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We present a new data-driven approach to inferring spikes from calcium imaging 
signals using supervised training of non-linear spiking neuron models. Our technique 
yields a substantially better performance compared to previous generative modeling 
approaches, reconstructing spike trains accurately at high temporal resolution even 
from previously unseen datasets. Future data acquired in new experimental conditions 
can easily be used to further improve its spike prediction accuracy and generalization 
performance.  

Over the past two decades, two-photon imaging has become one of the most widely used 
techniques for studying information processing in neural populations in vivo (Kerr and Denk, 
2008; Denk et al., 1990). Typically, a calcium indicator such as the synthetic dye Oregon 
green BAPTA-1 (OGB-1) (Stosiek et al., 2003) or the genetically encoded GCamp6 (Chen et 
al., 2013) is used to image a large fraction of cells in a neural tissue. Individual action 
potentials lead to a fast rise in fluorescence, followed by a slow decay with a time constant of 
several hundred milliseconds (Kerr et al., 2005; Chen et al., 2013). Commonly, neural 
population activity from dozens or hundreds of cells is imaged using relatively slow scanning 
speeds (<15 Hz), but novel fast scanning methods (Cotton et al., 2013; Grewe et al., 2010) 
(up to several 100 Hz) have opened additional opportunities for studying neural population 
activity at increased temporal resolution.  

A fundamental challenge has been to infer the timing of action potentials from the measured 
noisy calcium fluorescence traces. To solve the problem of spike inference, several methods 
have been proposed, including template-matching (Greenberg et al., 2008; Grewe et al., 
2010; Oñativia et al., 2013) and deconvolution (Yaksi and Friedrich, 2006; Vogelstein et al., 
2010, 2009). All these methods have in common that they assume a forward generative 
model of calcium signal generation which is then inverted to infer spike times (for a notable 
exception see Sasaki et al., 2008). A crucial shortcoming of this approach is that the forward 
models rely on a-priori assumptions about the shape of the calcium fluorescence signal 
induced by a single spike and the statistics of the noise.  
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In addition, the question how well we can reconstruct the spikes of neurons given calcium 
measurements has mostly been studied theoretically or using simulated datasets (Wilt et al., 
2013; Lütcke et al., 2013). While such studies offer the advantage that many model 
parameters are under the control of the investigator, they do not answer the question how 
well we can reconstruct spikes from actual measurements. Unfortunately, most published 
algorithms have only been evaluated on relatively small experimental datasets. Therefore, a 
detailed quantitative comparison of different algorithms for reconstructing spikes from 
calcium traces on large datasets of in vitro and in vivo population imaging data has been 
lacking. 

Here, we advocate a data-driven approach based on flexible probabilistic models to infer 
spikes from calcium fluorescence traces. We model the probabilistic relationship between a 
segment of the fluorescence trace 𝒙𝑡  and the number of spikes 𝑘𝑡  in a small time bin, 
assuming they are Poisson distributed with rate 𝜆(𝒙𝑡): 

𝑝(𝑘𝑡 ∣∣ 𝒙𝑡 ) =  
𝜆(𝒙𝑡)𝑘

𝑘!
𝑒−𝜆(𝒙𝑡) 

. 

Instead of relying on a specific forward model, we modeled the firing rate 𝜆(𝒙𝑡) using a 
recently introduced extension of generalized linear models, the factored spike-triggered 
mixture (STM) model (Theis et al., 2013) (Fig. 1a; see Methods): 

𝜆STM(𝒙𝑡) =  � exp�� 𝛽𝑘𝑘(𝒖𝑚⊤ 𝒙𝑡)2 + 𝒘𝑘
⊤𝒙𝑡 + 𝒃𝑘

𝑀

𝑚=1

� ,
𝐾

𝑘=1

 

This model learns a set of 𝐾  linear and 𝑀 quadratic features 𝒘𝑘  and 𝒖𝑚  from the 
fluorescence trace, which predict the occurrence of spikes. Importantly, it is sufficiently 
flexible to capture non-linear relationships between fluorescence traces and spikes, but at 
the same time is sufficiently restricted to avoid overfitting when little data is available. Using a 

