
Genome-wide association study of carbon and nitrogen metabolism in the maize 
nested association mapping population 
 
Nengyi Zhang1¶*, Yves Gibon2,3†§*, Nicholas Lepak4, Pinghua Li5, Lauren Dedow5, 
Charles Chen6, Yoon-Sup So7‡, Jason Wallace1, Karl Kremling1,6, Peter Bradbury4, 
Thomas Brutnell5,8, Mark Stitt2§, Edward Buckler1,4,6§ 
 
1 Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA.  
2 Max Planck Institute of Molecular Plant Physiology, 14476 Golm-Potsdam, Germany. 
3 INRA, UMR 1332, Univ. Bordeaux, F-33883 Villenave d’Ornon, France. 
4 US Department of Agriculture-Agricultural Research Service (USDA-ARS), Robert W. 
Holley Center for Agriculture and Health, Ithaca, New York 14853, USA. 
5 Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 
14853, USA. 
6 Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 
14853, USA. 
7 Department of Crop Science, North Carolina State University, Raleigh, North Carolina 
27695, USA. 
8 Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA. 
 
¶ Present address: BASF Plant Science, 26 Davis Dr., Research Triangle Park, North 
Carolina 27709, USA.  
† Present address: INRA, UMR 1332, Univ.Bordeaux, F-33883 Villenave d’Ornon, 
France. 
‡ Present address: Department of Crop Science, Chungbuk National University, 
Cheongju, South Korea. 
 
§ To whom correspondence may be addressed. E-mail: yves.gibon@bordeaux.inra.fr or 
mstitt@mpimp-golm.mpg.de or esb33@cornell.edu 
 
* These authors contributed equally to this work. 
 
 
 
 
 
 
 
 
 
 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2014. ; https://doi.org/10.1101/010785doi: bioRxiv preprint 

https://doi.org/10.1101/010785
http://creativecommons.org/licenses/by-nd/4.0/


Abstract 

Carbon (C) and nitrogen (N) metabolism are critical to plant growth and development 

and at the basis of yield and adaptation. We have applied high throughput metabolite 

analyses to over 12,000 diverse field grown samples from the maize nested association 

mapping population. This allowed us to identify natural variation controlling the levels of 

twelve key C and N metabolites, often with single gene resolution. In addition to 

expected genes like invertases, critical natural variation was identified in key C4 

metabolism genes like carbonic anhydrases and a malate transporter. Unlike prior maize 

studies, extensive pleiotropy was found for C and N metabolites. This integration of 

field-derived metabolite data with powerful mapping and genomics resources allows 

dissection of key metabolic pathways, providing avenues for future genetic improvement.  
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Carbon (C) and nitrogen (N) metabolism are the basis for life on Earth.  The production, 

balance and tradeoffs of C and N metabolism are critical to all plant growth, yield, and 

local adaptation (1, 2).  In plants there is critical balance between the tissues that are 

producing energy (sources) and those using it (sinks), as this change varies through time 

and developmental stage (3). While a great deal of research has focused on the key genes 

and proteins involved in these process (4-6), relatively little is known about the natural 

variation present within a species that fine tune these processes. 

 

In the last two decades, quantitative trait loci (QTL) mapping, first with linkage analysis, 

later with association mapping, has been used to dissect C and N metabolism in 

Arabidopsis (7-10), tomato (11) and maize (12-16). Because of the drawbacks of both 

linkage analysis and association mapping, these studies are of either low resolution or 

low power. Additionally, most of these studies have not focused on C and N metabolism 

in the field, where adaptation is most relevant. We used a massive and diverse germplasm 

resource (the maize nested association mapping (NAM) population) that captures 

representative diverse alleles from around the world (17, 18) to evaluate genetic variation 

of 12 metabolites in a maize field (Fig. 1). These metabolites are key indicators of 

photosynthesis, respiration, glycolysis, and protein and sugar metabolism in the plant (9). 

