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Summary  
A fundamental challenge in calcium imaging has been to infer spike rates of neurons from 
the measured noisy calcium fluorescence traces. We systematically evaluate a range of 
spike inference algorithms on a large benchmark dataset (>100.000 spikes) recorded from 
varying neural tissue (V1 and retina) using different calcium indicators (OGB-1 and 
GCaMP6). We introduce a new algorithm based on supervised learning in flexible 
probabilistic models and show that it outperforms all previously published techniques. 
Importantly, it even performs better than other algorithms when applied to entirely new 
datasets for which no simultaneously recorded data is available. Future data acquired in new 
experimental conditions can easily be used to further improve its spike prediction accuracy 
and generalization performance. Finally, we show that comparing algorithms on artificial data 
is not informative about performance on real data, suggesting that benchmark datasets such 
as the one we provide may greatly facilitate future algorithmic developments. 
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Introduction 1 

Over the past two decades, two-photon imaging has become one of the most widely used 2 
techniques for studying information processing in neural populations in vivo (Denk et al., 3 
1990; Kerr and Denk, 2008). Typically, a calcium indicator such as the synthetic dye Oregon 4 
green BAPTA-1 (OGB-1) (Stosiek et al., 2003) or the genetically encoded GCaMP6 (Chen et 5 
al., 2013) is used to image a large fraction of cells in a neural tissue. Individual action 6 
potentials lead to a fast rise in fluorescence, followed by a slow decay with a time constant of 7 
several hundred milliseconds (Chen et al., 2013; Kerr et al., 2005). Commonly, neural 8 
population activity from dozens or hundreds of cells is imaged using relatively slow scanning 9 
speeds (<15 Hz), but novel fast scanning methods (Cotton et al., 2013; Grewe et al., 2010; 10 
Valmianski et al., 2010) (up to several 100 Hz) have opened additional opportunities for 11 
studying neural population activity at increased temporal resolution.  12 

A fundamental challenge has been to infer the timing of action potentials from the measured 13 
noisy calcium fluorescence traces. To solve this problem of spike inference, several different 14 
approaches have been proposed, including template-matching (Greenberg et al., 2008; 15 
Grewe et al., 2010; Oñativia et al., 2013) and deconvolution (Park et al., 2013; 16 
Pnevmatikakis et al., 2013, 2014; Vogelstein et al., 2009, 2010; Yaksi and Friedrich, 2006). 17 
These methods have in common that they assume a forward generative model of calcium 18 
signal generation which is then inverted to infer spike times. These forward models 19 
incorporate strong a-priori assumptions about the shape of the calcium fluorescence signal 20 
induced by a single spike and the statistics of the noise. Alternatively, simple supervised 21 
learning techniques have been used to learn the relationship between calcium signals and 22 
spikes from data (Sasaki et al., 2008).  23 

However, it is currently not known which approach is most successful at inferring spikes 24 
under experimental conditions, as a detailed quantitative comparison of different algorithms 25 
on large datasets of in vitro and in vivo population imaging data has been lacking. Rather, 26 
most published algorithms have only been evaluated on relatively small experimental 27 
datasets using different performance measures. In addition, the question of how well we can 28 
reconstruct the spikes of neurons given calcium measurements has been studied 29 
theoretically or using simulated datasets (Lütcke et al., 2013; Wilt et al., 2013). While such 30 
studies offer the advantage that many model parameters are under the control of the 31 
investigator, they do not answer the question of how well we can reconstruct spikes from 32 
actual measurements.  33 

Here, we pursue two goals: (1) we introduce a new data-driven approach based on 34 
supervised learning in flexible probabilistic models to infer spikes from calcium fluorescence 35 
traces and (2) we systematically evaluate a range of spike inference algorithms 36 
(‘benchmarking’) on a large dataset including simultaneous measurements of spikes and 37 
calcium signals in primary visual cortex and the retina of mice using OGB-1 and GCaMP6 as 38 
calcium indicators collected in anesthetized and awake animals. We show that our new 39 
method outperforms all previously published techniques, setting the current standard for 40 
spike inference from calcium signals.   41 
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Results 42 

A flexible probabilistic model for spike inference 43 
Here we introduce a new algorithm for spike inference from calcium data. We propose to 44 
model the probabilistic relationship between a segment of the fluorescence trace 𝒙𝑡 and the 45 
number of spikes 𝑘𝑡  in a small time bin, assuming they are Poisson distributed with rate 46 
𝜆(𝒙𝑡): 47 

𝑝( 𝑘𝑡 ∣∣ 𝒙𝑡 ) =  
𝜆(𝒙𝑡)𝑘

𝑘!
𝑒−𝜆(𝒙𝑡). 

 48 

Instead of relying on a specific forward model, we parameterize the firing rate 𝜆(𝒙𝑡) using a 49 
recently introduced extension of generalized linear models, the factored spike-triggered 50 
mixture (STM) model (Theis et al., 2013) (Fig. 1a; see Methods): 51 

𝜆STM(𝒙𝑡) =  � exp�� 𝛽𝑘𝑘(𝒖𝑚⊤ 𝒙𝑡)2 + 𝒘𝑘
⊤𝒙𝑡 + 𝒃𝑘

𝑀

𝑚=1

� .
𝐾

𝑘=1

 

We train this model on simultaneous recordings of spikes and calcium traces to learn a set of 52 
𝐾  linear features 𝒘𝑘  and 𝑀 quadratic features 𝒖𝑚  (‘supervised learning’), which are 53 
predictive of the occurrence of spikes in the fluorescence trace. Importantly, this model is 54 
sufficiently flexible to capture non-linear relationships between fluorescence traces and 55 
spikes, but at the same time is sufficiently restricted to avoid overfitting when little data is 56 
available. Below we will evaluate whether this model is too simple or already more complex 57 
than necessary by comparing its performance to that of multi-layer neural networks and 58 
simple LNP-type models.  59 

Fig. 1: Spike inference from calcium measurements  60 

In contrast to many methods that result in a single most likely spike train (a ‘point estimate’) 61 
using a probabilistic model in this way provides us with an estimate of the expected firing 62 
rate, 𝜆(𝒙𝑡) , and a distribution over spike counts, as fully Bayesian methods do 63 
(Pnevmatikakis et al., 2013, 2014; Vogelstein et al., 2009). An advantage of access to a 64 
distribution over spike trains is that it allows us, for example, to estimate the uncertainty in 65 
the predictions. Example spikes trains consistent with the calcium measurements can be 66 
easily generated from our model without spending considerable computational resources.. . 67 
While generating a ‘most likely spike train’ is also possible, its interpretation is less clear, as 68 
the result depends on the parametrization. 69 