 

Figure 1: Spike inference from calcium 
measurements using flexible probabilistic 
models  

a) Schematic of the probabilistic STM model.  
b) Simultaneous recording of spikes and calcium 

fluorescence traces in primary visual cortex of 
anesthetized mice. Green: Cells labeled with 
OGB-1 indicator. Red: Patch pipette filled with 
Alexa Fluor 594 Scale bar: 50 µm. 

c) Example cell recorded from V1. From top to 
bottom: Calcium fluorescence trace, spikes, 
spike rate at 25 Hz (grey), inferred spike rate 
using the STM model (black), the method by 
Vogelstein et al.(Vogelstein et al., 2010) (V; 
blue) and Yaksi & Friedrich(Yaksi and Friedrich, 
2006) (Y&F; red). All traces were scaled 
independently for better visibility. On the right, 
correlation between the inferred and the original 
spike rate is shown.  

d) Example cell recorded from the retina. For 
legend, see c). 
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probabilistic model in this way not only provides us with a point estimate of the expected 
firing rate, 𝜆(𝒙𝑡), but also with easy access to a full distribution over spike counts. In contrast 
to previous approaches, this allows us to estimate the uncertainty in the predictions and to 
generate example spikes trains without spending considerable computational resources. 

To quantitatively evaluate our framework and compare it to other approaches, we acquired  a 
benchmark dataset with a total of 56 neurons from which we simultaneously recorded 
calcium traces and spikes (Fig. 1b), recorded with different scanning methods and at 
different sampling rates (in total ~ 65,000 spikes; see Table 1 and Methods): Dataset 1 
consisted of 16 neurons recorded in-vivo in primary visual cortex of anesthetized mice using 
fast 3D AOD-based imaging (Cotton et al., 2013) at ~320 Hz (V1, 3D). Dataset 2 consisted of 
31 neurons recorded in-vivo in primary visual cortex of anesthetized mice using line scanning 
at ~12 Hz (V1, 2D). Finally, dataset 3 consisted of 9 retinal ganglion cells recorded in-vitro at 
~8 Hz (Briggman and Euler, 2011) (Ret, 2D). We resampled calcium traces from all three 
datasets to a common resolution of 100 Hz. All three datasets were acquired at a zoom 
factor commonly used in population imaging and thus the signal quality should match well 
that commonly encountered in these preparations (see Table1). 

We trained our algorithm on all but one cell from a dataset and tested it on the one remaining 
neuron (cross-validation; see Methods). We compared its performance to that of the two 
most widely used techniques in the literature, deconvolution (Yaksi and Friedrich, 2006) 
(referred to as YF) and ‘fast-oopsi’, an algorithm which performs approximate inference in a 
biophysical model (Vogelstein et al., 2010) (V). To provide a baseline performance, we 
evaluated how closely the calcium trace followed the spike train without any further 
processing (raw). We computed three different complimentary measures of spike 
reconstruction performance to provide an extensive quantitative evaluation of the different 
techniques: (i) accuracy of spike reconstruction as measured by the area under the ROC 
curve (AUC), (ii) correlation between original and reconstructed spike train and (iii) relative 
information gain (see Methods).  

We found that the spike trains predicted by the probabilistic STM model matched the true 
spike trains of the neurons very well, both for cortical and retinal neurons (Fig. 1c and d).  
Indeed, our method reconstructed the true spike trains significantly more accurately than its 
competitors, yielding a higher correlation and relative information gain for all three datasets 
as well (Fig. 2a and Supp. Fig. 1a, b; evaluated at 25 Hz; AUC = 0.92, 0.88, 0.81 for the 
three datasets respectively; for statistics see figures). We next evaluated the performance at 
a wide range of sampling rates corresponding to time bins between 10 and several hundreds 
of milliseconds (see Methods). Again, our approach performed better than the other 
methods, especially at very high sampling rates (Fig. 2b-d; also Suppl. Fig. 2a-f). 
Interestingly, the AUC of the STM model was highest for neurons with low firing rates (Fig. 
2e; Spearman’s rho: -0.67, p<0.001, N=56), while we observed no correlation between the 
performance of our algorithm and the firing rate of the neurons for the other two performance 
measures (rho=0.02, p=0.87; rho=-0.01, p=0.92; for correlation and information gain, 
respectively).  