The 5,000 lines of NAM are the product of crossing 25 diverse lines to a reference line, 

B73, whose genome sequence has been published (19). Importantly, this reference design 

permitted all the germplasm to be grown and evaluated in the same field for metabolic 

profiling. Additionally, the NAM population permits gene-level resolution of complex 

traits, even in the field (20-22). By taking advantage of a robotized metabolic 
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phenotyping platform  (23), we were able to conduct a large study of plant metabolism, 

with more than 100,000 assays conducted across over 12,000 samples (2 independent 

samples per experimental plot).  

 

A complication conducting diversity studies of this scale is that sampling has to be 

performed over a period of time relative to flowering to approximate similar 

developmental time points. However, while we could not control for weather or 

development rate experimentally, with the use of such a large sample, we were able to 

statistically remove the effects of weather, day and time of sampling, small scale spatial 

effects, and differences in maturity. For the 12 key metabolites, whole field 

repeatabilities were between 15% and 71% and broad-sense heritabilities (H2) across the 

NAM founder lines were between 14% and 68% (table S1), indicating the high potential 

for accurate mapping of the genes responsible for the metabolic variation. 

 

For most of the developmental and disease traits studied so far in maize (17, 20-22) there 

is a strong correlation between traits across diverse germplasm panels but careful studies 

of pleiotropy in NAM has suggested few or no QTL are shared (20, 22). Therefore, this 

kind of  phenotypic correlation is due to stacking of different genes each controlling an 

independent trait through evolution and breeding, rather than due to variation in shared 

genetic mechanisms. The metabolites analyzed in the present study showed substantial 

correlations across the NAM population and within each subpopulation. Correlations and 

clustering were observed, as expected, between metabolites within N portions of the 

pathways (Fig. 1), and within the starch-sugar pathways, respectively. Some traits like 
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chlorophyll b (Chlb) did not substantially correlate with other traits. As we show below 

in joint linkage analysis (Fig. 2A and fig. S1) and genome-wide association studies 

(GWAS) (Figs. 3A and 3B, and tables S2 and S3) there is substantial overlap in QTL 

between metabolic traits. Further, metabolites that show correlated changes across the 

entire NAM population (Fig. 1) had a significantly higher frequency of shared QTL (fig. 

S2. R2=0.83, p =2.1E-26). This suggests that, in contrast to most other traits studied to 

date in maize, there are a relatively small number of control points for the natural 

variation despite the complexity of N and C metabolism.  

 

Clustering and principal component analysis (PCA) of traits effectively summarized the 

variation in these pathways (Fig. 1 and fig. S3). These summary statistics were one focus 

of the GWAS analysis. Since there were relatively few axes of variation, we summarized 

the data with PCA after accounting for the flowering (days to anthesis, DTA) effect (24). 

The first two principal components (PCs; Prin1 and Prin2) explained 25% and 20% of the 

variation (fig. S3A). In Prin1, N metabolites showed positive and higher contributions 

than C metabolites while the opposite appeared in Prin2 (fig. S3B).  

 

Using joint linkage analysis (17), we identified 5-18 QTL for the 12 metabolites and the 

first two PCs explaining 24%-55% of the phenotypic variation (Fig. 2A, tables S1 and 

S4). We included DTA in the model for the mapping of each metabolite. Many QTL have 

both negative and positive effect alleles relative to B73 among the NAM founder lines 

(fig. S4). On average, each QTL is shared by six families (fig. S5). We did not detect 

digenic epistatic interactions between QTL with additive effects. Small effect QTL were 
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detected for all 12 metabolites and for the first two PCs. Most QTL explain 2% or less of 

the variance (fig. S6) and most QTL alleles were estimated to give a less than 2% of 

increase or decrease change (fig. S7). Similar results have been observed for whole plant 

traits (17, 20, 25) and diseases resistance traits (21, 22) in maize. These results suggest 

that primary metabolic traits have a similar genetic architecture to complex traits in 

maize.  