Benchmarking spike inference algorithms on experimental data 70 
To quantitatively evaluate different spike inference approaches including our model, we 71 
acquired a large benchmark dataset with a total of 90 traces of 73 neurons, in which we 72 
simultaneously recorded calcium signals and spikes (Fig. 1b; in total >100,000 spikes). 73 
These cells were recorded with different scanning methods, different calcium indicators, in 74 
different brain states and at different sampling rates (see Table 1 and Methods). We used 75 
four datasets for our main analysis Dataset 1 consisted of 16 neurons recorded in-vivo in V1 76 
of anesthetized mice using fast 3D AOD-based imaging (Cotton et al., 2013) at ~320 Hz with 77 
OGB-1 as indicator. Dataset 2 consisted of 31 neurons recorded in-vivo in anesthetized 78 
mouse V1 using raster scanning at ~12 Hz with OGB-1 as indicator. Dataset 3 consisted of 79 
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19 segments recorded from 11 neurons in-vivo in anesthetized mouse V1 using the genetic 80 
calcium indicator GCaMP6s with a resonance scanner at ~59 Hz. Finally, dataset 4 consisted 81 
of 9 retinal ganglion cells recorded ex-vivo at ~8 Hz using raster scanning with OGB-1 as 82 
indicator (Briggman and Euler, 2011). In addition, we collected a small dataset of 6 cells from 83 
V1 of awake mice using again the genetic calcium indicator GCaMP6s (Reimer et al., 2014) 84 
to demonstrate the performance during awake imaging (see below). We resampled the 85 
calcium traces from all datasets to a common resolution of 100 Hz. Importantly, all of our 86 
datasets were acquired at a zoom factor commonly used in population imaging such that the 87 
signal quality should match well that commonly encountered in these preparations (see 88 
Table 1). 89 

We compared the performance of our algorithm (STM) to that of algorithms representative of 90 
the different approaches (see Table 2 and Methods), including simple deconvolution (YF06, 91 
Yaksi and Friedrich, 2006), MAP (VP10, known as ‘fast-oopsi’, Vogelstein et al., 2010) and 92 
Bayesian inference (PP14, Pnevmatikakis et al., 2014; VP09, Vogelstein et al., 2009) in 93 
generative models, template-matching by finite rate of innovation (OD13, Oñativia et al., 94 
2013) and supervised learning using a support vector machine (SI08, Sasaki et al., 2008). To 95 
provide a baseline level of performance, we evaluated how closely the calcium trace followed 96 
the spike train without any further processing (raw).  97 

We focus on two measures of spike reconstruction performance to provide a quantitative 98 
evaluation of the different techniques: (i) the correlation between the original and the 99 
reconstructed spike train and (ii) the information gained about the spike train based on the 100 
calcium signal (see Methods). For completeness, we computed (iii) the area under the ROC 101 
curve (AUC), which has also been used in the literature. The AUC score is a less sensitive 102 
measure of spike reconstruction performance, as e.g. an algorithm could consistently 103 
overestimate high rates compared to low rates and yet yield the same AUC (for a more 104 
technical discussion, see Methods).  105 

To provide a fair comparison between the different algorithms, we evaluated their 106 
performance using leave-one-out cross-validation: we estimated the parameters of the 107 
algorithms on all but one cell from a dataset and tested them on the one remaining cell, 108 
repeating this procedure for each cell in the dataset (see Methods). For the algorithms based 109 
on generative models, we selected the hyperparameters during cross-validation (VP10, 110 
VP09) or using a sampling based approach (PP14; see Methods). 111 

Supervised learning sets benchmark 112 
We found that the spike density function predicted by our algorithm matched the true spike 113 
train closely, for cells from each dataset including both indicators OGB-1 and GCaMP6 (Fig. 114 
1c-f). The other tested algorithms generally showed worse prediction performance: For 115 
example, YF06 typically resulted in very noisy estimates of the spike density function (Fig. 116 
1c-f) and both VP10 and PP14 frequently missed single spikes (Fig. 1d-f, marked by 117 
asterisk) and had difficulties modeling the dynamics of the GCaMP6 indicator (Fig. 1e). 118 

Figure 2: Quantitative evaluation of spike inference performance  119 

A quantitative comparison revealed that our STM method reconstructed the true spike trains 120 
better than all its competitors, yielding a consistently higher correlation and information gain 121 
for all four datasets (Fig. 2a, b; evaluated at 25 Hz; for statistics, see figure). The median 122 
improvement in correlation across all recordings achieved by the STM over its two closest 123 
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competitors was 0.12 (0.07-0.14; median and bootstrapped 95%-confidence interval, N=75) 124 
for SI08 – the other supervised learning approach based on SVMs – and 0.1 (0.08-0.13) for 125 
PP14 – the Bayesian inference in a generative model – yielding a median improvement of 126 
33% and 32%, respectively. Similarly, the STM explained 6.8 (5.0-7.7; SI08) and 9.6 (8.1-127 
12.1; PP14) percent points more marginal entropy (measured by the relative information 128 
gain).  129 

When evaluated with respect to AUC, the performance of these two algorithms was about as 130 
good as that of the STM model (Suppl. Fig. 1), yielding a median difference in AUC of -0.01 131 
(-0.02-0.01) and 0.01 (-0.01-0.02). This is because the AUC is the least sensitive of the three 132 
measures, as discussed above. As a side remark, note that AUC is closely related to the cost 133 
function optimized by SI08, which is based on a support vector machine. To show that the 134 
features extracted by our STM algorithm are more informative about the spike rate than 135 
those used by SI08, one can use a SVM on top of these features and obtain on 3 out of 4 136 
datasets higher performance than SI08 (Suppl. Fig. 1).  137 

Figure 3: Temporal accuracy of spike inference  138 

The timing accuracy of our method was also superior to that of the other algorithms. To test 139 
this, we evaluated the performance of all algorithms for a wide range of sampling rates 140 
between 2 and 100 Hz, corresponding to time bins between 10 and several hundreds of 141 
milliseconds (Fig. 3). The STM performed better than the other algorithms for most sampling 142 
rates, but its performance advantage was particularly large for high sampling rates (Fig. 3; 143 
also Suppl. Fig. 2) Concretely, if the desired average correlation between inferred and true 144 
spike rates was 0.4, our method can achieve that with time bins of ~17 ms, whereas 145 
competing methods required ~29 and ~58 ms (PP14 and SI08, respectively; evaluated on 146 
dataset 1, Fig. 3a). Interestingly, VP10 (‘fast-oopsi’) performed similar to our method for low 147 
sampling rates, but its performance deteriorated consistently on all datasets to the 148 
performance level of VF06 with increasing sampling rates (Fig. 3). 149 