The STM model also allows one to look at the features in the calcium trace that were 
predictive of the occurrence of a spike. The linear filters resemble of the typical Ca2+-
transient, while the quadratic features seem to provide an estimate of the trace variance 
before and shortly after the spike (Suppl. Fig. 3a). In addition, we estimated a non-linear 
function to optimally map the rates predicted by the different algorithms to the true rates. We 
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found that this function was the close to the identity for the STM (Suppl. Fig. 3b). The fast-
oopsi algorithm consistently underestimated the true rate, while the deconvolution method 
required an approximately exponential non-linearity.   

Since supervised learning requires training data, we evaluated how the performance of the 
STM model scaled with the number of available neurons. We found that performance 
saturates rather quickly between about 7 and 10 neurons, with additional neurons providing 
only small improvements (Fig. 2f and Suppl. Fig. 4a). We also tested whether a simple linear-
nonlinear model would suffice to produce the performance of our algorithm; or whether a 

 

 Figure 2: Quantitative evaluation of spike inference performance 
a) Accuracy (measured as AUC) for the STM model (black) and the algorithms by Vogelstein et al. (blue) and 

Yaksi & Friedrich (red) evaluated on the three datasets (see Table 1). Additionally, accuracy obtained by the 
raw calcium trace (raw, orange) is shown as a baseline. Markers denote mean ± 2 standard error of the 
mean for repeated measure designs (see Methods). P-value results from a comparison of the performance 
of the STM with its best competitor (see Methods). 

b) Accuracy (measured as AUC) of the three algorithms and raw calcium as a function of sampling rate 
evaluated on the V1, 3D imaging dataset. For accuracy on the other datasets, see Suppl. Fig. 2. Colors as 
in a). Lines denote mean ± 2 SEM for repeated measure designs. 

c) Correlation between inferred and true spike rate for the three algorithms and raw calcium as a function 
sampling rate evaluated on the V1, 3D imaging dataset.  For correlation on the other datasets, see Suppl. 
Fig. 2. Colors as in a). Lines denote mean ± 2 standard error of the mean for repeated measure designs. 

d) Relative information gain for the three algorithms and raw calcium as a function sampling rate evaluated on 
the V1, 3D imaging dataset. For relative information gain on the other datasets, see Suppl. Fig. 2. Colors as 
in a). Lines denote mean ± 2 SEM for repeated measure designs. 

e) Dependence of accuracy (AUC) on firing rate of the neuron across the three datasets. 
f) Accuracy (AUC) and correlation of the STM algorithm as a function of the number of training cells. Since the 

datasets have different size, the lines stop at different values. 
g) Accuracy (AUC) and correlation using the STM nonlinearity (black), a more flexible multilayer neural-

network (dark grey) or a more restricted linear-nonlinear model (light grey). Markers denote mean ± 2 SEM 
for repeated measure designs (see Methods). P-value results from a comparison of the performance of the 
STM with the LNP model (see Methods). All differences between multilayer NN and STM are not significant 
(P>0.05 for each comparison).  

h) Accuracy (AUC) for STM model, Vogelstein et al.’s algorithm and raw calcium signal trained on two 
datasets (bottom row) and evaluated on the third dataset (top row), mimicking the situation in which no 
simultaneous spike and calcium measurements are available. Colors as in a). Markers denote mean ± 2 
SEM for repeated measure designs (see Methods). P-value results from a comparison of the performance 
of the STM with its best competitor (see Methods). 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 28, 2014. ; https://doi.org/10.1101/010777doi: bioRxiv preprint 

https://doi.org/10.1101/010777
http://creativecommons.org/licenses/by-nc/4.0/


more flexible non-linearity could improve it by using a multilayer neural network instead of the 
STM. We found that the STM model provided a good compromise between flexibility and 
generalization (Fig. 2g and Suppl. Fig. 4b): Its performance was significantly better than that 
of the simple LNP model (for the retina dataset and accuracy as performance measure the 
increase was not significant), but could only be marginally improved by using a multi-layer 
neural network. 