 

To identify the genes controlling this variation, we applied the recently published GWAS 

method (20) to test the association of 1.6 million maize HapMap SNPs (26). The 

resample model inclusion probability (RMIP) was calculated based on how often each 

SNP is included in each model generated from the resampled data (27, 28). RMIP 

identified 1,394 significantly associated SNPs (RMIP ≥ 0.05; Figs. 3A and 3B, fig. S8, 

and tables S2 and S3). Predicted genes containing, or directly adjacent to, SNP 

associations were evaluated as potential candidate genes for metabolites. Interestingly, 

we identified many genes which are known to be involved in plant C and N metabolic 

pathways (Figs. 3A and 3B and table S2).  

 

We detected three SNPs from carbonic anhydrases (CAs) on chromosome 3 (Chr3) that 

are associated with chlorophyll a (Chla) variation (Fig. 3A and table S2). There are 5 

paralogs of CA in B73 genome and, among them, two tandemly duplicated on Chr3. Two 

of the three significant SNPs are from the one paralog (CA3.1) and the other from the 

other paralog (CA3.2) on Chr.3. The Chr3 CA region overlaps with QTL M411. This 

QTL is very stable across different environments, such as it existed in different part of the 
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field (End Plant and Middle Plants) and four of the five sampling days in the same or 

different families (Figs. 2B and 2C). The N metabolites, Chla, malate, nitrate, glutamate 

and protein as well as Prin1 share the same QTL and, moreover, all have significantly 

associated SNPs from the CAs in this QTL (Fig. 3A and table S2). Moreover, single gene 

resolution has been achiveved in this region of the NAM population (fig. S9A). The 

cytosolic isoform of CA catalyzes the first step in the C4 photosynthetic pathway in 

mesophyll (M) cells, resulting in the hydration of CO2 to bicarbonate (29). Bicarbonate is 

then fixed by phosphoenolpyruvate carboxylase to produce oxaloacetate (OAA). OAA is 

then reduced to malate, which diffuses via plasmodesmata into the bundle sheath (BS) 

cells (30) where it is decarboxylated by an NADP-dependent malic enzyme (NADP-ME) 

to generate a high internal CO2 concentration in BS plastids. There exists another minor 

decarboxylation system with phosphoenolpyruvate carboxykinase (PEPCK) in addition to 

the major one with NADP-ME in maize. This C4 carbon shuttle, results in elevated CO2 

concentration in the BS nearly completely suppressing the energy wasteful process of 

photorespiration (31). Among the significant CA SNP associated metabolites, malate is a 

key metabolic intermediate in C4 pathway, total protein is a central metabolic and cellular 

parameter and will, among other things, affect photosynthetic capacity, Chla is related to 

light-dependent photosynthesis reactions, nitrate is the major source of N for proteins and 

chlorophylls, and glutamate is the product of nitrate and ammonium assimilation and the 

precursor for the biosynthesis of amino acids and many other N-metabolites including 

Chla and Chlb. Moreover, Prin1, which captured the common factor of N metabolites, is 

also significantly associated to SNPs from CAs on Chr.3. Therefore, genetic variation of 

CAs on Chr3 is associated with N metabolism and photosynthesis. In Arabidopsis, CAs 
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are upstream regulators of CO2-controlled stomatal movements in guard cells so they can 

have significant implications in plant water use efficiency (32).  In C4 grasses CA levels 

are thought to be rate limiting for photosynthesis (33, 34)  

 

In B73, most of the CA expression in seedlings is derived from the two paralogs CA3.1 

and CA3.2 on Chr.3 (fig. S10) (35) which is consistent with our QTL and GWAS results, 

though the expression experiments were conducted at 3-leaf stage instead of flowering 

time (35). Thus, we performed real-time PCR on the two Chr.3 CA paralogs in the NAM 

founders using material sampled at flowering time, the same developmental stage as the 

QTL and GWAS experiment. The result showed that transcript for the B73 allele is 

significantly higher than the alternative allele for the first paralog CA3.1 and marginally 

higher for the second paralog CA3.2 (Fig. 4A). However, the variance of the expression 

for the first paralog is also significantly different between the two classes of alleles (Fig. 