Figure 4: Evaluating model complexity 150 

The performance of the STM model could not be further improved using a more flexible 151 
multilayer neural network for modeling the non-linear rate function 𝜆𝑡 (Fig. 4 and Suppl. Fig. 152 
3). To test this, we replaced the STM model by a neural network with two hidden layer, but 153 
found that this change resulted in only marginal performance improvement (Fig. 4). In 154 
addition, we tested whether a much simpler linear-nonlinear model would suffice to model  155 
𝜆𝑡. We found that the STM model performed significantly better than the simple LNP model 156 
(Fig. 4 and Suppl. Fig. 3). Therefore, the choice of the STM for 𝜆𝑡 seems to provide a good 157 
compromise between flexibility of the model structure and generalization performance. 158 

Importantly, already a small training set of less than 10 cells was sufficient to achieve good 159 
performance for the STM model (Fig. 5a and b and Suppl. Fig. 4a). We tested the prediction 160 
performance of the STM with training sets of various sizes and found that it saturated 161 
between 5 and 10 cells for all datasets, arguing that a few simultaneously recorded cells may 162 
suffice to directly adapt the algorithms to new datasets acquired in other laboratories or with 163 
new imaging methods. Finally, the superior performance of the STM was largely independent 164 
of the firing rate of the neuron within the limited range of firing rate in our sample of cells (Fig. 165 
5c and d and Suppl. Fig. 4b).  166 

Figure 5: Performance as a function of training set size and firing rate 167 
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 168 

Generalization of performance to new datasets 169 
We tested how well our algorithm performs if no simultaneous spike-calcium recordings are 170 
available for a new preparation, scanning method or calcium indicator or if a researcher 171 
wants to apply our algorithm without collecting simultaneous spike-calcium recordings for 172 
training. Remarkably, the STM model was able to generalize to new data sets that were 173 
recorded under different conditions than the data used for training. To test this, we trained 174 
the algorithms on three of the datasets and evaluated it on the remaining one (Fig. 6a) – that 175 
is, we applied the algorithm to an entirely new set of cells not seen at all during training. The 176 
STM algorithm still showed better performance compared to all other algorithms (Fig. 6b-c 177 
and Suppl. Fig. 5), including superior performance on the GCamp6-dataset when trained 178 
solely on the three OGB-datasets (Fig. 6b-c).  179 

Figure 6: Spike inference without training dataNext, we tested whether the algorithm’s 180 
performance would also transfer to recordings in awake animals (Reimer et al., 2014). Brain 181 
movements and brain state fluctuations may induce additional variability in the recordings 182 
which may render spike inference under these conditions more difficult. We found that the 183 
STM trained on all neurons recorded in anesthetized animals or ex-vivo retina (n=75 traces 184 
from 70 cells) data outperforms all other algorithms also on awake data (n=15 traces from 6 185 
cells; Fig. 6d-f). Finally, we tested the different algorithms on three data sets acquired 186 
focusing on individual cells (in contrast to our population imaging dataset; n=29 cells; data 187 
publicly available from Svoboda lab, see Methods). Similarly to above, our algorithm was 188 
trained two of these datasets and tested on the third. In addition, we included all cells from 189 
datasets 1-4 in to the training set, as there are only comparably few spikes in the Svoboda 190 
lab datasets. Focusing on individual cells makes the data less noisy, resulting on overall 191 
higher correlation and AUC values (Suppl. Fig. 6). The STM algorithm performed well and on 192 
a par with VP10 regarding all three measures used for evaluation (Suppl. Fig. 6).  193 

Taken together, this analysis indicates that good performance can be expected for our 194 
algorithm when it is directly applied on novel datasets without further training (see 195 
Discussion). A pre-trained version of our algorithm is available for download (see Methods). 196 

Comparisons on artificial data 197 
Surprisingly, the performance of the algorithms on simulated data was not predictive of the 198 
performance of the algorithms on the real datasets (Fig. 7). To test this, we simulated data 199 
from a simple biophysical model of calcium fluorescence generation (Fig. 7a, see Methods, 200 
Vogelstein et al., 2009). We then applied the same cross-validation procedure as before to 201 
evaluate the performance of the algorithms (Fig. 7b). Not surprisingly, we found that all 202 
algorithms based on this or a similar generative model (PP13, VP10, YF06) performed 203 
remarkably well. Interestingly, even the algorithms that performed worse than the baseline 204 
model for the real data (OD13, VP09) showed good performance on the artificial data. The 205 
STM model was among the top-performing algorithms, in contrast to the other supervised 206 
learning algorithm (SI08). A direct comparison of the performance on the simulated dataset 207 
and the experimental data clearly illustrates that the former is not a good predictor of the 208 
latter (Fig. 7c).      209 

Figure 7: Evaluating algorithms on artificial data  210 
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Discussion 211 

We introduced a new algorithm for inferring spikes from calcium traces based on supervised 212 
training of a flexible probabilistic model. We showed that this model performs better than all 213 
previously published algorithms for this problem, for a wide range of recording conditions 214 
including OGB-1 and GCamp6 as calcium indicators, anesthetized and awake imaging, 215 
different scanning techniques, neural tissues, and with respect to different metrics. 216 
Importantly, once trained, inferring spike rates using our algorithm is very fast, so even very 217 
large datasets can be processed rapidly. Interestingly, two of the three best algorithms rely 218 
on supervised learning to infer the relationship between calcium signal and spikes, 219 
suggesting that a data-driven approach offers distinct advantages over approaches based on 220 
forward models of the relationship between the two signals. 221 

The superior performance of our algorithm carried over to new datasets not seen during 222 
training, promising good spike inference performance even when applied to a new dataset 223 
where no simultaneous recordings are available. To use the algorithm ‘out of the box’, we 224 
provide it for download pre-trained with all experimental data used in this paper. In particular, 225 
its performance carried over to data recorded in awake animals, where brain movements or 226 
brain state fluctuations may render spike inference more difficult. This result may not be 227 
surprising, given that motion artefacts along the X- and Y-axis can be very well compensated 228 
by motion correction algorithms (Greenberg et al., 2008) and motion in the Z-axis is only on 229 
the order of 1-2 µm in good preparations (Reimer et al., 2014).  230 