Finally, we wanted to know how well our supervised learning-based algorithm can generalize 
to new types of data that are recorded under different conditions than the data used for 
training. To do so, we trained the algorithm on two of our datasets and evaluated it on the 
remaining one. Remarkably, it still was significantly more accurate than its competitors (Fig. 
2g and Suppl. Fig. 5a,b; for all but the V1/3D dataset with correlation as performance 
measure the performance increase was significant), indicating that the algorithm may be 
directly applied on novel datasets without need for further training. In addition, any labeled 
data that will be collected in the future can readily be used to further improve spike prediction 
of the algorithm and its generalization to new experimental conditions (e.g. different neural 
systems and indicators). In fact, our choice of the spike triggered mixture model for 
estimating spikes from calcium traces is motivated by its ability to automatically switch 
between different sub-models whenever the statistics of the data changes (Theis et al., 
2013). In this way, our approach constitutes a viable data-driven framework that promises 
steady improvement of performance in the future as more data becomes available and 
provides a benchmark dataset on which new algorithms can be readily evaluated..    
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Methods 

Datasets 
Primary visual cortex (V1) 
We recorded calcium traces from neural populations in layer 2/3 of anesthetized wild type 
mice (male C57CL/6J, age: p40–p60) using a custom-built two-photon microscope using 
previously described methods(Cotton et al., 2013; Froudarakis et al., 2014). Briefly, the 
temperature of the mouse was maintained between 36.5 °C and 37.5 °C throughout the 
experiment using a homeothermic blanket system (Harvard Instruments). While recording we 
either provided no visual stimulation, moving gratings, or natural and phase scrambled 
movies as previously described(Froudarakis et al., 2014). A ~1 mm craniotomy was 
performed over the primary visual cortex of the mouse. The details of surgical techniques and 
anesthesia protocol have been described elsewhere(Cotton et al., 2013).  We then used 
bolus-loaded Oregon green BAPTA-1 (OGB-1, Invitrogen) as calcium indicator and the 
injections were performed by using a continuous-pulse low pressure protocol with a glass 
micropipette to inject ~300 μm below the surface of the cortex. The cortical window was 
sealed using a glass coverslip. After allowing 1h for the dye uptake we recorded calcium 
traces using a custom-built two-photon microscope equipped with a Chameleon Ti-sapphire 
laser (Coherent) tuned at 800 nm and a 20×, 1.0 NA Olympus objective. Scanning was 
controlled by either a set of galvanometric mirrors (2D imaging) or a custom-built acousto-
optic deflector system (AODs; 3D imaging)(Cotton et al., 2013). The average power output of 
the objective was kept < 50 mW for 2D imaging and 120 mW for 3D imaging. Calcium activity 
was typically sampled at ~12 Hz with the galvanometric mirrors and at ~320 Hz with the 
AODs. The field of view was typically 200x200x100µm and 250x250µm for 3D and 2D 
imaging, respectively, imaging dozens to hundreds of neurons simultaneously(Cotton et al., 
2013). To perform simultaneous loose-patch and two-photon calcium imaging recordings, we 
used glass pipettes with 5–7 MΩ resistance filled with Alexa Fluor 594 (Invitrogen) for 
targeted two-photon-guided loose cell patching of single cells. Spike times were extracted by 
thresholding. All procedures performed on mice were conducted in accordance with the 
ethical guidelines of the National Institutes of Health and were approved by the Baylor 
College of Medicine IACUC.  