4B), which indicates that we might not capture the causal SNP which is responsible for 

the metabolite variation. 

 

For malate, we also identified a significantly associated SNP adjacent to a malate 

transporter gene (~2 kb) which is about 500 kb away from the significantly associated CA 

SNP in QTL M411 region (table S2 and Fig. 3C). Malate transporters are required for the 

movement of malate between mitochondria, cytosol, vacuole, and chloroplast in both M 

and BS cells and, therefore, it is also important to photosynthesis (36-38).  
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We detected a significant SNP (RMIP=0.76) from a vacuolar acid invertase in the major 

QTL M211 region and a SNP (RMIP=0.67) from a cell wall acid invertase in the QTL 

M632 region associated with starch variation (Fig. 3B). Starch, glucose, and Prin2 share 

the QTL M211 and starch, glucose, fructose and Prin2 share the QTL M632. It is well 

known that invertases regulate C metabolism (39-41).  

 

We identified several other candidate genes with recognizable roles in C and N 

metabolism (table S2). For example, we identified a starch synthase relevant to Chla 

variation, a trehalose-6-phosphate synthase and a nitrate transporter relevant to glucose 

variation, and two cellulases related to fructose and glucose, respectively. We also 

detected a ribosomal protein associated to protein content, which might be of great 

interest as protein synthesis is intimately linked to biomass production (42). Three genes 

assigned to cell wall synthesis and modification are found among genes that are 

associated with protein content. Protein content is likely to be determined not only by 

protein synthesis per se but also by the rate of cell expansion, which will be affected by, 

among other process, cell wall synthesis and modification. We identified Chla,b binding 

protein, glutamine synthetase, NADP-malate dehydrogenase and PEPC kinase as 

associated to nitrate. Glutamine synthetase is involved in the nitrate and ammonium, 

NADP-malate dehydrogenase is involved in the export of reducing equivalents from the 

chloroplast (43), to support reductive reactions (like nitrate reductase) in the cytosol and 

the formation of ATP in mitochondria and is a central component to the C4 carbon shuttle 

in M cells (reducing OAA to malate). PEPC kinase regulates the activity of PEP 

carboxylase, which as mentioned above is a component of the C4 carbon shuttle, and is 
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also involved in the synthesis of malate that acts as a counteranion during nitrate 

assimilation (44). We also identified pyruvate dehydrogenase E1 as relevant to fumarate 

variation.  

 

We observed significant enrichment of association around candidate genes for C and N 

metabolites. Out of 514 candidate genes potentially related to C and N metabolism 

curated from maize pathway analyses (table S5), 101 are overrepresented with GWAS 

signals (fig. S11). Those significantly enriched candidates include above mentioned CAs, 

invertases and the malate transporter. Through GO term enrichment analysis, most of the 

a priori candidates discovered in our GWAS take part in carbohydrate metabolic, alcohol 

metabolic, carbohydrate catabolic, and glucose metabolic processes (table S6). We also 

compared the distribution of different classes of genes which the 126 most significantly 

associated SNPs (RMIP>=0.50) reside in or are adjacent to with that in the whole maize 

genome. The results showed that the C4 and source-sink genes are over represented (fig. 

S12). However, most SNPs are still located in or adjacent to genes from which we do not 

know yet if and how they are related to C and N metabolism (table S3). 

 

Currently, C4 grasses are some of the most productive plants on Earth (45). However, 

many of our key crops such as rice, wheat, and potato perform C3 photosynthesis and a 

major international effort is underway to convert some of these crops to C4  (46). This 

study clearly shows that fine tuning of the expression of genes that drive the C4 carbon 

shuttle are likely key determinants of local adaptation and hence yield. Our results show 

that levels of central metabolites in C and N metabolism are determined by genetic 
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variation in key genes involved in CO2 capture (carbonic anhydrase) and movement 