The fact that our algorithm can be used without extra training data is crucial, as this is often 231 
considered an important advantage of algorithms based on generative models. Note that for 232 
entirely new experimental conditions (e.g. a new calcium indicator), the performance of 233 
neither class of algorithms is guaranteed, however, and both need to be evaluated on a 234 
dataset with simultaneous recordings. For unsupervised methods, if such an evaluation 235 
reveals poor performance, e.g. because the assumed generative model does not match the 236 
structure of the dataset at hand (as seen e.g. with the GCamp6 data; Fig. 1e and 2), the only 237 
way to improve the algorithm would be to adapt the generative model and modify the 238 
inference procedures accordingly.  In contrast, any simultaneous data collected in the future 239 
can be readily used to retrain our supervised algorithm and further improve its spike 240 
prediction and generalization performance. In fact, our choice of the spike triggered mixture 241 
model for estimating spikes from calcium traces is motivated by its ability to automatically 242 
switch between different sub-models whenever the statistics of the data changes (Theis et 243 
al., 2013). 244 

Our evaluation shows that the correlation between inferred and real spike rates obtained at a 245 
temporal resolution of 25 Hz (or in bins of 40 ms) is at best 0.4-0.6, depending on the dataset 246 
with substantial variability between cells (Fig. 5c-d). It will be an interesting question whether 247 
new indicators (Chen et al., 2013; Inoue et al., 2014; St-Pierre et al., 2014; Thestrup et al., 248 
2014) or scanning techniques on and better inference algorithms will bring these values 249 
closer to 1, or whether these low correlations reflect a general limitation of population 250 
imaging approaches. Factors contributing to this limitation may include technical aspects of 251 
the imaging procedure such as neuropil contamination or activity-induced changes in blood 252 
vessel diameter and biophysical issues connected to the intracellular calcium dynamics. Our 253 
evaluation further shows that good spike inference performance on model data by no means 254 
guarantees good performance on real population imaging data (Fig. 6c).  We believe 255 
theoretical model based studies (Lütcke et al., 2013; Wilt et al., 2013) will remain useful to 256 
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systematically explore how performance depends on model parameters, such as noise level 257 
or violations of the generative model, but will need to be followed up by systematic 258 
quantitative benchmark comparisons on datasets such as provided here. 259 

Our proposed method is solely concerned with the problem of spike inference, and does not 260 
infer the regions of interests (ROIs) from observed data. Rather, we assume that these are 261 
obtained by the experimenter through other semi-automatic or automatic techniques. 262 
Recently, several methods have been proposed to jointly infer ROIs and spikes (Diego and 263 
Hamprecht, 2014; Maruyama et al., 2014; Pnevmatikakis et al., 2014). These methods have 264 
the benefit that they exploit the full spatio-temporal structure of the problem of spike 265 
inference in calcium imaging and offer an unbiased approach for ROI placement. Since ROIs 266 
can also be placed using supervised learning (Valmianski et al., 2010), it should be feasible 267 
to develop supervised paradigms for simultaneous ROI placement and spike inference or 268 
combinations of unsupervised and supervised methods.  269 

We presented the first quantitative benchmarking approach to evaluating spike inference 270 
algorithms on a large dataset of population imaging data. We believe that such a 271 
benchmarking approach which is already used successfully in machine learning and related 272 
fields to drive new algorithmic developments can also be an important catalyst for 273 
improvements on various computational problems in neuroscience, from systems 274 
identification to neuron reconstruction.  275 
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Methods 276 

Datasets 277 

Primary visual cortex (V1) – OGB-1 278 
We recorded calcium traces from neural populations in layer 2/3 of anesthetized wild type 279 
mice (male C57CL/6J, age: p40–p60) using a custom-built two-photon microscope using 280 
previously described methods (Cotton et al., 2013; Froudarakis et al., 2014). Briefly, the 281 
temperature of the mouse was maintained between 36.5 °C and 37.5 °C throughout the 282 
experiment using a homeothermic blanket system (Harvard Instruments). While recording we 283 
either provided no visual stimulation, moving gratings, or natural and phase scrambled 284 
movies as previously described (Froudarakis et al., 2014). A ~1 mm craniotomy was 285 
performed over the primary visual cortex of the mouse. The details of surgical techniques and 286 
anesthesia protocol have been described elsewhere (Cotton et al., 2013).  We then used 287 
bolus-loaded Oregon green BAPTA-1 (OGB-1, Invitrogen) as calcium indicator and the 288 
injections were performed by using a continuous-pulse low pressure protocol with a glass 289 
micropipette to inject ~300 μm below the surface of the cortex. The cortical window was 290 
sealed using a glass coverslip. After allowing 1h for the dye uptake we recorded calcium 291 
traces using a custom-built two-photon microscope equipped with a Chameleon Ti-sapphire 292 
laser (Coherent) tuned at 800 nm and a 20×, 1.0 NA Olympus objective. Scanning was 293 
controlled by either a set of galvanometric mirrors (Galvo) or a custom-built acousto-optic 294 
deflector system (AODs) (Cotton et al., 2013). The average power output of the objective was 295 
kept < 50 mW for galvanometric scanning and 120 mW for AODs. Calcium activity was 296 
typically sampled at ~12 Hz with the galvanometric mirrors and at ~320 Hz with the AODs. 297 
The field of view was typically 200x200x100µm and 250x250µm for AODs and galvanometric 298 
imaging, respectively, imaging dozens to hundreds of neurons simultaneously(Cotton et al., 299 
2013). To perform simultaneous loose-patch and two-photon calcium imaging recordings, we 300 
used glass pipettes with 5–7 MΩ resistance filled with Alexa Fluor 594 (Invitrogen) for 301 
targeted two-photon-guided loose cell patching of single cells. Spike times were extracted by 302 
thresholding. All procedures performed on mice were conducted in accordance with the 303 
ethical guidelines of the National Institutes of Health and were approved by the Baylor 304 
College of Medicine IACUC.  305 