Retina 
Imaging experiments were performed as described previously(Briggman and Euler, 2011). In 
short, the retina was enucleated and dissected from dark-adapted wild-type mice (both 
genders, C57BL/6J, p21-42), flattened, mounted onto an Anodisc (13, 0.1 mm pores, 
Whatman) with ganglion cells facing up, and electroporated with Oregon green BAPTA-1 
(OGB-1, Invitrogen). The tissue was placed under the microscope, where it was constantly 
perfused with temperated (36°C) carboxygenated (95% O2, 5% CO2) artificial cerebral spinal 
fluid (ACSF). Cells were left to recover for at least 1 hour before recordings were performed. 
We used a MOM-type two-photon microscope equipped with a mode-locked Ti:sapphire 
laser (MaiTai-HP DeepSee, Newport Spectra-Physics) tuned to 927 nm(Euler et al., 2009). 
OGB-1 Fluorescence was detected at 520 BP 30 nm (AHF) under a 20x objective (W Plan-
Apochromat, 1.0 NA, Zeiss). Data were acquired with custom software (ScanM by M. Müller 
and T. Euler running under IgorPro 6.3, Wavemetrics), taking 64 x 64 pixel images at 7.8 Hz. 
Light stimuli were presented through the objective from a DLP projector (K11, Acer), fitted 
with band-pass-filtered LEDs (amber, z 578 BP 10; and blue/UV, HC 405 BP 10, 
AHF/Croma), synchronized with the microscope’s scanner. Stimulator intensity (as 
photoisomerization rate, 104 R*/s/cone) was calibrated as described to range from 0.1 (LEDs 
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off) to ~1.3 (ref (Euler et al., 2009)). Mostly due to two-photon excitation of photopigments, 
an additional, steady illumination component of ~104 R*/s/cone was present during the 
recordings. The field of view was 100x100µm, imaging 50-100 cells in the ganglion cell layer 
simultaneously(Briggman and Euler, 2011). For juxtacellular spike recordings, OGB-1 
labeled somata were targeted with a 5 MΩ glass-pipette under dim IR illumination to 
establish a loose (<1GΩ) seal. Signals were amplified using an Axopatch 200A amplifier 
(Molecular Devices) in I=0 mode and digitized at 10 kHz on a Digidata 1440A (Molecular 
Devices). Imaging and spike data were aligned offline using a trigger signal recorded in both 
acquisition systems, and spike times were extracted by thresholding. All procedures were 
performed in accordance with the law on animal protection (Tierschutzgesetz) issued by the 
German Federal Government and were approved by the institutional animal welfare 
committee of the University of Tübingen. 

Preprocessing 
We normalized the sampling rate of all fluorescence traces and spike trains to 100 Hz, 
resampling to time bins of 10 ms. This allowed us to apply models across datasets 
independent of which dataset was used for training. We removed linear trends from the 
fluorescence traces by fitting a robust linear regression with Gaussian scale mixture 
residuals. That is, for each fluorescence trace 𝐹𝑡, we found parameters 𝑎, 𝑏,𝜋𝑘, and 𝜎𝑘 with 
maximal likelihood under the model 

𝐹𝑡 = 𝑎𝑎 + 𝑏 +  𝜀𝑡 ,               𝜀𝑡 ∼ � 𝜋𝑘
𝑘=1…𝐾

𝒩� ⋅ ; 0,𝜎𝑘2�,  

and computed 𝐹𝑡� = 𝐹𝑡 − 𝑎𝑎 − 𝑏 . We used three different noise components ( 𝐾 = 3). 
Afterwards, we normalized the traces such that the 5th percentile of each trace’s fluorescence 
distribution is at zero, and the 80th percentile is at 1. Normalizing by percentiles instead of the 
minimum and maximum is more robust to outliers and less dependent on the firing rate of the 
neuron producing the fluorescence. 

