create a single vector 

with the sum of G genomes k-mer frequencies. 

4) Frequencies distance:  calculate the distance between the G genomes selected 

and the metagenome using the Euclidean distance. 

5) Repeat: loop N times on steps 2, 3 and 4. 

            

Results and discussions 

 In order to test the tool accuracy,  species from the reference dataset were not 

included in the simulated test set, and  the genera were predicted for all the species. 

 For the propose of evaluating the program, it was initially run 10 times, each time 

with 250 x 10
4
 iterations, from 6 to 8 mers (see Figure 2). 

 Next, I ran the program with the same parameters, but now with 250 x 10
5 

iterations (see Figure 3). 

 

 Modeling with 250x10
4
 and 250x10

5
 iterations, the stochastic approach predicted 

about seven or eight of the ten species among the all species in the metagenome. We 

clearly see in Figures 2 and 3 that when we increased the length of k, the estimation of 

real abundance and number of correctly predicted organisms increased. I also conclude 
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that the error in the prediction decreases as the number of iterations increases; however, 

the program running time increases as  the number of iterations increases (see Figure 4). 

 About two species  were not predicted with neither 250x10
4
 nor 250x10

5
 

iterations,  this is probably because either the low abundance of each species in the 

metagenomic sequences or the presence  of other species with similar k-mer frequencies 

in the reference database. 

  

Limitations 

 As with other methods created to profile metagenome sequences, the approach 

presented here depends on a curated database of microbial reference genomes in order to 

predict a specific genus. If a reference genome is absent, the tool will predict the closest 

reference available.  

 

Conclusions 

 Here a stochastic model was presented to address the problem of identifying 

organisms present in metagenomes that does not rely on sequence length. Thus, it can be 

used on raw sequencing reads and does not require an initial metagenome assembly, 

which may be difficult for cases with high microdiversity, or computationally costly for 

very large metagenomic datasets. 
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Availability and requirements 

Project home page: https://edwards.sdsu.edu/formal 

Operating system: the program was developed for Linux but should also run on Windows 

or Mac command line interpreters (Cygwin, Terminal). 

Programming language: Python. 
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