Primary visual cortex (V1) – GCaMP6 306 
We recorded calcium traces from neural populations in layer 2/3 of (1) isoflurane-307 
anesthetized and (2) awake wild type mice (male C57CL/6J, age: 2-8 months; N=2 and N=1 308 
mice for anesthetized and awake, respectively) using a resonant scanning microscope 309 
(ThorLabs). Surgical procedures were similar to those described in Reimer et al (2014). 310 
Briefly, mice were initially injected with approximately 1 µL of 311 
AAV1.Syn.GCamp6s.WPRE.SV40 (University of Pennsylvania Vector Core) through a burr 312 
hole. The injection was performed with the pipette at a steep (~60 deg) angle, in order to 313 
infect cells in the cortex lateral to the injection site under an untouched region of the skull. 314 
The mice were allowed to recover and were returned to their cages. Typically three to five 315 
weeks later (4 months for the awake experiment), a 3 mm circular craniotomy was performed 316 
above the injection site and the craniotomy was sealed with a circular 3 mm coverslip with a 317 
~0.5 µm hole to allow pipette access to infected cells.  For anesthetized experiments, the 318 
temperature of the mouse was maintained between 36.5 °C and 37.5 °C throughout the 319 
experiment using a homeothermic blanket system (Harvard Instruments). During awake 320 
experiments, the mouse was placed on a treadmill with its head restrained beneath the 321 
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microscope objective (Reimer et al., 2014). Recordings were of spontaneous activity without 322 
visual stimulation, and injected current was manually adjusted to maintain a moderate level 323 
of firing. Calcium traces were recorded using a Chameleon Ti-sapphire laser (Coherent) 324 
tuned at 920 nm and a 16×, .85 NA Nikon objective. The average power output of the 325 
objective was kept < 40 mW. To perform simultaneous loose-patch and two-photon calcium 326 
imaging recordings, we used glass pipettes with 7–10 MΩ resistance filled with ACSF and 327 
Alexa Fluor 594 (Invitrogen) as described above. For awake data, imaging data was motion 328 
corrected in the X-Y plane with post-hoc raster correction and sub-pixel motion correction 329 
prior to extracting calcium traces. Motion along the Z-axis could not be corrected, but could 330 
be measured via correlation with a surrounding stack and in good preparations was typically 331 
small (running: mean 1.2 µm, s.d. 0.6µm; quiet: mean 0.88 µm, s.d. 0.46 µm; data from 332 
(Reimer et al., 2014)). Calcium traces were extracted after manually segmenting patched 333 
cells and spike times were extracted by thresholding after excluding any periods where the 334 
patch was deemed unstable or of low quality. All procedures performed on mice were 335 
conducted in accordance with the ethical guidelines of the National Institutes of Health and 336 
were approved by the Baylor College of Medicine IACUC. 337 

Retina 338 
Imaging experiments were performed as described previously (Briggman and Euler, 2011). 339 
In short, the retina was enucleated and dissected from dark-adapted wild-type mice (both 340 
genders, C57BL/6J, p21-42), flattened, mounted onto an Anodisc (13, 0.1 mm pores, 341 
Whatman) with ganglion cells facing up, and electroporated with Oregon green BAPTA-1 342 
(OGB-1, Invitrogen). The tissue was placed under the microscope, where it was constantly 343 
perfused with temperated (36°C) carboxygenated (95% O2, 5% CO2) artificial cerebral spinal 344 
fluid (ACSF). Cells were left to recover for at least 1 hour before recordings were performed. 345 
We used a MOM-type two-photon microscope equipped with a mode-locked Ti:Sapphire 346 
laser (MaiTai-HP DeepSee, Newport Spectra-Physics) tuned to 927 nm (Euler et al., 2009). 347 
OGB-1 Fluorescence was detected at 520 BP 30 nm (AHF) under a 20x objective (W Plan-348 
Apochromat, 1.0 NA, Zeiss). Data were acquired with custom software (ScanM by M. Müller 349 
and T. Euler running under IgorPro 6.3, Wavemetrics), taking 64 x 64 pixel images at 7.8 Hz. 350 
Light stimuli were presented through the objective from a DLP projector (K11, Acer), fitted 351 
with band-pass-filtered LEDs (amber, z 578 BP 10; and blue/UV, HC 405 BP 10, 352 
AHF/Croma), synchronized with the microscope’s scanner. Stimulator intensity (as 353 
photoisomerization rate, 104 R*/s/cone) was calibrated as described to range from 0.1 (LEDs 354 
off) to ~1.3 (Euler et al., 2009). Mostly due to two-photon excitation of photopigments, an 355 
additional, steady illumination component of ~104 R*/s/cone was present during the 356 
recordings. The field of view was 100x100µm, imaging 50-100 cells in the ganglion cell layer 357 
simultaneously(Briggman and Euler, 2011). For juxtacellular spike recordings, OGB-1 358 
labeled somata were targeted with a 5 MΩ glass-pipette under dim IR illumination to 359 
establish a loose (<1GΩ) seal. Signals were amplified using an Axopatch 200A amplifier 360 
(Molecular Devices) in I=0 mode and digitized at 10 kHz on a Digidata 1440A (Molecular 361 
Devices). Imaging and spike data were aligned offline using a trigger signal recorded in both 362 
acquisition systems, and spike times were extracted by thresholding. All procedures were 363 
performed in accordance with the law on animal protection (Tierschutzgesetz) issued by the 364 
German Federal Government and were approved by the institutional animal welfare 365 
committee of the University of Tübingen. 366 

Dataset from Svoboda lab 367 
We used a publicly available dataset provided by the GENIE project, Svoboda lab, at Janelia 368 
farm on crcns.org (Akerboom et al., 2012; Chen et al., 2013; Svoboda, 2014). This dataset 369 
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contains 9 cells recorded with GCaMP5, 11 cells recorded with GCaMP6f and 9 cells 370 
recorded with GCaMP6s. The total number of spikes was 2735, 4536 and 2123, respectively, 371 
and therefore much lower than for our datasets. Typically, these cells were recorded focusing 372 
on a single cell rather than recording from an entire population with lower zoom as in our 373 
dataset. For a detailed description of the data, see (Akerboom et al., 2012; Chen et al., 374 
2013).  375 

Preprocessing 376 
We normalized the sampling rate of all fluorescence traces and spike trains to 100 Hz, 377 
resampling to time bins of 10 ms. This allowed us to apply models across datasets 378 
independent of which dataset was used for training. We removed linear trends from the 379 
fluorescence traces by fitting a robust linear regression with Gaussian scale mixture 380 
residuals. That is, for each fluorescence trace 𝐹𝑡, we found parameters 𝑎, 𝑏,𝜋𝑘, and 𝜎𝑘 with 381 
maximal likelihood under the model 382 

𝐹𝑡 = 𝑎𝑎 + 𝑏 +  𝜀𝑡 ,               𝜀𝑡 ∼ � 𝜋𝑘
𝑘=1…𝐾

𝒩� ⋅ ; 0,𝜎𝑘2�,  

and computed 𝐹𝑡� = 𝐹𝑡 − 𝑎𝑎 − 𝑏 . We used three different noise components ( 𝐾 = 3). 383 
Afterwards, we normalized the traces such that the 5th percentile of each trace’s fluorescence 384 
distribution is at zero, and the 80th percentile is at 1. Normalizing by percentiles instead of the 385 
minimum and maximum is more robust to outliers and less dependent on the firing rate of the 386 
neuron producing the fluorescence. 387 

Supervised learning in flexible probabilistic models for spike inference 388 
We predict the number of spikes 𝑘𝑡 falling in the 𝑡-th time bin of a neuron’s spike train based 389 
on 1000 ms windows of the fluorescence trace centered around 𝑡  (preprocessed 390 
fluorescence snippets 𝒙𝑡). To reduce the risk of overfitting and to speed up the training 391 
phase of the algorithm, we reduced the dimensionality of the fluorescence windows via PCA, 392 
keeping enough principal components to explain at least 95% of the variance (which resulted 393 
in 8 to 20 dimensions, depending on the dataset). Keeping 99% of the variance and slightly 394 
regularizing the model’s parameters gave similar results but was slower. Only for the 395 
Svoboda dataset we found it was necessary to keep 99% of the variance to achieve optimal 396 
results. 397 

We assume that the spike counts 𝑘𝑡 given the preprocessed fluorescence snippets 𝒙𝑡 can be 398 
modeled using a Poisson distribution, 399 

𝑝( 𝑘𝑡 ∣∣ 𝒙𝑡 ) =  
𝜆(𝒙𝑡)𝑘

𝑘!
𝑒−𝜆(𝒙𝑡). 