Algorithm 
We predict the number of spikes 𝑘𝑡 falling in the 𝑡-th time bin of a neuron’s spike train based 
on 1000 ms windows of the fluorescence trace centered around 𝑡  (preprocessed 
fluorescence snippets 𝒙𝑡). To reduce the risk of overfitting and to speed up the training 
phase of the algorithm, we reduced the dimensionality of the fluorescence windows via PCA, 
keeping enough principal components to explain at least 95% of the variance (which resulted 
in 8 to 20 dimensions, depending on the dataset). Keeping 99% of the variance and slightly 
regularizing the model’s parameters gave similar results but was slower. 

We assume that the spike counts 𝑘𝑡 given the preprocessed fluorescence snippets 𝒙𝑡 can be 
modeled using a Poisson distribution, 

𝑝(𝑘𝑡 ∣∣ 𝒙𝑡 ) =  
𝜆(𝒙𝑡)𝑘

𝑘!
𝑒−𝜆(𝒙𝑡) 

. 

We tested three models for the firing rate 𝜆(𝒙𝑡) function:  

(1) A simple linear-nonlinear-Poisson (LNP) neuron with exponential nonlinearity, 

𝜆LNP(𝒙𝑡) = exp(𝒘⊤𝒙𝑡), 
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where 𝒘 is a linear filter. 

(2) A spike-triggered mixture (STM) model(Theis et al., 2013) with exponential 
nonlinearity, 

𝜆STM(𝒙𝑡) =  � exp�� 𝛽𝑘𝑘(𝒖𝑚⊤ 𝒙𝑡)2 + 𝒘𝑘
⊤𝒙𝑡 + 𝑏𝑘

𝑀

𝑚=1

� ,
𝐾

𝑘=1

 

where 𝒘𝑘 are linear filters,  𝒖𝑚 are quadratic filters weighted by 𝛽𝑘𝑘 for each of 𝐾 
components, and 𝑏𝑘 is a offset for each component. We used three components and 
two quadratic features (𝐾 = 3, 𝑀 = 2). The performance of the algorithm was not 
particularly sensitive to the choice of these parameters (we evaluated 𝐾 = 1, … 4 and 
𝑀 = 1, … ,4 in a grid search). 

(3) And a multi-layer neural network (ML-NN) with two hidden layers, 

𝜆ML−NN(𝒙𝒕) = exp(𝒘3
⊤𝑔(𝑾2𝑔(𝑾1𝒙𝑡 + 𝒃1) + 𝒃2) + 𝑏3) 

, 

where 𝑔(𝒚) = max (0,𝒚) is a point-wise rectifying nonlinearity and 𝑾1 and 𝑾2 are matrices. 
We tested MLPs with 10 and 5 hidden units, and 5 and 3 hidden units for the first and second 
hidden layer, respectively. Again, the performance of the algorithm was not particularly 
sensitive to those parameters. 

Parameters of all models were optimized by maximizing the average log-likelihood for a 
given training set, 

1
𝑁
� log𝑝(𝑘𝑡 ∣∣ 𝒙𝑡 ),
𝑁

𝑛=1

 

using limited-memory BFGS(Byrd et al., 1995), a standard quasi-Newton method. To 
increase robustness against potential local optima in the likelihood of the STM and the ML-
NN, we trained four models with randomly initialized parameters and geometrically averaged 
their predictions. The geometric average of several Poisson distributions again yields a 
Poisson distribution whose rate parameter is the geometric average of the rate parameters of 
the individual Poisson distributions. 

Performance evaluation 
Typically, we evaluated the performance of the algorithms on spike trains binned at 40 ms 
resolution, i.e. a sampling rate of 25 Hz. For Fig. 2b-d and Suppl. Fig. 2, we changed the bin 
width between 10 ms (i.e. 100 Hz) and 500 ms (i.e. 2 Hz). We used cross-validation to 
evaluate the performance of our framework, i.e. we estimated the parameters of our model 
on a training set, typically consisting of all but one cell for each dataset, and evaluated its 
performance on the remaining cell. Results obtained using different splits into training and 
test sets were subsequently averaged.   