(malate transporters). These proteins likely impact sub-processes in C4 photosynthesis, 

including the extent to which the C4 cycle draws down CO2 in the M airspaces, and the 

movement of malate from the M into the BS. Manipulation of these loci by breeding or 

transformation and then optimization in a wide range of environments could lead to even 

more efficient yield. Despite the variation present today, it is unlikely that a tropical grass 

has evolved all the appropriate alleles to fix carbon well not only in the cold temperate 

springs, but also in the hot summer. Thus, these high resolution diversity studies can help 

guide breeding efforts to identify genes that are most likely to be amenable to genetic 

improvement. 
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Figure Legends: 

Fig. 1. Correlation matrix and clusters of the 12 carbon and nitrogen metabolites. Lower 

left part of the matrix is correlation coefficients accounted for the maturity effect and 

upper right part is the corresponding p-values. p-value < 1E-10 was rounded down to 0. 

p-value < 8E-4 is significant at a Bonferroni correction at α = 0.05. Chla, chlorophyll a; 

Nitr, nitrate; AA, total amino acids; Prot, protein; Chlb, chlorophyll b; Mala, malate; 

Fuma, fumarate; Glut, glutamate; Star, starch; Gluc, glucose; Fruc, fructose; Sucr, 

sucrose.  
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Fig. 2. QTL distribution across different chromosomes. (A) QTL distribution of the 12 

carbon and nitrogen metabolites and the first two principal components derived from the 

whole field. (B) QTL distribution of Chla derived from different environments. (C) QTL 

m411distribution in different NAM families in different environments. Mala, malate; 

Fuma, fumarate; Glut, glutamate; Chla, chlorophyll a; Chlb, chlorophyll b; Nitr, nitrate; 

Sucr, sucrose; Gluc, glucose; Fruc, fructose; Star, starch; AA, total amino acids; Prot, 

protein; Prin1, first principal component; Prin2, second principal component. The 

analysis was based on data derived from the whole field, the end plant in a row,  the 

middle plants in a row, and different day of sampling. 

  

 

 

Fig. 3. Associations between metabolites and SNPs. All SNPs detected as significant in at 

least 5 subsamples are triangles (blue with positive effect and green with negative effect) 

relative to their physical sequence position. Vertical positions of triangles represent 

resample model inclusion probability (RMIP) of the SNP. QTL are red lines whose 

vertical positions represent their F-test log(1/P) in the final joint linkage QTL model. (A) 

Chla and SNPs from carbonic anhydrases (CAs) on Chromosome 3 (Chr3). CA region on 

Chr3 overlaps with QTL M411. Chla, Mala, Glut, Nitr, Prot, and Prin1 share the same 

QTL M411 and, moreover, they all have significantly associated SNPs from the CAs in 

this QTL. Chla, chlorophyll a; Mala, malate; Nitr, nitrate; Glut, glutamate; Prot, protein; 

Prin1, first principal component. (B) Star and SNPs from invertases on chromosomes 2 

(Chr2) and 5 (Chr5). invertase region on Chr2 overlaps with QTL M211, which Star, 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2014. ; https://doi.org/10.1101/010785doi: bioRxiv preprint 

https://doi.org/10.1101/010785
http://creativecommons.org/licenses/by-nd/4.0/


Glu, and Prin2 share, and on Chr5 overlaps with M632, which Star, Glu, Fru, and Prin2 

share. Gluc, glucose; Fruc, fructose; Star, starch; Prin2, second principal component. (C) 

Associations identified by GWAS at carbonic anhydrases (CA) and a malate transporter 

region on chromosome 3 (Chr3). Vertical positions of diamonds represent resample 

model inclusion probability (RMIP) of the SNP. Chla, chlorophyll a; Mala, malate. 