 400 

We tested three models for the firing rate 𝜆(𝒙𝑡) function:  401 

(1) A spike-triggered mixture (STM) model (Theis et al., 2013) with exponential 402 
nonlinearity, 403 

𝜆STM(𝒙𝑡) =  � exp�� 𝛽𝑘𝑘(𝒖𝑚⊤ 𝒙𝑡)2 + 𝒘𝑘
⊤𝒙𝑡 + 𝑏𝑘

𝑀

𝑚=1

� ,
𝐾

𝑘=1
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where 𝒘𝑘 are linear filters,  𝒖𝑚 are quadratic filters weighted by 𝛽𝑘𝑘 for each of 𝐾 404 
components, and 𝑏𝑘 is a offset for each component. We used three components and 405 
two quadratic features (𝐾 = 3, 𝑀 = 2). The performance of the algorithm was not 406 
particularly sensitive to the choice of these parameters (we evaluated 𝐾 = 1, … 4 and 407 
𝑀 = 1, … ,4 in a grid search using one dataset). 408 

(2) As a simpler alternative, we use the linear-nonlinear-Poisson (LNP) neuron with 409 
exponential nonlinearity, 410 

𝜆LNP(𝒙𝑡) = exp(𝒘⊤𝒙𝑡 + 𝑏), 

where 𝒘 is a linear filter and 𝑏 is an offset. 411 

(3) As a more flexible alternative, we used a multi-layer neural network (ML-NN) with two 412 
hidden layers, 413 

𝜆ML−NN(𝒙𝒕) = exp(𝒘3
⊤𝑔(𝑾2𝑔(𝑾1𝒙𝑡 + 𝒃1) + 𝒃2) + 𝑏3) 

, 414 

where 𝑔(𝒚) = max (0,𝒚) is a point-wise rectifying nonlinearity and 𝑾1 and 𝑾2 are matrices. 415 
We tested MLPs with 10 and 5 hidden units, and 5 and 3 hidden units for the first and second 416 
hidden layer, respectively. Again, the performance of the algorithm was not particularly 417 
sensitive to these parameters. 418 

Parameters of all models were optimized by maximizing the average log-likelihood for a 419 
given training set, 420 

1
𝑁
� log𝑝(𝑘𝑡 ∣∣ 𝒙𝑡 ),
𝑁

𝑛=1

 

using limited-memory BFGS (Byrd et al., 1995), a standard quasi-Newton method. To 421 
increase robustness against potential local optima in the likelihood of the STM and the ML-422 
NN, we trained four models with randomly initialized parameters and geometrically averaged 423 
their predictions. The geometric average of several Poisson distributions again yields a 424 
Poisson distribution whose rate parameter is the geometric average of the rate parameters of 425 
the individual Poisson distributions. 426 

Other algorithms 427 

SI08 428 
This approach is based on applying a support-vector machine (SVM) on two PCA features of 429 
preprocessed segments of calcium traces. We re-implemented the features following closely 430 
the procedures described in (Sasaki et al., 2008). As the prediction signal, we used the 431 
distance of the input features to the SVM’s separating hyperplane, setting negative 432 
predictions to zero. We cross-validated the regularization parameter of the SVM but found 433 
that it had little impact on performance. 434 

PP14 435 
The algorithm performs Bayesian inference in a generative model, using maximum a 436 
posteriori (MAP) estimates for spike inference and MCMC on a portion of the calcium trace 437 
for estimating hyperparameters. We used a Matlab implementation provided by the authors 438 
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of (Pnevmatikakis et al., 2014). We also tried selecting the hyperparameters through cross-439 
validation, which did not substantially change the overall results. 440 

VP10 441 
The fast-oopsi or non-negative deconvolution technique constrains the inferred spike rates to 442 
be positive (Vogelstein et al., 2010), performing approximate inference in a generative 443 
model. We used the implementation provided by the author 1 . We adjusted the 444 
hyperparameters using cross-validation by performing a search over a grid of 54 parameter 445 
sets controlling the degree of assumed observation noise and the expected number of spikes 446 
(Fig. 2a-b). In Fig. 5b-c the hyperparameters were instead directly inferred from the calcium 447 
traces by the algorithm. 448 

YF06 449 
The deconvolution algorithm (Yaksi and Friedrich, 2006) removes noise by local smoothing 450 
and the inverse filter resulting from the calcium transient. We used a Matlab implementation 451 
provided by the authors. Using the cross-validation procedure outlined above, we 452 
automatically tuned the algorithm by testing 66 different parameter sets. The parameters 453 
controlled the cutoff frequency of a low-pass filter, a time constant of the filter used for 454 
deconvolution, and whether or not an iterative smoothing procedure was applied to the 455 
fluorescence traces. 456 

OD13 457 
This algorithm performs a template-matching based approach by using the finite rate of 458 
innovation-theory as described in (Oñativia et al., 2013). We used the implementation 459 
provided on the author’s homepage2. We adjusted the exponential time constant parameter 460 
using cross-validation. 461 

VP09 462 
This algorithm performs Bayesian inference in a generative model as described in 463 
(Vogelstein et al., 2009). We used the implementation provided by the author3. Since this 464 
algorithm is based on the same generative model as fast-oopsi but is much slower, we used 465 
the hyperparameters inferred by cross-validating fast-oopsi in Fig. 2a-b and the 466 
hyperparameters automatically inferred by the algorithm in Fig. 5b-c. 467 