Accuracy 
By thresholding predictions of an algorithm we obtain a classification of time bins into bins 
with spikes and bins with no spikes. The ROC curve is obtained by varying the threshold and 
plotting the false positive rate (bins falsely classified as containing spikes) against the true 
positive rate (correctly predicted spikes). Finally, the AUC score is given by the area under 
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the ROC curve. Equivalently, the AUC score can be computed as the probability that a 
randomly picked prediction for a bin containing a spike is larger than a randomly picked 
prediction for a bin containing no spike(Fawcett, 2006). This formulation generalizes more 
easily to the case with multiple spikes per bin (bins are picked with probability proportional to 
the number of spikes) and is the one we used to compute the score. While this is a 
commonly used score for evaluating spike inference procedures(Vogelstein et al., 2010), it is 
invariant under arbitrary strictly monotonically increasing transformations and does not take 
the uncertainty of the prediction into account. 

Correlation 
We computed the linear correlation coefficient between the true binned spike train and the 
inferred one. Similar to the AUC score, this a widely used measure with a simple and intuitive 
interpretation, but is invariant under affine transformations of the predictions and does not 
take the uncertainty of the predictions into account. 

Relative information gain 
The information gain quantifies the amount of information about the spike train extracted 
from the calcium trace. Unlike AUC and correlation, it takes into account the uncertainty of 
the prediction.  

Assuming an average firing rate of 𝜆 and a predicted firing rate of 𝜆𝑡 at time 𝑡, the expected 
information gain (in bits per bin) can be estimated as 

𝐼𝑔 =
1
𝑇
�𝑘𝑡 log2

𝜆𝑡
𝜆

+ 𝜆 −
1
𝑇
�𝜆𝑡
𝑡𝑡

 

, 

assuming Poisson statistics and independence of spike counts in different bins. The 
estimated information gain is bounded from above by the (unknown) amount of information 
about the spike train in the calcium trace, and the marginal entropy of the spike train, which 
can be estimated using 

𝐻𝑚 =
1
𝑇
� log(𝑘𝑡 !)
𝑡

− 𝜆 log 𝜆 + 𝜆. 

Dividing the information gain by the marginal entropy yields the relative information gain, a 
number between 0 and 1. This can be interpreted as the amount of entropy explained by the 
model. Since only our method was optimized to yield Poisson firing rates, we allowed each 
method a single monotonically increasing nonlinear function, which we optimized to 
maximize the average information gain over all cells. That is, we evaluated    

1
𝑇
�𝑘𝑡 log2

𝑓(𝜆𝑡)
𝜆

+ 𝜆 −
1
𝑇
�𝑓(𝜆𝑡)
𝑡𝑡

, 

where 𝑓 is a piecewise linear monotonically increasing function optimized to maximize the 
information gain averaged over all cells (using an SLSQP implementation in SciPy). For 
visualization purposes, we slightly regularized the functions to be smooth. 

Other algorithms 
Yaksi & Friedrich (2006): This deconvolution algorithm(Yaksi and Friedrich, 2006) assumes 
that the fluorescence trace has been created by linearly convolving the spike train with an 
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exponential calcium transient. To invert this process, it removes noise by local smoothing 
and then applies the inverse filter resulting from the calcium transient. Using the cross-
validation procedure outlined above, we automatically tuned the algorithm by testing 66 
different parameter configurations and choosing the one producing the highest correlation 
with the measured spike trains of all but one cell and evaluating performance on the 
remaining cell. The parameters controlled the cutoff frequency of a low-pass filter, a time 
constant of the filter used for deconvolution, and whether or not an iterative smoothing 
procedure was applied to the fluorescence traces. 

Vogelstein et al. (2010): The fast-oopsi technique or non-negative deconvolution technique 
assumes a more complex forward model of the fluorescence trace and performs approximate 
inference in this model(Vogelstein et al., 2009). In contrast to Yaksi & Friedrichs algorithm, it 
restricts the inferred spike rates to be positive. Using the cross-validation approach outlined 
above, we adjusted the hyperparameters on the training set by performing a search over a 
grid of 54 parameter sets controlling the degree of assumed observation noise and the 
expected number of spikes.  