 

 

 

 

Fig. 4. Expression and corresponding variance comparison for carbonic anhydrases 

between B73 allele and alternative allele in NAM founder lines at flowering time. (A) 

Expression. (B) Variance.  
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Chla Nitr AA Prot Chlb Mala Fuma Glut Star Gluc Fruc Sucr

Chla 0 0 0 2.E-08 0 2.E-08 0 0 0 0 1.E-06

Nitr 0.51 0 0 0 0 0 0 3.E-06 0 5.E-04 0

AA 0.26 0.25 0 0 0 2.E-02 0 0 6.E-06 4.E-01 4.E-09

Prot 0.39 0.20 0.30 2.E-07 2.E-05 2.E-03 0 9.E-07 0 3.E-07 5.E-01

Chlb 0.08 0.22 0.15 0.08 0 1.E-10 0 7.E-02 4.E-01 9.E-01 6.E-09

Mala 0.36 0.28 0.11 0.07 0.18 0 0 2.E-01 0 1.E-05 0

Fuma 0.09 0.17 0.04 0.05 0.10 0.51 0 0 8.E-03 3.E-07 0

Glut 0.40 0.35 0.31 0.20 0.19 0.54 0.65 3.E-05 0 5.E-01 0

Star -0.18 -0.07 -0.10 -0.07 -0.03 -0.02 0.13 0.06 0 0 0

Gluc -0.29 -0.16 -0.07 -0.13 0.01 -0.11 0.04 -0.10 0.43 0 0

Fruc -0.14 -0.05 -0.01 -0.08 0.00 0.07 0.08 0.01 0.42 0.70 0

Sucr 0.07 0.13 0.09 -0.01 0.09 0.18 0.25 0.30 0.47 0.10 0.21

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.70 0 0.70

Fig. 1. Correlation matrix and clusters of  the 12 carbon and nitrogen metabolites. Lower left part of the matrix is correlation 
coefficients accounted for the maturity effect and upper right part is the corresponding p-values. p-values < 1x10-10 were 
rounded down to 0. p-value < 8x10-4 is significant at a Bonferroni correction at α = 0.05. Chla, chlorophyll a; Nitr, nitrate; AA, 
total amino acids; Prot, protein; Chlb, chlorophyll b; Mala, malate; Fuma, fumarate; Glut, glutamate; Star, starch; Gluc, 
glucose; Fruc, fructose; Sucr, sucrose. 
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Chla, Mala, Nitr, Glut, Prot, Prin1

CA

QTL M411

CA

CA

acid invertase

(Vacuoles) 

acid invertase

(Cell Wall) 

Starch, Gluc, Prin2

QTL M211

Starch, Gluc, Fruc,  Prin2

QTL M632

BA

Fig. 3. Associations between metabolites and SNPs. All SNPs detected as 
significant in at least 5 subsamples are triangles (blue with positive effect and 
green with negative effect) relative to their physical sequence position. 
Vertical positions of triangles represent resample model inclusion probability 
(RMIP) of the SNP. QTL are red lines whose vertical positions represent their 
F-test log(1/P) in the final joint linkage QTL model. (A) Chla and SNPs from 
carbonic anhydrases (CAs) on Chromosome 3 (Chr3). CA region on Chr3 
overlaps with QTL M411. Chla, Mala, Glut, Nitr, Prot, and Prin1 share the 
same QTL M411 and, moreover, they all have significantly associated SNPs 
from the CAs in this QTL. Chla, chlorophyll a; Mala, malate; Nitr, nitrate; 
Glut, glutamate; Prot, protein; Prin1, first principal component. (B) Starch 
and SNPs from invertases on chromosomes 2 (Chr2) and 5 (Chr5). invertase
region on Chr2 overlaps with QTL M211, which Star, Glu, and Prin2 share, 
and on Chr5 overlaps with M632, which Star, Glu, Fru, and Prin2 share. 
Gluc, glucose; Fruc, fructose; Star, starch; Prin2, second principal 
component. (C) Associations identified by GWAS at carbonic anhydrases
(CA) and a malate transporter region on chromosome 3 (Chr3). Vertical 
positions of diamonds represent resample model inclusion probability 
(RMIP) of the SNP. Chla, chlorophyll a; Mala, malate.
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Fig. 4. Expression and corresponding variance comparison for carbonic anhydrases between B73 allele and 
alternative allele in NAM founder lines at flowering time. (A) Expression. (B) Variance. 
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