Performance evaluation 468 
We evaluated the performance of the algorithms on spike trains binned at 40 ms resolution, 469 
i.e., a sampling rate of 25 Hz. For Fig. 3 and Suppl. Fig. 2, we changed the bin width 470 
between 10 ms (i.e. 100 Hz) and 500 ms (i.e. 2 Hz). We used cross-validation to evaluate the 471 
performance of our framework, i.e. we estimated the parameters of our model on a training 472 
set, typically consisting of all but one cell for each dataset, and evaluated its performance on 473 
the remaining cell. This procedure was iterated such that each cell was held out as a test cell 474 
once. Results obtained using the different training and test sets were subsequently 475 
averaged.   476 

Correlation 477 
We computed the linear correlation coefficient between the true binned spike train and the 478 
inferred one. This is a widely used measure with a simple and intuitive interpretation, taking 479 

                                                
1 https://github.com/jovo/fast-oopsi 
2 http://www.commsp.ee.ic.ac.uk/%7Epld/software//ca_transient.zip 
3 https://github.com/jovo/smc-oopsi 
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the overall shape of the spike density function into account. However, the correlation 480 
coefficient is invariant under affine transformations, which means that predictions optimized 481 
for this measure cannot be directly interpreted as spike counts or firing rates. In further 482 
contrast to information gain, it also does not take the uncertainty of the predictions into 483 
account. That is, a method which predicts the spike count to be 5 with absolute certainty will 484 
be treated the same as a method which experts the spike count to be somewhere between 0 485 
and 10 assigning equal probability to each possible outcome. 486 

Information gain 487 
The information gain provides a model based estimate of the amount of information about 488 
the spike train extracted from the calcium trace. Unlike AUC and correlation, it takes into 489 
account the uncertainty of the prediction.  490 

Assuming an average firing rate of 𝜆 and a predicted firing rate of 𝜆𝑡 at time 𝑡, the expected 491 
information gain (in bits per bin) can be estimated as 492 

𝐼𝑔 =
1
𝑇
�𝑘𝑡 log2

𝜆𝑡
𝜆

+ 𝜆 −
1
𝑇
�𝜆𝑡
𝑡𝑡

 

assuming Poisson statistics and independence of spike counts in different bins. The 493 
estimated information gain is bounded from above by the (unknown) amount of information 494 
about the spike train contained in the calcium trace, as well as by the marginal entropy of the 495 
spike train, which can be estimated using 496 

𝐻𝑚 =
1
𝑇
� log(𝑘𝑡 !)
𝑡

− 𝜆 log 𝜆 + 𝜆. 

We computed a relative information gain by dividing the information gain averaged over all 497 
cells by the average estimated entropy, 498 

∑ 𝐼𝑔
(𝑛)

𝑛

∑ 𝐻𝑚
(𝑛)

𝑛
 , 

where 𝐼𝑔
(𝑛) is the information gain measured for the 𝑛-th cell in the dataset. 499 

This can be interpreted as the fraction of entropy in the data explained away by the model 500 
(measured in percent points). Since only our method was optimized to yield Poisson firing 501 
rates, we allowed all methods a single monotonically increasing nonlinear function, which we 502 
optimized to maximize the average information gain over all cells. That is, we evaluated    503 

1
𝑇
�𝑘𝑡 log2

𝑓(𝜆𝑡)
𝜆

+ 𝜆 −
1
𝑇
�𝑓(𝜆𝑡)
𝑡𝑡

, 

where 𝑓 is a piecewise linear monotonically increasing function optimized to maximize the 504 
information gain averaged over all cells (using an SLSQP implementation in SciPy).  505 

AUC 506 
The AUC score can be computed as the probability that a randomly picked prediction for a 507 
bin containing a spike is larger than a randomly picked prediction for a bin containing no 508 
spike (Fawcett, 2006). While this is a commonly used score for evaluating spike inference 509 
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procedures (Vogelstein et al., 2010), it is not sensitive to changes in the relative height of 510 
different parts of the spike density function, as it is invariant under arbitrary strictly 511 
monotonically increasing transformations. For example, if predicted rates were squared, high 512 
rates would be over proportionally boosted compared to low rates, while yielding equivalent 513 
AUC scores. 514 

Statistical analysis  515 
We used generalized Loftus & Masson standard errors of the means for repeated measure 516 
designs (Franz and Loftus, 2012) and report the mean ± 2 SEM. To assess statistical 517 
significance, we compare the performance of the STM model to the performance of its next 518 
best competitor, performing a one-sided Wilcoxon signed rank test and report significance or 519 
the respective p-value above a line spanning the respective columns. If the STM is not the 520 
best model, we perform the comparison between the best model and the STM, coding the 521 
comparison in the color of the model. We fitted a Gaussian Process model with a Gaussian 522 
kernel in Fig. 5c and d using the implementation provided by scikit-learn. The kernel width is 523 
chosen automatically via maximum-likelihood estimate (Pedregosa et al., 2011). 524 

Generation of artificial data 525 
We simulated data by sampling from the generative model used by Vogelstein et al. (2010). 526 
That is, we first generated spike counts by independently sampling each bin of a spike train 527 
from a Poisson distribution, then convolving the spike train with an exponential kernel to 528 
arrive at an artificial calcium concentration, and finally adding Poisson noise to generate a 529 
Fluorescence signal 𝑥𝑡 . 530 

𝑘𝑡 ~ Poisson(𝜆), 
𝐶𝑡 = 𝛾𝐶𝑡 + 𝑘𝑡 , 
𝑥𝑡 ~ Poisson(𝑎 𝐶𝑡 +  𝑏). 

The firing rate 𝜆 for each cell was randomly chosen to be between 0 and 400 spikes per 531 
second. The parameters 𝛾, 𝑎, and 𝑏 were fixed to 0.98, 100 and 1, respectively, and data 532 
was generated at a sampling rate of 100 Hz. 533 

Code and data sharing 534 
All analysis was done in Python. We provide a Python implementation of our algorithm online 535 
(www.bethgelab.org/code/spikeinference)5. The package includes a pre-trained version of 536 
our algorithm, which is readily usable even without simultaneous recordings and has been 537 
trained on our entire dataset. The pre-trained algorithm has been trained on all five datasets 538 
presented in this paper as well as the publicly available data from the Svoboda lab. To 539 
accommodate the wider range of data, we made the model slightly more flexible allowing 6 540 
linear and 4 quadratic components as well as accounting for 99% of the variance in the 541 
dimensionality reduction step. 542 