Statistical analysis 
We used generalized Loftus & Masson standard errors of the means for repeated measure 
designs(Franz and Loftus, 2012) and report the mean ± 2 SEM. To assess statistical 
significance, we compare the performance of the STM model to the performance of its next 
best competitor, performing a one-sided Wilcoxon signed rank test and report the respective 
p-value above a line spanning the respective columns.  

Code and Data sharing 
All analysis was done in Python. We provide a Python implementation of our algorithm as 
well as the datasets used for evaluating the algorithms online 
(www.bethgelab.org/code/spikeinference)1.   

                                                
1 Please note that we are also preparing a Matlab implementation which will be released at a later 
point in time.  
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Table 1: Datasets 

Dataset Area n Indicator 
Scan 

frequency 
(fps) 

Scanning 
method #spikes 

# of 
spikes/

cell 
Field of view 

1 V1 16 OGB-1 322.5 ± 53.2 3D AOD 19,876 1242 200x200 
x100 µm 

2 V1 31 OGB-1 11.8 ± 0.9 2D galvo 
scan 32,385 1045 250x250 µm 

3 Retina 9 OGB-1 7.8 2D galvo 
scan 12,488 1387 100x100 µm 
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Supplementary Figure 1: Additional measures of performance 
a) Correlation for the STM model (black) and the algorithms by Vogelstein et al. (blue) 

and Yaksi & Friedrich (red) evaluated on the three datasets (see Table 1). 
Additionally, correlation obtained by the raw calcium trace (raw, orange) is shown as 
a baseline. Markers denote mean ± 2 standard error of the mean for repeated 
measure designs (see Methods). P-value results from a comparison of the 
performance of the STM with its best competitor (see Methods). 

b) As in a) but for Relative Information Gain. 
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Supplementary Figure 2: Performance as a function of sampling rate for the two 
additional datasets 
a) Accuracy (measured as AUC) of the three algorithms and raw calcium as a function of 

sampling rate evaluated on the V1, 2D imaging dataset. Lines denote mean ± 2 SEM for 
repeated measure designs. 

b) As in a, but for correlation as performance measure. 
c) As in a, but for relative information gain as performance measure. 
d) Accuracy (measured as AUC) of the three algorithms and raw calcium as a function of 

sampling rate evaluated on the retina, 2D imaging dataset. Lines denote mean ± 2 SEM 
for repeated measure designs. 

e) As in a, but for correlation as performance measure. 
f) As in a, but for relative information gain as performance measure. 
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Supplementary Figure 3: Features learned by STM model and non-linearities  
a) The three linear and two quadratic features learned by the STM model from the data, 

corresponding to the 𝒘𝑘 and 𝒖𝑚 in the definition of the STM. 
b) Piecewise linear functions inferred to model the non-linearity between the inferred and 

the true spike rate for the different compared algorithms. 
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Supplementary Figure 4: Training set size and model flexibility  
a) Relative information gain of the STM algorithm as a function of the number of training 

cells. Since the datasets have different size, the lines stop at different values. 
b) Relative information gain using the STM model (black), a more flexible multilayer neural-

network (dark grey) or a more restricted linear-nonlinear model (light grey). Markers 
denote mean ± 2 SEM for repeated measure designs (see Methods). P-value results 
from a comparison of the performance of the STM with the LNP model. 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 28, 2014. ; https://doi.org/10.1101/010777doi: bioRxiv preprint 

https://doi.org/10.1101/010777
http://creativecommons.org/licenses/by-nc/4.0/


  

 

Supplementary Figure 5: Generalization performance  
a) Correlation for STM model, Vogelstein et al.’s algorithm and raw calcium signal trained 

on two datasets (bottom row) and evaluated on the third dataset (top row), mimicking the 
situation in which no simultaneous spike and calcium measurements are available. 
Markers denote mean ± 2 SEM for repeated measure designs (see Methods). P-value 
results from a comparison of the performance of the STM with its best competitor (see 
Methods). 

b) As in a. for relative information gain.  
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