  543 

                                                
4 Please note that we are also preparing a Matlab implementation which will be released at a later 
point in time.  
5 Please note that we are also preparing a Matlab implementation which will be released at a later 
point in time.  
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Table 1: Datasets 
Data
set Area n Indicator Scan 

frequency  
Scanning 
method #spikes sp/s Field of view 

1 V1 16 OGB-1 322.5 ± 
53.2 3D AOD 19,876 1.86 200x200 

x100 µm³ 
2 V1 31 OGB-1 11.8 ± 0.9 2D galvo scan 32,385 2.47 250x250 µm² 

3 V1 19 * 
(11) GCamp6s 59.1 2D resonant 23,974 2.58 265x265 µm² 

135x135 µm² 
4 Retina 9 OGB-1 7.8 2D galvo scan 12,488 4.36 100x100 µm² 

5 V1 15 
(6)** GCamp6s 59.1 2D resonant 12,413 4.87 265x265 µm² 

* For this dataset, 19 recordings were performed on 11 neurons 

** For this dataset, 15 recordings were performed on 6 neurons 

 

 

 

Table 2: Algorithms 
Algorithm Approach Technique Reference 
STM Supervised STM This paper 
SI08 Supervised PCA+SVM (Sasaki et al., 2008) 
PP14 Generative MCMC sampling (Pnevmatikakis et al., 2014)  
OD13 Template matching Finite rate innovation (Oñativia et al., 2013) 
VP10 Generative MAP estimation (Vogelstein et al., 2010) 
VP09 Generative SMC sampling (Vogelstein et al., 2009) 
YF06 Generative Deconvolution (Yaksi and Friedrich, 2006) 
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Figure captions 

 

 

 

 
  

Figure 1: Spike inference from 
calcium measurements  
a) Schematic of the probabilistic STM 

model.  
b) Simultaneous recording of spikes 

and calcium fluorescence traces in 
primary visual cortex of anesthetized 
mice. Green: Cells labeled with 
OGB-1 indicator. Red: Patch pipette 
filled with Alexa Fluor 594. Scale 
bar: 50 µm. 

c) Example cell recorded from V1 
using AOD scanner and OGB-1 as 
indicator. From top to bottom: 
Calcium fluorescence trace, spikes, 
spike rate in bins of 0.04 s 
(corresponding to sampling rate of 
25 Hz; grey), inferred spike rate 
using the STM model (black), SI08, 
PP14, VP14 and YF06. All traces 
were scaled independently for 
clarity. On the right, correlation 
between the inferred and the original 
spike rate is shown.  

d) Example cell recorded from V1 
using galvanometric scanners and 
OGB-1 as indicator. For legend, see 
c).  

e) Example cell recorded from V1 
using resonance scanner and 
GCaMP6s as indicator. Note the 
different indicator dynamics. For 
legend, see c).  

f) Example cell recorded from the 
retina using galvanometric scanners 
and OGB-1 as indicator. For legend, 
see c). 
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Figure 2: Quantitative evaluation of spike inference performance 
a) Correlation (mean± 2 SEM for repeated measure designs) between the true spike rate 

and the inferred spike rate for different algorithms (see legend for color code) evaluated 
on the four different datasets (with n=16, 31, 19 and 9, respectively). Markers above bars 
show the result of a Wilcoxon sign rank test between the STM model and its closest 
competitor (see Methods, * denotes P<0.05, ** denotes P<0.01). The evaluation was 
performed in bins of 0.04 s (corresponding to sampling rate of 25 Hz). 

b) Information gained about the true spike train by observing the calcium trace, evaluated 
for different algorithms. 
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Figure 3: Timing accuracy of spike rate inference 
Correlation (mean ± 2 SEM for repeated measure designs) between the true and inferred 
spike rate as a function of sampling rate (i.e. temporal resolution) for all four datasets (a-d) 
with n=16, 31,19 and 9, respectively. See legend for color code.  
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Figure 4: Evaluating model complexity 
a) Correlation (mean ± 2 SEM for repeated measure designs) between the true and inferred 649 

spike rate comparing the STM model (black) with a flexible multilayer neural network 650 
(dark grey) and a simple LNP model (light grey) evaluated on the four different datasets 651 
(with n=16, 31, 19 and 9, respectively). Markers above bars show the result of a 652 
Wilcoxon signed rank test between the STM model and the LNP model (see Methods, * 653 
denotes P<0.05, ** denotes P<0.01). The evaluation was performed in bins of 40 ms 654 
(corresponding to sampling rate of 25 Hz). 655 

b) Information gained about the true spike train by observing the calcium trace performing 
the same model comparison described in a). 
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 657 

Figure 5: Dependence on training set size and firing rate 
a) Mean correlation for STM model on the four different datasets as a function of training set 

size. 
b) Mean relative information gain for STM model on the four different datasets as a function 

of training set size. 
c) Correlation as a function of average firing rate of a cell. Dots mark correlation of STM 

model for individual traces. Solid lines indicate mean of a Gaussian process fit to 
correlation values for each of the indicated algorithms. Shaded areas are 95%-CI.  

d) As in c. for relative information gain. 
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Figure 6: Spike inference without 
training data 
a) Schematic illustrating the setup: The 

algorithms are trained on all cells 
from three datasets (here: all but the 
GCaMP dataset) and evaluated on 
the remaining dataset (here: the 
GCaMP dataset), testing how well it 
generalizes to settings it has not 
seen during training. 

b) Correlation (mean± 2 SEM for 
repeated measure designs) between 
the true spike rate and the inferred 
spike density function for a subset of 
the algorithms (see legend for color 
code) evaluated on each of the four 
different datasets (with n=16, 31, 19 
and 9, respectively), trained on the 
remaining three. Markers above 
bars show the result of a Wilcoxon 
sign rank test between the STM 
model and its closest competitor 
(see Methods, * denotes P<0.05, ** 
denotes P<0.01). The evaluation 
was performed in bins of 40 ms 
(corresponding to sampling rate of 
25 Hz). 

c) Information gained about the true 
spike train by observing the calcium 
trace performing the generalization 
analysis described in a). 

d) Example recording as in Fig. 1 but 
for data recorded in an awake 
animal using GCaMP6 as indicator. 
Algorithms were trained on 
anesthetized data and tested on 
awake data. 

e) Photograph and illustration of a 
mouse sitting on a Styrofoam ball 
during a combined 
imaging/electrophysiology 
experiment. 

f) Performance comparison as in b 
and c for awake data (n=15) when 
algorithms were trained on 
anesthetized data. 
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Figure 7: Evaluating algorithms on artificial data 
a) Example trace sampled from a generative model, true spikes and binned rate as well as 

reconstructed spike rate from four different algorithms (conventions as in Fig. 1). 
Numbers on the right denote correlations between true and inferred spike trains. 

b) Correlation (mean ± 2 SEM for repeated measure designs) and information gain 
computed on a simulated dataset with 20 traces. For algorithms see legend. 

c) Scatter plot comparing performance on simulated data with that on real data (averaged 
over cells from all datasets), suggesting little predictive value of performance on 
simulated data. 
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